/* * Copyright (c) 2021, Stephan Unverwerth * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include // Functions returning vectors or accepting vector arguments have different calling conventions // depending on whether the target architecture supports SSE or not. GCC generates warning "psabi" // when compiling for non-SSE architectures. We disable this warning because these functions // are static and should never be visible from outside the translation unit that includes this header. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpsabi" namespace AK::SIMD { // SIMD Vector Expansion ALWAYS_INLINE static constexpr f32x4 expand4(float f) { return f32x4 { f, f, f, f }; } ALWAYS_INLINE static constexpr i32x4 expand4(i32 i) { return i32x4 { i, i, i, i }; } ALWAYS_INLINE static constexpr u32x4 expand4(u32 u) { return u32x4 { u, u, u, u }; } // Casting template ALWAYS_INLINE static u8x4 to_u8x4(TSrc v) { return __builtin_convertvector(v, u8x4); } template ALWAYS_INLINE static u16x4 to_u16x4(TSrc v) { return __builtin_convertvector(v, u16x4); } template ALWAYS_INLINE static u32x4 to_u32x4(TSrc v) { return __builtin_convertvector(v, u32x4); } template ALWAYS_INLINE static i32x4 to_i32x4(TSrc v) { return __builtin_convertvector(v, i32x4); } template ALWAYS_INLINE static f32x4 to_f32x4(TSrc v) { return __builtin_convertvector(v, f32x4); } // Masking ALWAYS_INLINE static i32 maskbits(i32x4 mask) { #if defined(__SSE__) return __builtin_ia32_movmskps((f32x4)mask); #else return ((mask[0] & 0x80000000) >> 31) | ((mask[1] & 0x80000000) >> 30) | ((mask[2] & 0x80000000) >> 29) | ((mask[3] & 0x80000000) >> 28); #endif } ALWAYS_INLINE static bool all(i32x4 mask) { return maskbits(mask) == 15; } ALWAYS_INLINE static bool any(i32x4 mask) { return maskbits(mask) != 0; } ALWAYS_INLINE static bool none(i32x4 mask) { return maskbits(mask) == 0; } ALWAYS_INLINE static int maskcount(i32x4 mask) { constexpr static int count_lut[16] { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; return count_lut[maskbits(mask)]; } // Load / Store template ALWAYS_INLINE static VectorType load_unaligned(void const* a) { VectorType v; __builtin_memcpy(&v, a, sizeof(VectorType)); return v; } template ALWAYS_INLINE static void store_unaligned(void* a, VectorType const& v) { // FIXME: Does this generate the right instructions? __builtin_memcpy(a, &v, sizeof(VectorType)); } ALWAYS_INLINE static f32x4 load4(float const* a, float const* b, float const* c, float const* d) { return f32x4 { *a, *b, *c, *d }; } ALWAYS_INLINE static u32x4 load4(u32 const* a, u32 const* b, u32 const* c, u32 const* d) { return u32x4 { *a, *b, *c, *d }; } ALWAYS_INLINE static f32x4 load4_masked(float const* a, float const* b, float const* c, float const* d, i32x4 mask) { int bits = maskbits(mask); return f32x4 { bits & 1 ? *a : 0.f, bits & 2 ? *b : 0.f, bits & 4 ? *c : 0.f, bits & 8 ? *d : 0.f, }; } ALWAYS_INLINE static i32x4 load4_masked(u8 const* a, u8 const* b, u8 const* c, u8 const* d, i32x4 mask) { int bits = maskbits(mask); return i32x4 { bits & 1 ? *a : 0, bits & 2 ? *b : 0, bits & 4 ? *c : 0, bits & 8 ? *d : 0, }; } ALWAYS_INLINE static u32x4 load4_masked(u32 const* a, u32 const* b, u32 const* c, u32 const* d, i32x4 mask) { int bits = maskbits(mask); return u32x4 { bits & 1 ? *a : 0u, bits & 2 ? *b : 0u, bits & 4 ? *c : 0u, bits & 8 ? *d : 0u, }; } template()[0])> ALWAYS_INLINE static void store4(VectorType v, UnderlyingType* a, UnderlyingType* b, UnderlyingType* c, UnderlyingType* d) { *a = v[0]; *b = v[1]; *c = v[2]; *d = v[3]; } template()[0])> ALWAYS_INLINE static void store4_masked(VectorType v, UnderlyingType* a, UnderlyingType* b, UnderlyingType* c, UnderlyingType* d, i32x4 mask) { int bits = maskbits(mask); if (bits & 1) *a = v[0]; if (bits & 2) *b = v[1]; if (bits & 4) *c = v[2]; if (bits & 8) *d = v[3]; } // Shuffle template T> ALWAYS_INLINE static T shuffle(T a, T control) { // FIXME: This is probably not the fastest way to do this. return T { a[control[0] & 0xf], a[control[1] & 0xf], a[control[2] & 0xf], a[control[3] & 0xf], a[control[4] & 0xf], a[control[5] & 0xf], a[control[6] & 0xf], a[control[7] & 0xf], a[control[8] & 0xf], a[control[9] & 0xf], a[control[10] & 0xf], a[control[11] & 0xf], a[control[12] & 0xf], a[control[13] & 0xf], a[control[14] & 0xf], a[control[15] & 0xf], }; } } #pragma GCC diagnostic pop