/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, Marc Luqué * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include namespace AK { // This is a dual pivot quick sort. It is quite a bit faster than the single // pivot quick_sort below. The other quick_sort below should only be used when // you are stuck with simple iterators to a container and you don't have access // to the container itself. // // We use a cutoff to insertion sort for partitions of size 7 or smaller. // The idea is to avoid recursion for small partitions. // The value 7 here is a magic number. According to princeton's CS algorithm class // a value between 5 and 15 should work well in most situations: // https://algs4.cs.princeton.edu/23quicksort/ static constexpr int INSERTION_SORT_CUTOFF = 7; template void dual_pivot_quick_sort(Collection& col, int start, int end, LessThan less_than) { if ((end + 1) - start <= INSERTION_SORT_CUTOFF) { AK::insertion_sort(col, start, end, less_than); return; } while (start < end) { int size = end - start + 1; if (size > 3) { int third = size / 3; if (less_than(col[start + third], col[end - third])) { swap(col[start + third], col[start]); swap(col[end - third], col[end]); } else { swap(col[start + third], col[end]); swap(col[end - third], col[start]); } } else { if (!less_than(col[start], col[end])) { swap(col[start], col[end]); } } int j = start + 1; int k = start + 1; int g = end - 1; auto&& left_pivot = col[start]; auto&& right_pivot = col[end]; while (k <= g) { if (less_than(col[k], left_pivot)) { swap(col[k], col[j]); j++; } else if (!less_than(col[k], right_pivot)) { while (!less_than(col[g], right_pivot) && k < g) { g--; } swap(col[k], col[g]); g--; if (less_than(col[k], left_pivot)) { swap(col[k], col[j]); j++; } } k++; } j--; g++; swap(col[start], col[j]); swap(col[end], col[g]); int left_pointer = j; int right_pointer = g; int left_size = left_pointer - start; int middle_size = right_pointer - (left_pointer + 1); int right_size = (end + 1) - (right_pointer + 1); if (left_size >= middle_size && left_size >= right_size) { dual_pivot_quick_sort(col, left_pointer + 1, right_pointer - 1, less_than); dual_pivot_quick_sort(col, right_pointer + 1, end, less_than); end = left_pointer - 1; } else if (middle_size >= right_size) { dual_pivot_quick_sort(col, start, left_pointer - 1, less_than); dual_pivot_quick_sort(col, right_pointer + 1, end, less_than); start = left_pointer + 1; end = right_pointer - 1; } else { dual_pivot_quick_sort(col, start, left_pointer - 1, less_than); dual_pivot_quick_sort(col, left_pointer + 1, right_pointer - 1, less_than); start = right_pointer + 1; } } } template void single_pivot_quick_sort(Iterator start, Iterator end, LessThan less_than) { for (;;) { int size = end - start; if (size <= 1) return; int pivot_point = size / 2; swap(*(start + pivot_point), *start); auto&& pivot = *start; int i = 1; for (int j = 1; j < size; ++j) { if (less_than(*(start + j), pivot)) { swap(*(start + j), *(start + i)); ++i; } } swap(*start, *(start + i - 1)); // Recur into the shorter part of the remaining data // to ensure a stack depth of at most log(n). if (i > size / 2) { single_pivot_quick_sort(start + i, end, less_than); end = start + i - 1; } else { single_pivot_quick_sort(start, start + i - 1, less_than); start = start + i; } } } template void quick_sort(Iterator start, Iterator end) { single_pivot_quick_sort(start, end, [](auto& a, auto& b) { return a < b; }); } template void quick_sort(Iterator start, Iterator end, LessThan less_than) { single_pivot_quick_sort(start, end, move(less_than)); } template void quick_sort(Collection& collection, LessThan less_than) { dual_pivot_quick_sort(collection, 0, collection.size() - 1, move(less_than)); } template void quick_sort(Collection& collection) { dual_pivot_quick_sort(collection, 0, collection.size() - 1, [](auto& a, auto& b) { return a < b; }); } } #if USING_AK_GLOBALLY using AK::quick_sort; #endif