#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_POLL_SELECT //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG //#define SIGNAL_DEBUG //#define SHARED_BUFFER_DEBUG static void create_signal_trampolines(); static pid_t next_pid; InlineLinkedList* g_processes; static String* s_hostname; static Lock* s_hostname_lock; VirtualAddress g_return_to_ring3_from_signal_trampoline; VirtualAddress g_return_to_ring0_from_signal_trampoline; void Process::initialize() { next_pid = 0; g_processes = new InlineLinkedList; s_hostname = new String("courage"); s_hostname_lock = new Lock; create_signal_trampolines(); } Vector Process::all_pids() { Vector pids; InterruptDisabler disabler; pids.ensure_capacity(g_processes->size_slow()); for (auto& process : *g_processes) pids.append(process.pid()); return pids; } Vector Process::all_processes() { Vector processes; InterruptDisabler disabler; processes.ensure_capacity(g_processes->size_slow()); for (auto& process : *g_processes) processes.append(&process); return processes; } bool Process::in_group(gid_t gid) const { return m_gids.contains(gid); } Range Process::allocate_range(VirtualAddress vaddr, size_t size) { vaddr.mask(PAGE_MASK); size = PAGE_ROUND_UP(size); if (vaddr.is_null()) return page_directory().range_allocator().allocate_anywhere(size); return page_directory().range_allocator().allocate_specific(vaddr, size); } static unsigned prot_to_region_access_flags(int prot) { unsigned access = 0; if (prot & PROT_READ) access |= Region::Access::Read; if (prot & PROT_WRITE) access |= Region::Access::Write; if (prot & PROT_EXEC) access |= Region::Access::Execute; return access; } Region& Process::allocate_split_region(const Region& source_region, const Range& range, size_t offset_in_vmo) { m_regions.append(Region::create_user_accessible(range, source_region.vmobject(), offset_in_vmo, source_region.name(), source_region.access())); return m_regions.last(); } Region* Process::allocate_region(VirtualAddress vaddr, size_t size, const String& name, int prot, bool commit) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; m_regions.append(Region::create_user_accessible(range, name, prot_to_region_access_flags(prot))); m_regions.last().map(page_directory()); if (commit) m_regions.last().commit(); return &m_regions.last(); } Region* Process::allocate_file_backed_region(VirtualAddress vaddr, size_t size, NonnullRefPtr inode, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; m_regions.append(Region::create_user_accessible(range, inode, name, prot_to_region_access_flags(prot))); m_regions.last().map(page_directory()); return &m_regions.last(); } Region* Process::allocate_region_with_vmo(VirtualAddress vaddr, size_t size, NonnullRefPtr vmo, size_t offset_in_vmo, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; offset_in_vmo &= PAGE_MASK; m_regions.append(Region::create_user_accessible(range, move(vmo), offset_in_vmo, name, prot_to_region_access_flags(prot))); m_regions.last().map(page_directory()); return &m_regions.last(); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; for (int i = 0; i < m_regions.size(); ++i) { if (&m_regions[i] == ®ion) { m_regions.remove(i); return true; } } return false; } Region* Process::region_from_range(const Range& range) { size_t size = PAGE_ROUND_UP(range.size()); for (auto& region : m_regions) { if (region.vaddr() == range.base() && region.size() == size) return ®ion; } return nullptr; } Region* Process::region_containing(const Range& range) { for (auto& region : m_regions) { if (region.contains(range)) return ®ion; } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { if (!validate_read_str(name)) return -EFAULT; auto* region = region_from_range({ VirtualAddress((u32)addr), size }); if (!region) return -EINVAL; if (!region->is_mmap()) return -EPERM; region->set_name(String(name)); return 0; } void* Process::sys$mmap(const Syscall::SC_mmap_params* params) { if (!validate_read(params, sizeof(Syscall::SC_mmap_params))) return (void*)-EFAULT; auto& [addr, size, prot, flags, fd, offset, name] = *params; if (name && !validate_read_str(name)) return (void*)-EFAULT; if (size == 0) return (void*)-EINVAL; if ((u32)addr & ~PAGE_MASK) return (void*)-EINVAL; if ((flags & MAP_SHARED) && (flags & MAP_PRIVATE)) return (void*)-EINVAL; // EINVAL: MAP_STACK cannot be used with shared or file-backed mappings if ((flags & MAP_STACK) && ((flags & MAP_SHARED) || !(flags & MAP_PRIVATE) || !(flags & MAP_ANONYMOUS))) return (void*)-EINVAL; // EINVAL: MAP_STACK cannot be used with non-readable or non-writable memory if ((flags & MAP_STACK) && (!(prot & PROT_READ) || !(prot & PROT_WRITE))) return (void*)-EINVAL; // FIXME: The rest of this function seems like it could share more code.. if (flags & MAP_ANONYMOUS) { auto* region = allocate_region(VirtualAddress((u32)addr), size, name ? name : "mmap", prot, false); if (!region) return (void*)-ENOMEM; if (flags & MAP_SHARED) region->set_shared(true); if (flags & MAP_STACK) region->set_stack(true); region->set_mmap(true); return region->vaddr().as_ptr(); } if (offset & ~PAGE_MASK) return (void*)-EINVAL; auto* description = file_description(fd); if (!description) return (void*)-EBADF; auto region_or_error = description->mmap(*this, VirtualAddress((u32)addr), offset, size, prot); if (region_or_error.is_error()) return (void*)(int)region_or_error.error(); auto region = region_or_error.value(); if (flags & MAP_SHARED) region->set_shared(true); if (name) region->set_name(name); region->set_mmap(true); return region->vaddr().as_ptr(); } int Process::sys$munmap(void* addr, size_t size) { Range range_to_unmap { VirtualAddress((u32)addr), size }; if (auto* whole_region = region_from_range(range_to_unmap)) { if (!whole_region->is_mmap()) return -EPERM; bool success = deallocate_region(*whole_region); ASSERT(success); return 0; } if (auto* old_region = region_containing(range_to_unmap)) { if (!old_region->is_mmap()) return -EPERM; Range old_region_range = old_region->range(); auto remaining_ranges_after_unmap = old_region_range.carve(range_to_unmap); ASSERT(!remaining_ranges_after_unmap.is_empty()); auto make_replacement_region = [&](const Range& new_range) -> Region& { ASSERT(new_range.base() >= old_region_range.base()); ASSERT(new_range.end() <= old_region_range.end()); size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (new_range.base().get() - old_region_range.base().get()); return allocate_split_region(*old_region, new_range, new_range_offset_in_vmobject); }; Vector new_regions; for (auto& new_range : remaining_ranges_after_unmap) { new_regions.unchecked_append(&make_replacement_region(new_range)); } // We manually unmap the old region here, specifying that we *don't* want the VM deallocated. old_region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No); deallocate_region(*old_region); // Instead we give back the unwanted VM manually. page_directory().range_allocator().deallocate(range_to_unmap); // And finally we map the new region(s). for (auto* new_region : new_regions) { new_region->map(page_directory()); } return 0; } // FIXME: We should also support munmap() across multiple regions. (#175) return -EINVAL; } int Process::sys$mprotect(void* addr, size_t size, int prot) { auto* region = region_from_range({ VirtualAddress((u32)addr), size }); if (!region) return -EINVAL; if (!region->is_mmap()) return -EPERM; region->set_writable(prot & PROT_WRITE); region->remap(); return 0; } int Process::sys$gethostname(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; LOCKER(*s_hostname_lock); if (size < (s_hostname->length() + 1)) return -ENAMETOOLONG; strcpy(buffer, s_hostname->characters()); return 0; } Process* Process::fork(RegisterDump& regs) { auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd, m_executable, m_tty, this); #ifdef FORK_DEBUG dbgprintf("fork: child=%p\n", child); #endif for (auto& region : m_regions) { #ifdef FORK_DEBUG dbg() << "fork: cloning Region{" << ®ion << "} '" << region.name() << "' @ " << region.vaddr(); #endif child->m_regions.append(region.clone()); child->m_regions.last().map(child->page_directory()); if (®ion == m_master_tls_region) child->m_master_tls_region = &child->m_regions.last(); } for (auto gid : m_gids) child->m_gids.set(gid); auto& child_tss = child->main_thread().m_tss; child_tss.eax = 0; // fork() returns 0 in the child :^) child_tss.ebx = regs.ebx; child_tss.ecx = regs.ecx; child_tss.edx = regs.edx; child_tss.ebp = regs.ebp; child_tss.esp = regs.esp_if_crossRing; child_tss.esi = regs.esi; child_tss.edi = regs.edi; child_tss.eflags = regs.eflags; child_tss.eip = regs.eip; child_tss.cs = regs.cs; child_tss.ds = regs.ds; child_tss.es = regs.es; child_tss.fs = regs.fs; child_tss.gs = regs.gs; child_tss.ss = regs.ss_if_crossRing; #ifdef FORK_DEBUG dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x, kstack %w:%x\n", child_tss.cs, child_tss.eip, child_tss.ss, child_tss.esp, child_tss.ss0, child_tss.esp0); #endif { InterruptDisabler disabler; g_processes->prepend(child); } #ifdef TASK_DEBUG kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child_tss.eip); #endif child->main_thread().set_state(Thread::State::Skip1SchedulerPass); return child; } pid_t Process::sys$fork(RegisterDump& regs) { auto* child = fork(regs); ASSERT(child); return child->pid(); } int Process::do_exec(String path, Vector arguments, Vector environment) { ASSERT(is_ring3()); dbgprintf("%s(%d) do_exec(%s): thread_count() = %d\n", m_name.characters(), m_pid, path.characters(), thread_count()); // FIXME(Thread): Kill any threads the moment we commit to the exec(). if (thread_count() != 1) { dbgprintf("Gonna die because I have many threads! These are the threads:\n"); for_each_thread([](Thread& thread) { dbgprintf("Thread{%p}: TID=%d, PID=%d\n", &thread, thread.tid(), thread.pid()); return IterationDecision::Continue; }); ASSERT(thread_count() == 1); ASSERT_NOT_REACHED(); } size_t total_blob_size = 0; for (auto& a : arguments) total_blob_size += a.length() + 1; for (auto& e : environment) total_blob_size += e.length() + 1; size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1); // FIXME: How much stack space does process startup need? if ((total_blob_size + total_meta_size) >= Thread::default_userspace_stack_size) return -E2BIG; auto parts = path.split('/'); if (parts.is_empty()) return -ENOENT; auto result = VFS::the().open(path, 0, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); auto metadata = description->metadata(); if (!metadata.may_execute(m_euid, m_gids)) return -EACCES; if (!metadata.size) return -ENOTIMPL; u32 entry_eip = 0; // FIXME: Is there a race here? auto old_page_directory = move(m_page_directory); m_page_directory = PageDirectory::create_for_userspace(*this); #ifdef MM_DEBUG dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr()); #endif ProcessPagingScope paging_scope(*this); ASSERT(description->inode()); auto vmo = InodeVMObject::create_with_inode(*description->inode()); auto* region = allocate_region_with_vmo(VirtualAddress(), metadata.size, vmo, 0, description->absolute_path(), PROT_READ); ASSERT(region); // NOTE: We yank this out of 'm_regions' since we're about to manipulate the vector // and we don't want it getting lost. auto executable_region = m_regions.take_last(); Region* master_tls_region { nullptr }; size_t master_tls_size = 0; size_t master_tls_alignment = 0; OwnPtr loader; { // Okay, here comes the sleight of hand, pay close attention.. auto old_regions = move(m_regions); m_regions.append(move(executable_region)); loader = make(region->vaddr().as_ptr()); loader->map_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) -> u8* { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; if (is_executable) prot |= PROT_EXEC; if (!allocate_region_with_vmo(vaddr, size, vmo, offset_in_image, String(name), prot)) return nullptr; return vaddr.as_ptr(); }; loader->alloc_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) -> u8* { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; if (!allocate_region(vaddr, size, String(name), prot)) return nullptr; return vaddr.as_ptr(); }; loader->tls_section_hook = [&](size_t size, size_t alignment) { ASSERT(size); master_tls_region = allocate_region({}, size, String(), PROT_READ | PROT_WRITE); master_tls_size = size; master_tls_alignment = alignment; return master_tls_region->vaddr().as_ptr(); }; bool success = loader->load(); if (!success || !loader->entry().get()) { m_page_directory = move(old_page_directory); // FIXME: RAII this somehow instead. ASSERT(¤t->process() == this); MM.enter_process_paging_scope(*this); executable_region = m_regions.take_first(); m_regions = move(old_regions); kprintf("do_exec: Failure loading %s\n", path.characters()); return -ENOEXEC; } // NOTE: At this point, we've committed to the new executable. entry_eip = loader->entry().get(); } m_elf_loader = move(loader); m_executable = description->custody(); // Copy of the master TLS region that we will clone for new threads m_master_tls_region = master_tls_region; if (metadata.is_setuid()) m_euid = metadata.uid; if (metadata.is_setgid()) m_egid = metadata.gid; current->set_default_signal_dispositions(); current->m_signal_mask = 0; current->m_pending_signals = 0; for (int i = 0; i < m_fds.size(); ++i) { auto& daf = m_fds[i]; if (daf.description && daf.flags & FD_CLOEXEC) { daf.description->close(); daf = {}; } } // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield(). // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec(). if (¤t->process() == this) cli(); Scheduler::prepare_to_modify_tss(main_thread()); m_name = parts.take_last(); // ss0 sp!!!!!!!!! u32 old_esp0 = main_thread().m_tss.esp0; m_master_tls_size = master_tls_size; m_master_tls_alignment = master_tls_alignment; main_thread().make_thread_specific_region({}); memset(&main_thread().m_tss, 0, sizeof(main_thread().m_tss)); main_thread().m_tss.eflags = 0x0202; main_thread().m_tss.eip = entry_eip; main_thread().m_tss.cs = 0x1b; main_thread().m_tss.ds = 0x23; main_thread().m_tss.es = 0x23; main_thread().m_tss.fs = 0x23; main_thread().m_tss.gs = thread_specific_selector() | 3; main_thread().m_tss.ss = 0x23; main_thread().m_tss.cr3 = page_directory().cr3(); main_thread().make_userspace_stack_for_main_thread(move(arguments), move(environment)); main_thread().m_tss.ss0 = 0x10; main_thread().m_tss.esp0 = old_esp0; main_thread().m_tss.ss2 = m_pid; #ifdef TASK_DEBUG kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), main_thread().tss().eip); #endif main_thread().set_state(Thread::State::Skip1SchedulerPass); big_lock().unlock_if_locked(); return 0; } KResultOr> Process::find_shebang_interpreter_for_executable(const String& executable_path) { // FIXME: It's a bit sad that we'll open the executable twice (in case there's no shebang) // Maybe we can find a way to plumb this opened FileDescription to the rest of the // exec implementation.. auto result = VFS::the().open(executable_path, 0, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); auto metadata = description->metadata(); if (!metadata.may_execute(m_euid, m_gids)) return KResult(-EACCES); if (metadata.size < 3) return KResult(-ENOEXEC); char first_page[PAGE_SIZE]; int nread = description->read((u8*)&first_page, sizeof(first_page)); int word_start = 2; int word_length = 0; if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') { Vector interpreter_words; for (int i = 2; i < nread; ++i) { if (first_page[i] == '\n') { break; } if (first_page[i] != ' ') { ++word_length; } if (first_page[i] == ' ') { if (word_length > 0) { interpreter_words.append(String(&first_page[word_start], word_length)); } word_length = 0; word_start = i + 1; } } if (word_length > 0) interpreter_words.append(String(&first_page[word_start], word_length)); if (!interpreter_words.is_empty()) return interpreter_words; } return KResult(-ENOEXEC); } int Process::exec(String path, Vector arguments, Vector environment) { auto result = find_shebang_interpreter_for_executable(path); if (!result.is_error()) { Vector new_arguments(result.value()); new_arguments.append(path); arguments.remove(0); new_arguments.append(move(arguments)); return exec(result.value().first(), move(new_arguments), move(environment)); } // The bulk of exec() is done by do_exec(), which ensures that all locals // are cleaned up by the time we yield-teleport below. int rc = do_exec(move(path), move(arguments), move(environment)); if (rc < 0) return rc; if (¤t->process() == this) { Scheduler::yield(); ASSERT_NOT_REACHED(); } return 0; } int Process::sys$execve(const char* filename, const char** argv, const char** envp) { // NOTE: Be extremely careful with allocating any kernel memory in exec(). // On success, the kernel stack will be lost. if (!validate_read_str(filename)) return -EFAULT; if (!*filename) return -ENOENT; if (argv) { if (!validate_read_typed(argv)) return -EFAULT; for (size_t i = 0; argv[i]; ++i) { if (!validate_read_str(argv[i])) return -EFAULT; } } if (envp) { if (!validate_read_typed(envp)) return -EFAULT; for (size_t i = 0; envp[i]; ++i) { if (!validate_read_str(envp[i])) return -EFAULT; } } String path(filename); Vector arguments; Vector environment; { auto parts = path.split('/'); if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } if (envp) { for (size_t i = 0; envp[i]; ++i) environment.append(envp[i]); } } int rc = exec(move(path), move(arguments), move(environment)); ASSERT(rc < 0); // We should never continue after a successful exec! return rc; } Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { // FIXME: Don't split() the path twice (sys$spawn also does it...) auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RefPtr cwd; { InterruptDisabler disabler; if (auto* parent = Process::from_pid(parent_pid)) cwd = parent->m_cwd; } if (!cwd) cwd = VFS::the().root_custody(); auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { delete process; return nullptr; } { InterruptDisabler disabler; g_processes->prepend(process); } #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif error = 0; return process; } Process* Process::create_kernel_process(String&& name, void (*e)()) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->main_thread().tss().eip = (u32)e; if (process->pid() != 0) { InterruptDisabler disabler; g_processes->prepend(process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif } process->main_thread().set_state(Thread::State::Runnable); return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RefPtr cwd, RefPtr executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(next_pid++) // FIXME: RACE: This variable looks racy! , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_ring(ring) , m_executable(move(executable)) , m_cwd(move(cwd)) , m_tty(tty) , m_ppid(ppid) { dbgprintf("Process: New process PID=%u with name=%s\n", m_pid, m_name.characters()); m_page_directory = PageDirectory::create_for_userspace(*this, fork_parent ? &fork_parent->page_directory().range_allocator() : nullptr); #ifdef MM_DEBUG dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr()); #endif // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the main thread in the new process. if (fork_parent) m_main_thread = current->clone(*this); else m_main_thread = new Thread(*this); m_gids.set(m_gid); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; } else { // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though.. InterruptDisabler disabler; if (auto* parent = Process::from_pid(m_ppid)) { m_sid = parent->m_sid; m_pgid = parent->m_pgid; } } if (fork_parent) { m_fds.resize(fork_parent->m_fds.size()); for (int i = 0; i < fork_parent->m_fds.size(); ++i) { if (!fork_parent->m_fds[i].description) continue; #ifdef FORK_DEBUG dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].description.ptr(), fork_parent->m_fds[i].description->is_tty()); #endif m_fds[i] = fork_parent->m_fds[i]; } } else { m_fds.resize(m_max_open_file_descriptors); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the(); m_fds[0].set(*device_to_use_as_tty.open(O_RDONLY).value()); m_fds[1].set(*device_to_use_as_tty.open(O_WRONLY).value()); m_fds[2].set(*device_to_use_as_tty.open(O_WRONLY).value()); } if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; m_umask = fork_parent->m_umask; } } Process::~Process() { dbgprintf("~Process{%p} name=%s pid=%d, m_fds=%d\n", this, m_name.characters(), pid(), m_fds.size()); delete m_main_thread; m_main_thread = nullptr; Vector my_threads; for_each_thread([&my_threads](auto& thread) { my_threads.append(&thread); return IterationDecision::Continue; }); for (auto* thread : my_threads) delete thread; } void Process::dump_regions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE ACCESS NAME\n"); for (auto& region : m_regions) { kprintf("%08x -- %08x %08x %c%c%c%c%c %s\n", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.is_readable() ? 'R' : ' ', region.is_writable() ? 'W' : ' ', region.is_executable() ? 'X' : ' ', region.is_shared() ? 'S' : ' ', region.is_stack() ? 'T' : ' ', region.name().characters()); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif dump_backtrace(); m_termination_status = status; m_termination_signal = 0; die(); current->die_if_needed(); ASSERT_NOT_REACHED(); } void signal_trampoline_dummy(void) { // The trampoline preserves the current eax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // neccessary to preserve it here. asm( ".intel_syntax noprefix\n" "asm_signal_trampoline:\n" "push ebp\n" "mov ebp, esp\n" "push eax\n" // we have to store eax 'cause it might be the return value from a syscall "sub esp, 4\n" // align the stack to 16 bytes "mov eax, [ebp+12]\n" // push the signal code "push eax\n" "call [ebp+8]\n" // call the signal handler "add esp, 8\n" "mov eax, %P0\n" "int 0x82\n" // sigreturn syscall "asm_signal_trampoline_end:\n" ".att_syntax" ::"i"(Syscall::SC_sigreturn)); } extern "C" void asm_signal_trampoline(void); extern "C" void asm_signal_trampoline_end(void); void create_signal_trampolines() { InterruptDisabler disabler; // NOTE: We leak this region. auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines").leak_ptr(); g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr(); u8* trampoline = (u8*)asm_signal_trampoline; u8* trampoline_end = (u8*)asm_signal_trampoline_end; size_t trampoline_size = trampoline_end - trampoline; u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr(); memcpy(code_ptr, trampoline, trampoline_size); trampoline_region->set_writable(false); trampoline_region->remap(); } int Process::sys$restore_signal_mask(u32 mask) { current->m_signal_mask = mask; return 0; } int Process::sys$sigreturn(RegisterDump& registers) { //Here, we restore the state pushed by dispatch signal and asm_signal_trampoline. u32* stack_ptr = (u32*)registers.esp_if_crossRing; u32 smuggled_eax = *stack_ptr; //pop the stored eax, ebp, return address, handler and signal code stack_ptr += 5; current->m_signal_mask = *stack_ptr; stack_ptr++; //pop edi, esi, ebp, esp, ebx, edx, ecx and eax memcpy(®isters.edi, stack_ptr, 8 * sizeof(u32)); stack_ptr += 8; registers.eip = *stack_ptr; stack_ptr++; registers.eflags = *stack_ptr; stack_ptr++; registers.esp_if_crossRing = registers.esp; return smuggled_eax; } void Process::crash(int signal, u32 eip) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!is_dead()); ASSERT(¤t->process() == this); if (m_elf_loader && ksyms_ready) dbgprintf("\033[31;1m%p %s\033[0m\n", eip, m_elf_loader->symbolicate(eip).characters()); dump_backtrace(); m_termination_signal = signal; dump_regions(); ASSERT(is_ring3()); die(); // We can not return from here, as there is nowhere // to unwind to, so die right away. current->die_if_needed(); ASSERT_NOT_REACHED(); } Process* Process::from_pid(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto& process : *g_processes) { if (process.pid() == pid) return &process; } return nullptr; } FileDescription* Process::file_description(int fd) { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].description.ptr(); return nullptr; } const FileDescription* Process::file_description(int fd) const { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].description.ptr(); return nullptr; } int Process::fd_flags(int fd) const { if (fd < 0) return -1; if (fd < m_fds.size()) return m_fds[fd].flags; return -1; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; return description->get_dir_entries((u8*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* description = file_description(fd); if (!description) return -EBADF; return description->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; if (!description->is_tty()) return -ENOTTY; auto tty_name = description->tty()->tty_name(); if (size < tty_name.length() + 1) return -ERANGE; memcpy(buffer, tty_name.characters_without_null_termination(), tty_name.length()); buffer[tty_name.length()] = '\0'; return 0; } int Process::sys$ptsname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; auto* master_pty = description->master_pty(); if (!master_pty) return -ENOTTY; auto pts_name = master_pty->pts_name(); if (size < pts_name.length() + 1) return -ERANGE; strcpy(buffer, pts_name.characters()); return 0; } ssize_t Process::sys$writev(int fd, const struct iovec* iov, int iov_count) { if (iov_count < 0) return -EINVAL; if (!validate_read_typed(iov, iov_count)) return -EFAULT; // FIXME: Return EINVAL if sum of iovecs is greater than INT_MAX auto* description = file_description(fd); if (!description) return -EBADF; int nwritten = 0; for (int i = 0; i < iov_count; ++i) { int rc = do_write(*description, (const u8*)iov[i].iov_base, iov[i].iov_len); if (rc < 0) { if (nwritten == 0) return rc; return nwritten; } nwritten += rc; } return nwritten; } ssize_t Process::do_write(FileDescription& description, const u8* data, int data_size) { ssize_t nwritten = 0; if (!description.is_blocking()) { if (!description.can_write()) return -EAGAIN; } if (description.should_append()) { #ifdef IO_DEBUG dbgprintf("seeking to end (O_APPEND)\n"); #endif description.seek(0, SEEK_END); } while (nwritten < data_size) { #ifdef IO_DEBUG dbgprintf("while %u < %u\n", nwritten, size); #endif if (!description.can_write()) { #ifdef IO_DEBUG dbgprintf("block write on %d\n", fd); #endif if (current->block(description) == Thread::BlockResult::InterruptedBySignal) { if (nwritten == 0) return -EINTR; } } ssize_t rc = description.write(data + nwritten, data_size - nwritten); #ifdef IO_DEBUG dbgprintf(" -> write returned %d\n", rc); #endif if (rc < 0) { // FIXME: Support returning partial nwritten with errno. ASSERT(nwritten == 0); return rc; } if (rc == 0) break; nwritten += rc; } return nwritten; } ssize_t Process::sys$write(int fd, const u8* data, ssize_t size) { if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_read(data, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size); #endif auto* description = file_description(fd); if (!description) return -EBADF; return do_write(*description, data, size); } ssize_t Process::sys$read(int fd, u8* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_write(buffer, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, buffer, size); #endif auto* description = file_description(fd); if (!description) return -EBADF; if (description->is_directory()) return -EISDIR; if (description->is_blocking()) { if (!description->can_read()) { if (current->block(*description) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } } return description->read(buffer, size); } int Process::sys$close(int fd) { auto* description = file_description(fd); if (!description) return -EBADF; int rc = description->close(); m_fds[fd] = {}; return rc; } int Process::sys$utime(const char* pathname, const utimbuf* buf) { if (!validate_read_str(pathname)) return -EFAULT; if (buf && !validate_read_typed(buf)) return -EFAULT; time_t atime; time_t mtime; if (buf) { atime = buf->actime; mtime = buf->modtime; } else { struct timeval now; kgettimeofday(now); mtime = now.tv_sec; atime = now.tv_sec; } return VFS::the().utime(StringView(pathname), current_directory(), atime, mtime); } int Process::sys$access(const char* pathname, int mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().access(StringView(pathname), mode, current_directory()); } int Process::sys$fcntl(int fd, int cmd, u32 arg) { (void)cmd; (void)arg; dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg); auto* description = file_description(fd); if (!description) return -EBADF; // NOTE: The FD flags are not shared between FileDescription objects. // This means that dup() doesn't copy the FD_CLOEXEC flag! switch (cmd) { case F_DUPFD: { int arg_fd = (int)arg; if (arg_fd < 0) return -EINVAL; int new_fd = alloc_fd(arg_fd); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); break; } case F_GETFD: return m_fds[fd].flags; case F_SETFD: m_fds[fd].flags = arg; break; case F_GETFL: return description->file_flags(); case F_SETFL: description->set_file_flags(arg); break; default: ASSERT_NOT_REACHED(); } return 0; } int Process::sys$fstat(int fd, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; return description->fstat(*statbuf); } int Process::sys$lstat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto metadata_or_error = VFS::the().lookup_metadata(StringView(path), current_directory(), O_NOFOLLOW_NOERROR); if (metadata_or_error.is_error()) return metadata_or_error.error(); return metadata_or_error.value().stat(*statbuf); } int Process::sys$stat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto metadata_or_error = VFS::the().lookup_metadata(StringView(path), current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); return metadata_or_error.value().stat(*statbuf); } int Process::sys$readlink(const char* path, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_read_str(path)) return -EFAULT; if (!validate_write(buffer, size)) return -EFAULT; auto result = VFS::the().open(path, O_RDONLY | O_NOFOLLOW_NOERROR, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); if (!description->metadata().is_symlink()) return -EINVAL; auto contents = description->read_entire_file(); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.data(), min(size, (ssize_t)contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { if (!validate_read_str(path)) return -EFAULT; auto directory_or_error = VFS::the().open_directory(StringView(path), current_directory()); if (directory_or_error.is_error()) return directory_or_error.error(); m_cwd = *directory_or_error.value(); return 0; } int Process::sys$fchdir(int fd) { auto* description = file_description(fd); if (!description) return -EBADF; if (!description->is_directory()) return -ENOTDIR; if (!description->metadata().may_execute(*this)) return -EACCES; m_cwd = description->custody(); return 0; } int Process::sys$getcwd(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto path = current_directory().absolute_path(); if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return 0; } int Process::number_of_open_file_descriptors() const { int count = 0; for (auto& description : m_fds) { if (description) ++count; } return count; } int Process::sys$open(const Syscall::SC_open_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [path, path_length, options, mode] = *params; if (!path_length) return -EINVAL; if (!validate_read(path, path_length)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path); #endif int fd = alloc_fd(); if (fd < 0) return fd; auto result = VFS::the().open(path, options, mode & ~umask(), current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); if (options & O_DIRECTORY && !description->is_directory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. description->set_file_flags(options); u32 fd_flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(description), fd_flags); return fd; } int Process::sys$openat(const Syscall::SC_openat_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [dirfd, path, path_length, options, mode] = *params; if (!validate_read(path, path_length)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$openat(%d, \"%s\")\n", dirfd, name().characters(), pid(), path); #endif int fd = alloc_fd(); if (fd < 0) return fd; RefPtr base; if (dirfd == AT_FDCWD) { base = current_directory(); } else { auto* base_description = file_description(dirfd); if (!base_description) return -EBADF; if (!base_description->is_directory()) return -ENOTDIR; if (!base_description->custody()) return -EINVAL; base = base_description->custody(); } auto result = VFS::the().open(path, options, mode & ~umask(), *base); if (result.is_error()) return result.error(); auto description = result.value(); if (options & O_DIRECTORY && !description->is_directory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. description->set_file_flags(options); u32 fd_flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(description), fd_flags); return fd; } int Process::alloc_fd(int first_candidate_fd) { int fd = -EMFILE; for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) { fd = i; break; } } return fd; } int Process::sys$pipe(int pipefd[2], int flags) { if (!validate_write_typed(pipefd)) return -EFAULT; if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors()) return -EMFILE; // Reject flags other than O_CLOEXEC. if ((flags & O_CLOEXEC) != flags) return -EINVAL; u32 fd_flags = (flags & O_CLOEXEC) ? FD_CLOEXEC : 0; auto fifo = FIFO::create(m_uid); int reader_fd = alloc_fd(); m_fds[reader_fd].set(fifo->open_direction(FIFO::Direction::Reader), fd_flags); pipefd[0] = reader_fd; int writer_fd = alloc_fd(); m_fds[writer_fd].set(fifo->open_direction(FIFO::Direction::Writer), fd_flags); pipefd[1] = writer_fd; return 0; } int Process::sys$killpg(int pgrp, int signum) { if (signum < 1 || signum >= 32) return -EINVAL; if (pgrp < 0) return -EINVAL; InterruptDisabler disabler; return do_killpg(pgrp, signum); } int Process::sys$setuid(uid_t uid) { if (uid != m_uid && !is_superuser()) return -EPERM; m_uid = uid; m_euid = uid; return 0; } int Process::sys$setgid(gid_t gid) { if (gid != m_gid && !is_superuser()) return -EPERM; m_gid = gid; m_egid = gid; return 0; } unsigned Process::sys$alarm(unsigned seconds) { unsigned previous_alarm_remaining = 0; if (m_alarm_deadline && m_alarm_deadline > g_uptime) { previous_alarm_remaining = (m_alarm_deadline - g_uptime) / TICKS_PER_SECOND; } if (!seconds) { m_alarm_deadline = 0; return previous_alarm_remaining; } m_alarm_deadline = g_uptime + seconds * TICKS_PER_SECOND; return previous_alarm_remaining; } int Process::sys$uname(utsname* buf) { if (!validate_write_typed(buf)) return -EFAULT; strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i686"); LOCKER(*s_hostname_lock); strncpy(buf->nodename, s_hostname->characters(), sizeof(utsname::nodename)); return 0; } KResult Process::do_kill(Process& process, int signal) { // FIXME: Allow sending SIGCONT to everyone in the process group. // FIXME: Should setuid processes have some special treatment here? if (!is_superuser() && m_euid != process.m_uid && m_uid != process.m_uid) return KResult(-EPERM); if (process.is_ring0() && signal == SIGKILL) { kprintf("%s(%u) attempted to send SIGKILL to ring 0 process %s(%u)\n", name().characters(), m_pid, process.name().characters(), process.pid()); return KResult(-EPERM); } process.send_signal(signal, this); return KSuccess; } KResult Process::do_killpg(pid_t pgrp, int signal) { ASSERT(pgrp >= 0); // Send the signal to all processes in the given group. if (pgrp == 0) { // Send the signal to our own pgrp. pgrp = pgid(); } bool group_was_empty = true; bool any_succeeded = false; KResult error = KSuccess; Process::for_each_in_pgrp(pgrp, [&](auto& process) { group_was_empty = false; KResult res = do_kill(process, signal); if (res.is_success()) any_succeeded = true; else error = res; return IterationDecision::Continue; }); if (group_was_empty) return KResult(-ESRCH); if (any_succeeded) return KSuccess; return error; } int Process::sys$kill(pid_t pid, int signal) { if (signal < 0 || signal >= 32) return -EINVAL; if (pid <= 0) { return do_killpg(-pid, signal); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } if (pid == m_pid) { // FIXME: If we ignore this signal anyway, we don't need to block here, right? current->send_signal(signal, this); (void)current->block(Thread::SemiPermanentBlocker::Reason::Signal); return 0; } InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; return do_kill(*peer, signal); } int Process::sys$usleep(useconds_t usec) { if (!usec) return 0; u64 wakeup_time = current->sleep(usec / 1000); if (wakeup_time > g_uptime) return -EINTR; return 0; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; u64 wakeup_time = current->sleep(seconds * TICKS_PER_SECOND); if (wakeup_time > g_uptime) { u32 ticks_left_until_original_wakeup_time = wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } timeval kgettimeofday() { timeval tv; tv.tv_sec = RTC::boot_time() + PIT::seconds_since_boot(); tv.tv_usec = PIT::ticks_this_second() * 1000; return tv; } void kgettimeofday(timeval& tv) { tv = kgettimeofday(); } int Process::sys$gettimeofday(timeval* tv) { if (!validate_write_typed(tv)) return -EFAULT; kgettimeofday(*tv); return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } uid_t Process::sys$geteuid() { return m_euid; } gid_t Process::sys$getegid() { return m_egid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$getppid() { return m_ppid; } mode_t Process::sys$umask(mode_t mask) { auto old_mask = m_umask; m_umask = mask & 0777; return old_mask; } int Process::reap(Process& process) { int exit_status; { InterruptDisabler disabler; exit_status = (process.m_termination_status << 8) | process.m_termination_signal; if (process.ppid()) { auto* parent = Process::from_pid(process.ppid()); if (parent) { parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children; } } dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), process.main_thread().state_string()); ASSERT(process.is_dead()); g_processes->remove(&process); } delete &process; return exit_status; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options); if (!options) { // FIXME: This can't be right.. can it? Figure out how this should actually work. options = WEXITED; } if (wstatus) if (!validate_write_typed(wstatus)) return -EFAULT; int dummy_wstatus; int& exit_status = wstatus ? *wstatus : dummy_wstatus; { InterruptDisabler disabler; if (waitee != -1 && !Process::from_pid(waitee)) return -ECHILD; } if (options & WNOHANG) { // FIXME: Figure out what WNOHANG should do with stopped children. if (waitee == -1) { pid_t reaped_pid = 0; InterruptDisabler disabler; for_each_child([&reaped_pid, &exit_status](Process& process) { if (process.is_dead()) { reaped_pid = process.pid(); exit_status = reap(process); } return IterationDecision::Continue; }); return reaped_pid; } else { ASSERT(waitee > 0); // FIXME: Implement other PID specs. InterruptDisabler disabler; auto* waitee_process = Process::from_pid(waitee); if (!waitee_process) return -ECHILD; if (waitee_process->is_dead()) { exit_status = reap(*waitee_process); return waitee; } return 0; } } pid_t waitee_pid = waitee; if (current->block(options, waitee_pid) == Thread::BlockResult::InterruptedBySignal) return -EINTR; InterruptDisabler disabler; // NOTE: If waitee was -1, m_waitee_pid will have been filled in by the scheduler. Process* waitee_process = Process::from_pid(waitee_pid); if (!waitee_process) return -ECHILD; ASSERT(waitee_process); if (waitee_process->is_dead()) { exit_status = reap(*waitee_process); } else { ASSERT(waitee_process->main_thread().state() == Thread::State::Stopped); exit_status = 0x7f; } return waitee_pid; } enum class KernelMemoryCheckResult { NotInsideKernelMemory, AccessGranted, AccessDenied }; static KernelMemoryCheckResult check_kernel_memory_access(VirtualAddress vaddr, bool is_write) { auto& sections = multiboot_info_ptr->u.elf_sec; auto* kernel_program_headers = (Elf32_Phdr*)(sections.addr); for (unsigned i = 0; i < sections.num; ++i) { auto& segment = kernel_program_headers[i]; if (segment.p_type != PT_LOAD || !segment.p_vaddr || !segment.p_memsz) continue; if (vaddr.get() < segment.p_vaddr || vaddr.get() > (segment.p_vaddr + segment.p_memsz)) continue; if (is_write && !(kernel_program_headers[i].p_flags & PF_W)) return KernelMemoryCheckResult::AccessDenied; if (!is_write && !(kernel_program_headers[i].p_flags & PF_R)) return KernelMemoryCheckResult::AccessDenied; return KernelMemoryCheckResult::AccessGranted; } return KernelMemoryCheckResult::NotInsideKernelMemory; } bool Process::validate_read_from_kernel(VirtualAddress vaddr) const { if (vaddr.is_null()) return false; // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. auto kmc_result = check_kernel_memory_access(vaddr, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(vaddr.as_ptr())) return true; return validate_read(vaddr.as_ptr(), 1); } bool Process::validate_read_str(const char* str) { if (!validate_read(str, 1)) return false; return validate_read(str, strlen(str) + 1); } bool Process::validate_read(const void* address, ssize_t size) const { ASSERT(size >= 0); VirtualAddress first_address((u32)address); VirtualAddress last_address = first_address.offset(size - 1); if (is_ring0()) { auto kmc_result = check_kernel_memory_access(first_address, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(address)) return true; } ASSERT(size); if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_read(*this, last_address)) return false; } return MM.validate_user_read(*this, first_address); } bool Process::validate_write(void* address, ssize_t size) const { ASSERT(size >= 0); VirtualAddress first_address((u32)address); VirtualAddress last_address = first_address.offset(size - 1); if (is_ring0()) { if (is_kmalloc_address(address)) return true; auto kmc_result = check_kernel_memory_access(first_address, true); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; } if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_write(*this, last_address)) return false; } return MM.validate_user_write(*this, last_address); } pid_t Process::sys$getsid(pid_t pid) { if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; Process::for_each_in_pgrp(pid(), [&](auto&) { found_process_with_same_pgid_as_my_pid = true; return IterationDecision::Break; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::from_pid(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::from_pid(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) return -EINVAL; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } int Process::sys$ioctl(int fd, unsigned request, unsigned arg) { auto* description = file_description(fd); if (!description) return -EBADF; return description->file().ioctl(*description, request, arg); } int Process::sys$getdtablesize() { return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { auto* description = file_description(old_fd); if (!description) return -EBADF; int new_fd = alloc_fd(0); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { auto* description = file_description(old_fd); if (!description) return -EBADF; if (new_fd < 0 || new_fd >= m_max_open_file_descriptors) return -EINVAL; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set) { if (old_set) { if (!validate_write_typed(old_set)) return -EFAULT; *old_set = current->m_signal_mask; } if (set) { if (!validate_read_typed(set)) return -EFAULT; switch (how) { case SIG_BLOCK: current->m_signal_mask &= ~(*set); break; case SIG_UNBLOCK: current->m_signal_mask |= *set; break; case SIG_SETMASK: current->m_signal_mask = *set; break; default: return -EINVAL; } } return 0; } int Process::sys$sigpending(sigset_t* set) { if (!validate_write_typed(set)) return -EFAULT; *set = current->m_pending_signals; return 0; } int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act) { if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP) return -EINVAL; if (!validate_read_typed(act)) return -EFAULT; InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily? auto& action = current->m_signal_action_data[signum]; if (old_act) { if (!validate_write_typed(old_act)) return -EFAULT; old_act->sa_flags = action.flags; old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get(); } action.flags = act->sa_flags; action.handler_or_sigaction = VirtualAddress((u32)act->sa_sigaction); return 0; } int Process::sys$getgroups(ssize_t count, gid_t* gids) { if (count < 0) return -EINVAL; if (!count) return m_gids.size(); if (count != (int)m_gids.size()) return -EINVAL; if (!validate_write_typed(gids, m_gids.size())) return -EFAULT; size_t i = 0; for (auto gid : m_gids) gids[i++] = gid; return 0; } int Process::sys$setgroups(ssize_t count, const gid_t* gids) { if (count < 0) return -EINVAL; if (!is_superuser()) return -EPERM; if (!validate_read(gids, count)) return -EFAULT; m_gids.clear(); m_gids.set(m_gid); for (int i = 0; i < count; ++i) m_gids.set(gids[i]); return 0; } int Process::sys$mkdir(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; size_t pathname_length = strlen(pathname); if (pathname_length == 0) return -EINVAL; if (pathname_length >= 255) return -ENAMETOOLONG; return VFS::the().mkdir(StringView(pathname, pathname_length), mode & ~umask(), current_directory()); } int Process::sys$realpath(const char* pathname, char* buffer, size_t size) { if (!validate_read_str(pathname)) return -EFAULT; size_t pathname_length = strlen(pathname); if (pathname_length == 0) return -EINVAL; if (pathname_length >= size) return -ENAMETOOLONG; if (!validate_write(buffer, size)) return -EFAULT; auto custody_or_error = VFS::the().resolve_path(pathname, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& custody = custody_or_error.value(); // FIXME: Once resolve_path is fixed to deal with .. and . , remove the use of FileSystemPath::canonical_path. FileSystemPath canonical_path(custody->absolute_path()); if (!canonical_path.is_valid()) { dbg() << "FileSystemPath failed to canonicalize " << custody->absolute_path(); ASSERT_NOT_REACHED(); } strncpy(buffer, canonical_path.string().characters(), size); return 0; }; clock_t Process::sys$times(tms* times) { if (!validate_write_typed(times)) return -EFAULT; times->tms_utime = m_ticks_in_user; times->tms_stime = m_ticks_in_kernel; times->tms_cutime = m_ticks_in_user_for_dead_children; times->tms_cstime = m_ticks_in_kernel_for_dead_children; return g_uptime & 0x7fffffff; } int Process::sys$select(const Syscall::SC_select_params* params) { // FIXME: Return -EINVAL if timeout is invalid. if (!validate_read_typed(params)) return -EFAULT; auto& [nfds, readfds, writefds, exceptfds, timeout] = *params; if (writefds && !validate_write_typed(writefds)) return -EFAULT; if (readfds && !validate_write_typed(readfds)) return -EFAULT; if (exceptfds && !validate_write_typed(exceptfds)) return -EFAULT; if (timeout && !validate_read_typed(timeout)) return -EFAULT; if (nfds < 0) return -EINVAL; timeval computed_timeout; bool select_has_timeout = false; if (timeout && (timeout->tv_sec || timeout->tv_usec)) { timeval_add(kgettimeofday(), *timeout, computed_timeout); select_has_timeout = true; } Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; Thread::SelectBlocker::FDVector efds; auto transfer_fds = [&](auto* fds, auto& vector) -> int { vector.clear_with_capacity(); if (!fds) return 0; for (int fd = 0; fd < params->nfds; ++fd) { if (FD_ISSET(fd, fds)) { if (!file_description(fd)) return -EBADF; vector.append(fd); } } return 0; }; if (int error = transfer_fds(writefds, wfds)) return error; if (int error = transfer_fds(readfds, rfds)) return error; if (int error = transfer_fds(exceptfds, efds)) return error; #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbgprintf("%s<%u> selecting on (read:%u, write:%u), timeout=%p\n", name().characters(), pid(), rfds.size(), wfds.size(), timeout); #endif if (!timeout || select_has_timeout) { if (current->block(computed_timeout, select_has_timeout, rfds, wfds, efds) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } int marked_fd_count = 0; auto mark_fds = [&](auto* fds, auto& vector, auto should_mark) { if (!fds) return; FD_ZERO(fds); for (int fd : vector) { if (auto* description = file_description(fd); description && should_mark(*description)) { FD_SET(fd, fds); ++marked_fd_count; } } }; mark_fds(readfds, rfds, [](auto& description) { return description.can_read(); }); mark_fds(writefds, wfds, [](auto& description) { return description.can_write(); }); // FIXME: We should also mark exceptfds as appropriate. return marked_fd_count; } int Process::sys$poll(pollfd* fds, int nfds, int timeout) { if (!validate_read_typed(fds)) return -EFAULT; Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; for (int i = 0; i < nfds; ++i) { if (fds[i].events & POLLIN) rfds.append(fds[i].fd); if (fds[i].events & POLLOUT) wfds.append(fds[i].fd); } timeval actual_timeout; bool has_timeout = false; if (timeout >= 0) { // poll is in ms, we want s/us. struct timeval tvtimeout; tvtimeout.tv_sec = 0; while (timeout >= 1000) { tvtimeout.tv_sec += 1; timeout -= 1000; } tvtimeout.tv_usec = timeout * 1000; timeval_add(kgettimeofday(), tvtimeout, actual_timeout); has_timeout = true; } #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbgprintf("%s<%u> polling on (read:%u, write:%u), timeout=%d\n", name().characters(), pid(), rfds.size(), wfds.size(), timeout); #endif if (has_timeout || timeout < 0) { if (current->block(actual_timeout, has_timeout, rfds, wfds, Thread::SelectBlocker::FDVector()) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } int fds_with_revents = 0; for (int i = 0; i < nfds; ++i) { auto* description = file_description(fds[i].fd); if (!description) { fds[i].revents = POLLNVAL; continue; } fds[i].revents = 0; if (fds[i].events & POLLIN && description->can_read()) fds[i].revents |= POLLIN; if (fds[i].events & POLLOUT && description->can_write()) fds[i].revents |= POLLOUT; if (fds[i].revents) ++fds_with_revents; } return fds_with_revents; } Custody& Process::current_directory() { if (!m_cwd) m_cwd = VFS::the().root_custody(); return *m_cwd; } int Process::sys$link(const char* old_path, const char* new_path) { if (!validate_read_str(old_path)) return -EFAULT; if (!validate_read_str(new_path)) return -EFAULT; return VFS::the().link(StringView(old_path), StringView(new_path), current_directory()); } int Process::sys$unlink(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().unlink(StringView(pathname), current_directory()); } int Process::sys$symlink(const char* target, const char* linkpath) { if (!validate_read_str(target)) return -EFAULT; if (!validate_read_str(linkpath)) return -EFAULT; return VFS::the().symlink(StringView(target), StringView(linkpath), current_directory()); } int Process::sys$rmdir(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().rmdir(StringView(pathname), current_directory()); } int Process::sys$read_tsc(u32* lsw, u32* msw) { if (!validate_write_typed(lsw)) return -EFAULT; if (!validate_write_typed(msw)) return -EFAULT; read_tsc(*lsw, *msw); return 0; } int Process::sys$chmod(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chmod(StringView(pathname), mode, current_directory()); } int Process::sys$fchmod(int fd, mode_t mode) { auto* description = file_description(fd); if (!description) return -EBADF; return description->fchmod(mode); } int Process::sys$fchown(int fd, uid_t uid, gid_t gid) { auto* description = file_description(fd); if (!description) return -EBADF; return description->chown(uid, gid); } int Process::sys$chown(const char* pathname, uid_t uid, gid_t gid) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chown(StringView(pathname), uid, gid, current_directory()); } void Process::finalize() { ASSERT(current == g_finalizer); dbgprintf("Finalizing Process %s(%u)\n", m_name.characters(), m_pid); m_fds.clear(); m_tty = nullptr; m_executable = nullptr; m_cwd = nullptr; m_elf_loader = nullptr; disown_all_shared_buffers(); { InterruptDisabler disabler; if (auto* parent_process = Process::from_pid(m_ppid)) { // FIXME(Thread): What should we do here? Should we look at all threads' signal actions? if (parent_process->main_thread().m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) { // NOTE: If the parent doesn't care about this process, let it go. m_ppid = 0; } else { parent_process->send_signal(SIGCHLD, this); } } } m_dead = true; } void Process::die() { // Let go of the TTY, otherwise a slave PTY may keep the master PTY from // getting an EOF when the last process using the slave PTY dies. // If the master PTY owner relies on an EOF to know when to wait() on a // slave owner, we have to allow the PTY pair to be torn down. m_tty = nullptr; if (m_tracer) m_tracer->set_dead(); { // Tell the threads to unwind and die. InterruptDisabler disabler; for_each_thread([](Thread& thread) { thread.set_should_die(); return IterationDecision::Continue; }); } } size_t Process::amount_virtual() const { size_t amount = 0; for (auto& region : m_regions) { amount += region.size(); } return amount; } size_t Process::amount_resident() const { // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_resident(); } return amount; } size_t Process::amount_shared() const { // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts, // and each PhysicalPage is only reffed by its VMObject. This needs to be refactored // so that every Region contributes +1 ref to each of its PhysicalPages. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_shared(); } return amount; } int Process::sys$socket(int domain, int type, int protocol) { int fd = alloc_fd(); if (fd < 0) return fd; auto result = Socket::create(domain, type, protocol); if (result.is_error()) return result.error(); auto description = FileDescription::create(*result.value()); unsigned flags = 0; if (type & SOCK_CLOEXEC) flags |= FD_CLOEXEC; if (type & SOCK_NONBLOCK) description->set_blocking(false); m_fds[fd].set(move(description), flags); return fd; } int Process::sys$bind(int sockfd, const sockaddr* address, socklen_t address_length) { if (!validate_read(address, address_length)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.bind(address, address_length); } int Process::sys$listen(int sockfd, int backlog) { auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (socket.is_connected()) return -EINVAL; return socket.listen(backlog); } int Process::sys$accept(int accepting_socket_fd, sockaddr* address, socklen_t* address_size) { if (!validate_write_typed(address_size)) return -EFAULT; if (!validate_write(address, *address_size)) return -EFAULT; int accepted_socket_fd = alloc_fd(); if (accepted_socket_fd < 0) return accepted_socket_fd; auto* accepting_socket_description = file_description(accepting_socket_fd); if (!accepting_socket_description) return -EBADF; if (!accepting_socket_description->is_socket()) return -ENOTSOCK; auto& socket = *accepting_socket_description->socket(); if (!socket.can_accept()) { if (accepting_socket_description->is_blocking()) { if (current->block(*accepting_socket_description) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } else { return -EAGAIN; } } auto accepted_socket = socket.accept(); ASSERT(accepted_socket); bool success = accepted_socket->get_peer_address(address, address_size); ASSERT(success); auto accepted_socket_description = FileDescription::create(*accepted_socket); // NOTE: The accepted socket inherits fd flags from the accepting socket. // I'm not sure if this matches other systems but it makes sense to me. accepted_socket_description->set_blocking(accepting_socket_description->is_blocking()); m_fds[accepted_socket_fd].set(move(accepted_socket_description), m_fds[accepting_socket_fd].flags); // NOTE: Moving this state to Completed is what causes connect() to unblock on the client side. accepted_socket->set_setup_state(Socket::SetupState::Completed); return accepted_socket_fd; } int Process::sys$connect(int sockfd, const sockaddr* address, socklen_t address_size) { if (!validate_read(address, address_size)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.connect(*description, address, address_size, description->is_blocking() ? ShouldBlock::Yes : ShouldBlock::No); } ssize_t Process::sys$sendto(const Syscall::SC_sendto_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [sockfd, data, data_length, flags, addr, addr_length] = *params; if (!validate_read(data, data_length)) return -EFAULT; if (addr && !validate_read(addr, addr_length)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); kprintf("sendto %p (%u), flags=%u, addr: %p (%u)\n", data, data_length, flags, addr, addr_length); return socket.sendto(*description, data, data_length, flags, addr, addr_length); } ssize_t Process::sys$recvfrom(const Syscall::SC_recvfrom_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [sockfd, buffer, buffer_length, flags, addr, addr_length] = *params; if (!validate_write(buffer, buffer_length)) return -EFAULT; if (addr_length) { if (!validate_write_typed(addr_length)) return -EFAULT; if (!validate_write(addr, *addr_length)) return -EFAULT; } else if (addr) { return -EINVAL; } auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); bool original_blocking = description->is_blocking(); if (flags & MSG_DONTWAIT) description->set_blocking(false); auto nrecv = socket.recvfrom(*description, buffer, buffer_length, flags, addr, addr_length); if (flags & MSG_DONTWAIT) description->set_blocking(original_blocking); return nrecv; } int Process::sys$getsockname(int sockfd, sockaddr* addr, socklen_t* addrlen) { if (!validate_read_typed(addrlen)) return -EFAULT; if (*addrlen <= 0) return -EINVAL; if (!validate_write(addr, *addrlen)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (!socket.get_local_address(addr, addrlen)) return -EINVAL; // FIXME: Should this be another error? I'm not sure. return 0; } int Process::sys$getpeername(int sockfd, sockaddr* addr, socklen_t* addrlen) { if (!validate_read_typed(addrlen)) return -EFAULT; if (*addrlen <= 0) return -EINVAL; if (!validate_write(addr, *addrlen)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (socket.setup_state() != Socket::SetupState::Completed) return -ENOTCONN; if (!socket.get_peer_address(addr, addrlen)) return -EINVAL; // FIXME: Should this be another error? I'm not sure. return 0; } int Process::sys$sched_setparam(pid_t pid, const struct sched_param* param) { if (!validate_read_typed(param)) return -EFAULT; InterruptDisabler disabler; auto* peer = this; if (pid != 0) peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; if (param->sched_priority < (int)ThreadPriority::First || param->sched_priority > (int)ThreadPriority::Last) return -EINVAL; peer->main_thread().set_priority((ThreadPriority)param->sched_priority); return 0; } int Process::sys$sched_getparam(pid_t pid, struct sched_param* param) { if (!validate_read_typed(param)) return -EFAULT; InterruptDisabler disabler; auto* peer = this; if (pid != 0) peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; param->sched_priority = (int)peer->main_thread().priority(); return 0; } int Process::sys$getsockopt(const Syscall::SC_getsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [sockfd, level, option, value, value_size] = *params; if (!validate_write_typed(value_size)) return -EFAULT; if (!validate_write(value, *value_size)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.getsockopt(level, option, value, value_size); } int Process::sys$setsockopt(const Syscall::SC_setsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [sockfd, level, option, value, value_size] = *params; if (!validate_read(value, value_size)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.setsockopt(level, option, value, value_size); } void Process::disown_all_shared_buffers() { LOCKER(shared_buffers().lock()); Vector buffers_to_disown; for (auto& it : shared_buffers().resource()) buffers_to_disown.append(it.value.ptr()); for (auto* shared_buffer : buffers_to_disown) shared_buffer->disown(m_pid); } int Process::sys$create_shared_buffer(int size, void** buffer) { if (!size || size < 0) return -EINVAL; size = PAGE_ROUND_UP(size); if (!validate_write_typed(buffer)) return -EFAULT; LOCKER(shared_buffers().lock()); static int s_next_shared_buffer_id; int shared_buffer_id = ++s_next_shared_buffer_id; auto shared_buffer = make(shared_buffer_id, size); shared_buffer->share_with(m_pid); *buffer = shared_buffer->ref_for_process_and_get_address(*this); ASSERT((int)shared_buffer->size() >= size); #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Created shared buffer %d @ %p (%u bytes, vmo is %u)\n", name().characters(), pid(), shared_buffer_id, *buffer, size, shared_buffer->size()); #endif shared_buffers().resource().set(shared_buffer_id, move(shared_buffer)); return shared_buffer_id; } int Process::sys$share_buffer_with(int shared_buffer_id, pid_t peer_pid) { if (!peer_pid || peer_pid < 0 || peer_pid == m_pid) return -EINVAL; LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; { InterruptDisabler disabler; auto* peer = Process::from_pid(peer_pid); if (!peer) return -ESRCH; } shared_buffer.share_with(peer_pid); return 0; } int Process::sys$share_buffer_globally(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; shared_buffer.share_globally(); return 0; } int Process::sys$release_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Releasing shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif shared_buffer.deref_for_process(*this); return 0; } void* Process::sys$get_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return (void*)-EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return (void*)-EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Retaining shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.ref_for_process_and_get_address(*this); } int Process::sys$seal_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Sealing shared buffer %d\n", name().characters(), pid(), shared_buffer_id); #endif shared_buffer.seal(); return 0; } int Process::sys$get_shared_buffer_size(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Get shared buffer %d size: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.size(); } void Process::terminate_due_to_signal(u8 signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal); m_termination_status = 0; m_termination_signal = signal; die(); } void Process::send_signal(u8 signal, Process* sender) { // FIXME(Thread): Find the appropriate thread to deliver the signal to. main_thread().send_signal(signal, sender); } int Process::thread_count() const { int count = 0; for_each_thread([&count](auto&) { ++count; return IterationDecision::Continue; }); return count; } int Process::sys$create_thread(void* (*entry)(void*), void* argument, const Syscall::SC_create_thread_params* params) { if (!validate_read((const void*)entry, sizeof(void*))) return -EFAULT; if (!validate_read_typed(params)) return -EFAULT; u32 user_stack_address = reinterpret_cast(params->m_stack_location) + params->m_stack_size; if (!MM.validate_user_stack(*this, VirtualAddress(user_stack_address - 4))) return -EFAULT; // FIXME: return EAGAIN if Thread::all_threads().size() is greater than PTHREAD_THREADS_MAX ThreadPriority requested_thread_priority = static_cast(params->m_schedule_priority); if (requested_thread_priority < ThreadPriority::First || requested_thread_priority > ThreadPriority::Last) return -EINVAL; if (requested_thread_priority != ThreadPriority::Normal && !is_superuser()) return -EPERM; bool is_thread_joinable = (0 == params->m_detach_state); // FIXME: Do something with guard pages? auto* thread = new Thread(*this); thread->set_priority(requested_thread_priority); thread->set_joinable(is_thread_joinable); auto& tss = thread->tss(); tss.eip = (u32)entry; tss.eflags = 0x0202; tss.cr3 = page_directory().cr3(); tss.esp = user_stack_address; // NOTE: The stack needs to be 16-byte aligned. thread->push_value_on_stack((u32)argument); thread->push_value_on_stack(0); thread->make_thread_specific_region({}); thread->set_state(Thread::State::Runnable); return thread->tid(); } void Process::sys$exit_thread(void* exit_value) { current->m_exit_value = exit_value; cli(); if (¤t->process().main_thread() == current) { // FIXME: For POSIXy reasons, we should only sys$exit once *all* threads have exited. sys$exit(0); return; } current->set_should_die(); big_lock().unlock_if_locked(); current->die_if_needed(); ASSERT_NOT_REACHED(); } int Process::sys$join_thread(int tid, void** exit_value) { if (exit_value && !validate_write_typed(exit_value)) return -EFAULT; Thread* thread = nullptr; for_each_thread([&](auto& child_thread) { if (child_thread.tid() == tid) { thread = &child_thread; return IterationDecision::Break; } return IterationDecision::Continue; }); if (!thread) return -ESRCH; if (thread == current) return -EDEADLK; if (thread->m_joinee == current) return -EDEADLK; ASSERT(thread->m_joiner != current); if (thread->m_joiner) return -EINVAL; if (!thread->is_joinable()) return -EINVAL; void* joinee_exit_value = nullptr; // FIXME: pthread_join() should not be interruptable. Enforce this somehow? auto result = current->block(*thread, joinee_exit_value); (void)result; // NOTE: 'thread' is very possibly deleted at this point. Clear it just to be safe. thread = nullptr; if (exit_value) *exit_value = joinee_exit_value; return 0; } int Process::sys$gettid() { return current->tid(); } int Process::sys$donate(int tid) { if (tid < 0) return -EINVAL; InterruptDisabler disabler; Thread* beneficiary = nullptr; for_each_thread([&](Thread& thread) { if (thread.tid() == tid) { beneficiary = &thread; return IterationDecision::Break; } return IterationDecision::Continue; }); if (!beneficiary) return -ENOTHREAD; Scheduler::donate_to(beneficiary, "sys$donate"); return 0; } int Process::sys$rename(const char* oldpath, const char* newpath) { if (!validate_read_str(oldpath)) return -EFAULT; if (!validate_read_str(newpath)) return -EFAULT; return VFS::the().rename(StringView(oldpath), StringView(newpath), current_directory()); } int Process::sys$shm_open(const char* name, int flags, mode_t mode) { if (!validate_read_str(name)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto shm_or_error = SharedMemory::open(String(name), flags, mode); if (shm_or_error.is_error()) return shm_or_error.error(); auto description = FileDescription::create(shm_or_error.value()); m_fds[fd].set(move(description), FD_CLOEXEC); return fd; } int Process::sys$shm_unlink(const char* name) { if (!validate_read_str(name)) return -EFAULT; return SharedMemory::unlink(String(name)); } int Process::sys$ftruncate(int fd, off_t length) { auto* description = file_description(fd); if (!description) return -EBADF; // FIXME: Check that fd is writable, otherwise EINVAL. return description->truncate(length); } int Process::sys$watch_file(const char* path, int path_length) { if (!validate_read(path, path_length)) return -EFAULT; auto custody_or_error = VFS::the().resolve_path({ path, path_length }, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& custody = custody_or_error.value(); auto& inode = custody->inode(); int fd = alloc_fd(); if (fd < 0) return fd; m_fds[fd].set(FileDescription::create(*InodeWatcher::create(inode))); return fd; } int Process::sys$systrace(pid_t pid) { InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (peer->uid() != m_euid) return -EACCES; int fd = alloc_fd(); if (fd < 0) return fd; auto description = FileDescription::create(peer->ensure_tracer()); m_fds[fd].set(move(description), 0); return fd; } int Process::sys$halt() { if (!is_superuser()) return -EPERM; dbgprintf("acquiring FS locks...\n"); FS::lock_all(); dbgprintf("syncing mounted filesystems...\n"); FS::sync(); dbgprintf("attempting system shutdown...\n"); IO::out16(0x604, 0x2000); return ESUCCESS; } int Process::sys$reboot() { if (!is_superuser()) return -EPERM; dbgprintf("acquiring FS locks...\n"); FS::lock_all(); dbgprintf("syncing mounted filesystems...\n"); FS::sync(); dbgprintf("attempting reboot via KB Controller...\n"); IO::out8(0x64, 0xFE); return ESUCCESS; } int Process::sys$mount(const char* device_path, const char* mountpoint, const char* fstype) { if (!is_superuser()) return -EPERM; if (!validate_read_str(device_path) || !validate_read_str(mountpoint) || !validate_read_str(fstype)) return -EFAULT; dbg() << "mount " << fstype << ": device " << device_path << " @ " << mountpoint; auto custody_or_error = VFS::the().resolve_path(mountpoint, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& mountpoint_custody = custody_or_error.value(); RefPtr fs { nullptr }; if (strcmp(fstype, "ext2") == 0 || strcmp(fstype, "Ext2FS") == 0) { auto metadata_or_error = VFS::the().lookup_metadata(device_path, current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); auto major = metadata_or_error.value().major_device; auto minor = metadata_or_error.value().minor_device; auto* device = Device::get_device(major, minor); if (!device) { dbg() << "mount: device (" << major << "," << minor << ") not found"; return -ENODEV; } if (!device->is_disk_device()) { dbg() << "mount: device (" << major << "," << minor << ") is not a DiskDevice"; return -ENODEV; } auto& disk_device = static_cast(*device); dbg() << "mount: attempting to mount device (" << major << "," << minor << ") on " << mountpoint; fs = Ext2FS::create(disk_device); } else if (strcmp(fstype, "proc") == 0 || strcmp(fstype, "ProcFS") == 0) fs = ProcFS::create(); else if (strcmp(fstype, "devpts") == 0 || strcmp(fstype, "DevPtsFS") == 0) fs = DevPtsFS::create(); else if (strcmp(fstype, "tmp") == 0 || strcmp(fstype, "TmpFS") == 0) fs = TmpFS::create(); else return -ENODEV; if (!fs->initialize()) { dbg() << "mount: failed to initialize " << fstype << " filesystem on " << device_path; return -ENODEV; } auto result = VFS::the().mount(fs.release_nonnull(), mountpoint_custody); dbg() << "mount: successfully mounted " << device_path << " on " << mountpoint; return result; } int Process::sys$umount(const char* mountpoint) { if (!is_superuser()) return -EPERM; if (!validate_read_str(mountpoint)) return -EFAULT; auto metadata_or_error = VFS::the().lookup_metadata(mountpoint, current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); auto guest_inode_id = metadata_or_error.value().inode; return VFS::the().unmount(guest_inode_id); } ProcessTracer& Process::ensure_tracer() { if (!m_tracer) m_tracer = ProcessTracer::create(m_pid); return *m_tracer; } void Process::FileDescriptionAndFlags::clear() { description = nullptr; flags = 0; } void Process::FileDescriptionAndFlags::set(NonnullRefPtr&& d, u32 f) { description = move(d); flags = f; } int Process::sys$mknod(const char* pathname, mode_t mode, dev_t dev) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().mknod(StringView(pathname), mode, dev, current_directory()); } int Process::sys$dump_backtrace() { dump_backtrace(); return 0; } int Process::sys$dbgputch(u8 ch) { IO::out8(0xe9, ch); return 0; } int Process::sys$dbgputstr(const u8* characters, int length) { if (!length) return 0; if (!validate_read(characters, length)) return -EFAULT; for (int i = 0; i < length; ++i) IO::out8(0xe9, characters[i]); return 0; } KBuffer Process::backtrace(ProcessInspectionHandle& handle) const { KBufferBuilder builder; for_each_thread([&](Thread& thread) { builder.appendf("Thread %d:\n", thread.tid()); builder.append(thread.backtrace(handle)); return IterationDecision::Continue; }); return builder.build(); } int Process::sys$set_process_icon(int icon_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(icon_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; m_icon_id = icon_id; return 0; } int Process::sys$get_process_name(char* buffer, int buffer_size) { if (buffer_size <= 0) return -EINVAL; if (!validate_write(buffer, buffer_size)) return -EFAULT; if (m_name.length() >= buffer_size) return -ENAMETOOLONG; strncpy(buffer, m_name.characters(), buffer_size); return 0; } // We don't use the flag yet, but we could use it for distinguishing // random source like Linux, unlike the OpenBSD equivalent. However, if we // do, we should be able of the caveats that Linux has dealt with. int Process::sys$getrandom(void* buffer, size_t buffer_size, unsigned int flags __attribute__((unused))) { if (buffer_size <= 0) return -EINVAL; if (!validate_write(buffer, buffer_size)) return -EFAULT; // We prefer to get whole words of entropy. // If the length is unaligned, we can work with bytes instead. // Mask out the bottom two bits for words. size_t words_len = buffer_size & ~3; if (words_len) { uint32_t* words = (uint32_t*)buffer; for (size_t i = 0; i < words_len / 4; i++) words[i] = RandomDevice::random_value(); } // The remaining non-whole word bytes we can fill in. size_t bytes_len = buffer_size & 3; if (bytes_len) { uint8_t* bytes = (uint8_t*)buffer + words_len; // Get a whole word of entropy to use. uint32_t word = RandomDevice::random_value(); for (size_t i = 0; i < bytes_len; i++) bytes[i] = ((uint8_t*)&word)[i]; } return 0; } int Process::sys$setkeymap(char* map, char* shift_map, char* alt_map) { if (!is_superuser()) return -EPERM; if (!validate_read(map, 0x80)) return -EFAULT; if (!validate_read(shift_map, 0x80)) return -EFAULT; if (!validate_read(alt_map, 0x80)) return -EFAULT; KeyboardDevice::the().set_maps(map, shift_map, alt_map); return 0; } int Process::sys$clock_gettime(clockid_t clock_id, timespec* ts) { if (!validate_write_typed(ts)) return -EFAULT; switch (clock_id) { case CLOCK_MONOTONIC: ts->tv_sec = g_uptime / TICKS_PER_SECOND; ts->tv_nsec = (g_uptime % TICKS_PER_SECOND) * 1000000; break; default: return -EINVAL; } return 0; } int Process::sys$clock_nanosleep(const Syscall::SC_clock_nanosleep_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto& [clock_id, flags, requested_sleep, remaining_sleep] = *params; if (requested_sleep && !validate_read_typed(requested_sleep)) return -EFAULT; if (remaining_sleep && !validate_write_typed(remaining_sleep)) return -EFAULT; bool is_absolute = flags & TIMER_ABSTIME; switch (clock_id) { case CLOCK_MONOTONIC: { u64 wakeup_time; if (is_absolute) { u64 time_to_wake = (requested_sleep->tv_sec * 1000 + requested_sleep->tv_nsec / 1000000); wakeup_time = current->sleep_until(time_to_wake); } else { u32 ticks_to_sleep = (requested_sleep->tv_sec * 1000 + requested_sleep->tv_nsec / 1000000); if (!ticks_to_sleep) return 0; wakeup_time = current->sleep(ticks_to_sleep); } if (wakeup_time > g_uptime) { u32 ticks_left = wakeup_time - g_uptime; if (!is_absolute && remaining_sleep) { remaining_sleep->tv_sec = ticks_left / TICKS_PER_SECOND; ticks_left -= remaining_sleep->tv_sec * TICKS_PER_SECOND; remaining_sleep->tv_nsec = ticks_left * 1000000; } return -EINTR; } return 0; } default: return -EINVAL; } } int Process::sys$sync() { VFS::the().sync(); return 0; } int Process::sys$putch(char ch) { Console::the().put_char(ch); return 0; } int Process::sys$yield() { current->yield_without_holding_big_lock(); return 0; } int Process::sys$beep() { Scheduler::beep(); return 0; }