#include #include #include #include #include #include #include #include #include //#define EXT2_DEBUG static const size_t max_block_size = 4096; static const ssize_t max_inline_symlink_length = 60; static u8 to_ext2_file_type(mode_t mode) { if (is_regular_file(mode)) return EXT2_FT_REG_FILE; if (is_directory(mode)) return EXT2_FT_DIR; if (is_character_device(mode)) return EXT2_FT_CHRDEV; if (is_block_device(mode)) return EXT2_FT_BLKDEV; if (is_fifo(mode)) return EXT2_FT_FIFO; if (is_socket(mode)) return EXT2_FT_SOCK; if (is_symlink(mode)) return EXT2_FT_SYMLINK; return EXT2_FT_UNKNOWN; } NonnullRefPtr Ext2FS::create(NonnullRefPtr device) { return adopt(*new Ext2FS(move(device))); } Ext2FS::Ext2FS(NonnullRefPtr&& device) : DiskBackedFS(move(device)) { } Ext2FS::~Ext2FS() { } bool Ext2FS::flush_super_block() { LOCKER(m_lock); bool success = device().write_blocks(2, 1, (const u8*)&m_super_block); ASSERT(success); return true; } const ext2_group_desc& Ext2FS::group_descriptor(GroupIndex group_index) const { // FIXME: Should this fail gracefully somehow? ASSERT(group_index <= m_block_group_count); return block_group_descriptors()[group_index - 1]; } bool Ext2FS::initialize() { LOCKER(m_lock); bool success = const_cast(device()).read_blocks(2, 1, (u8*)&m_super_block); ASSERT(success); auto& super_block = this->super_block(); #ifdef EXT2_DEBUG kprintf("ext2fs: super block magic: %x (super block size: %u)\n", super_block.s_magic, sizeof(ext2_super_block)); #endif if (super_block.s_magic != EXT2_SUPER_MAGIC) return false; #ifdef EXT2_DEBUG kprintf("ext2fs: %u inodes, %u blocks\n", super_block.s_inodes_count, super_block.s_blocks_count); kprintf("ext2fs: block size = %u\n", EXT2_BLOCK_SIZE(&super_block)); kprintf("ext2fs: first data block = %u\n", super_block.s_first_data_block); kprintf("ext2fs: inodes per block = %u\n", inodes_per_block()); kprintf("ext2fs: inodes per group = %u\n", inodes_per_group()); kprintf("ext2fs: free inodes = %u\n", super_block.s_free_inodes_count); kprintf("ext2fs: desc per block = %u\n", EXT2_DESC_PER_BLOCK(&super_block)); kprintf("ext2fs: desc size = %u\n", EXT2_DESC_SIZE(&super_block)); #endif set_block_size(EXT2_BLOCK_SIZE(&super_block)); ASSERT(block_size() <= (int)max_block_size); m_block_group_count = ceil_div(super_block.s_blocks_count, super_block.s_blocks_per_group); if (m_block_group_count == 0) { kprintf("ext2fs: no block groups :(\n"); return false; } unsigned blocks_to_read = ceil_div(m_block_group_count * (unsigned)sizeof(ext2_group_desc), block_size()); BlockIndex first_block_of_bgdt = block_size() == 1024 ? 2 : 1; m_cached_group_descriptor_table = KBuffer::create_with_size(block_size() * blocks_to_read); read_blocks(first_block_of_bgdt, blocks_to_read, m_cached_group_descriptor_table.value().data()); #ifdef EXT2_DEBUG for (unsigned i = 1; i <= m_block_group_count; ++i) { auto& group = group_descriptor(i); kprintf("ext2fs: group[%u] { block_bitmap: %u, inode_bitmap: %u, inode_table: %u }\n", i, group.bg_block_bitmap, group.bg_inode_bitmap, group.bg_inode_table); } #endif return true; } const char* Ext2FS::class_name() const { return "Ext2FS"; } InodeIdentifier Ext2FS::root_inode() const { return { fsid(), EXT2_ROOT_INO }; } bool Ext2FS::read_block_containing_inode(unsigned inode, unsigned& block_index, unsigned& offset, u8* buffer) const { LOCKER(m_lock); auto& super_block = this->super_block(); if (inode != EXT2_ROOT_INO && inode < EXT2_FIRST_INO(&super_block)) return false; if (inode > super_block.s_inodes_count) return false; auto& bgd = group_descriptor(group_index_from_inode(inode)); offset = ((inode - 1) % inodes_per_group()) * inode_size(); block_index = bgd.bg_inode_table + (offset >> EXT2_BLOCK_SIZE_BITS(&super_block)); offset &= block_size() - 1; return read_block(block_index, buffer); } Ext2FS::BlockListShape Ext2FS::compute_block_list_shape(unsigned blocks) { BlockListShape shape; const unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block()); unsigned blocks_remaining = blocks; shape.direct_blocks = min((unsigned)EXT2_NDIR_BLOCKS, blocks_remaining); blocks_remaining -= shape.direct_blocks; if (!blocks_remaining) return shape; shape.indirect_blocks = min(blocks_remaining, entries_per_block); blocks_remaining -= shape.indirect_blocks; shape.meta_blocks += 1; if (!blocks_remaining) return shape; shape.doubly_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block); blocks_remaining -= shape.doubly_indirect_blocks; shape.meta_blocks += 1; shape.meta_blocks += shape.doubly_indirect_blocks / entries_per_block; if ((shape.doubly_indirect_blocks % entries_per_block) != 0) shape.meta_blocks += 1; if (!blocks_remaining) return shape; dbg() << "we don't know how to compute tind ext2fs blocks yet!"; ASSERT_NOT_REACHED(); shape.triply_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block * entries_per_block); blocks_remaining -= shape.triply_indirect_blocks; if (!blocks_remaining) return shape; ASSERT_NOT_REACHED(); return {}; } bool Ext2FS::write_block_list_for_inode(InodeIndex inode_index, ext2_inode& e2inode, const Vector& blocks) { LOCKER(m_lock); // NOTE: There is a mismatch between i_blocks and blocks.size() since i_blocks includes meta blocks and blocks.size() does not. auto old_block_count = ceil_div(e2inode.i_size, block_size()); auto old_shape = compute_block_list_shape(old_block_count); auto new_shape = compute_block_list_shape(blocks.size()); Vector new_meta_blocks; if (new_shape.meta_blocks > old_shape.meta_blocks) { new_meta_blocks = allocate_blocks(group_index_from_inode(inode_index), new_shape.meta_blocks - old_shape.meta_blocks); } e2inode.i_blocks = (blocks.size() + new_shape.meta_blocks) * (block_size() / 512); bool inode_dirty = false; unsigned output_block_index = 0; unsigned remaining_blocks = blocks.size(); for (unsigned i = 0; i < new_shape.direct_blocks; ++i) { if (e2inode.i_block[i] != blocks[output_block_index]) inode_dirty = true; e2inode.i_block[i] = blocks[output_block_index]; ++output_block_index; --remaining_blocks; } if (inode_dirty) { #ifdef EXT2_DEBUG dbgprintf("Ext2FS: Writing %u direct block(s) to i_block array of inode %u\n", min(EXT2_NDIR_BLOCKS, blocks.size()), inode_index); for (int i = 0; i < min(EXT2_NDIR_BLOCKS, blocks.size()); ++i) dbgprintf(" + %u\n", blocks[i]); #endif write_ext2_inode(inode_index, e2inode); inode_dirty = false; } if (!remaining_blocks) return true; const unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block()); bool ind_block_new = !e2inode.i_block[EXT2_IND_BLOCK]; if (ind_block_new) { BlockIndex new_indirect_block = new_meta_blocks.take_last(); if (e2inode.i_block[EXT2_IND_BLOCK] != new_indirect_block) inode_dirty = true; e2inode.i_block[EXT2_IND_BLOCK] = new_indirect_block; if (inode_dirty) { #ifdef EXT2_DEBUG dbgprintf("Ext2FS: Adding the indirect block to i_block array of inode %u\n", inode_index); #endif write_ext2_inode(inode_index, e2inode); inode_dirty = false; } } if (old_shape.indirect_blocks == new_shape.indirect_blocks) { // No need to update the singly indirect block array. remaining_blocks -= new_shape.indirect_blocks; output_block_index += new_shape.indirect_blocks; } else { auto block_contents = ByteBuffer::create_uninitialized(block_size()); BufferStream stream(block_contents); ASSERT(new_shape.indirect_blocks <= entries_per_block); for (unsigned i = 0; i < new_shape.indirect_blocks; ++i) { stream << blocks[output_block_index++]; --remaining_blocks; } stream.fill_to_end(0); bool success = write_block(e2inode.i_block[EXT2_IND_BLOCK], block_contents.data()); ASSERT(success); } if (!remaining_blocks) return true; bool dind_block_dirty = false; bool dind_block_new = !e2inode.i_block[EXT2_DIND_BLOCK]; if (dind_block_new) { BlockIndex new_dindirect_block = new_meta_blocks.take_last(); if (e2inode.i_block[EXT2_DIND_BLOCK] != new_dindirect_block) inode_dirty = true; e2inode.i_block[EXT2_DIND_BLOCK] = new_dindirect_block; if (inode_dirty) { #ifdef EXT2_DEBUG dbgprintf("Ext2FS: Adding the doubly-indirect block to i_block array of inode %u\n", inode_index); #endif write_ext2_inode(inode_index, e2inode); inode_dirty = false; } } if (old_shape.doubly_indirect_blocks == new_shape.doubly_indirect_blocks) { // No need to update the doubly indirect block data. remaining_blocks -= new_shape.doubly_indirect_blocks; output_block_index += new_shape.doubly_indirect_blocks; } else { unsigned indirect_block_count = new_shape.doubly_indirect_blocks / entries_per_block; if ((new_shape.doubly_indirect_blocks % entries_per_block) != 0) indirect_block_count++; auto dind_block_contents = ByteBuffer::create_uninitialized(block_size()); read_block(e2inode.i_block[EXT2_DIND_BLOCK], dind_block_contents.data()); if (dind_block_new) { memset(dind_block_contents.data(), 0, dind_block_contents.size()); dind_block_dirty = true; } auto* dind_block_as_pointers = (unsigned*)dind_block_contents.data(); ASSERT(indirect_block_count <= entries_per_block); for (unsigned i = 0; i < indirect_block_count; ++i) { bool ind_block_dirty = false; BlockIndex indirect_block_index = dind_block_as_pointers[i]; bool ind_block_new = !indirect_block_index; if (ind_block_new) { indirect_block_index = new_meta_blocks.take_last(); dind_block_as_pointers[i] = indirect_block_index; dind_block_dirty = true; } auto ind_block_contents = ByteBuffer::create_uninitialized(block_size()); read_block(indirect_block_index, ind_block_contents.data()); if (ind_block_new) { memset(ind_block_contents.data(), 0, dind_block_contents.size()); ind_block_dirty = true; } auto* ind_block_as_pointers = (unsigned*)ind_block_contents.data(); unsigned entries_to_write = new_shape.doubly_indirect_blocks - (i * entries_per_block); if (entries_to_write > entries_per_block) entries_to_write = entries_per_block; ASSERT(entries_to_write <= entries_per_block); for (unsigned j = 0; j < entries_to_write; ++j) { BlockIndex output_block = blocks[output_block_index++]; if (ind_block_as_pointers[j] != output_block) { ind_block_as_pointers[j] = output_block; ind_block_dirty = true; } --remaining_blocks; } for (unsigned j = entries_to_write; j < entries_per_block; ++j) { if (ind_block_as_pointers[j] != 0) { ind_block_as_pointers[j] = 0; ind_block_dirty = true; } } if (ind_block_dirty) { bool success = write_block(indirect_block_index, ind_block_contents.data()); ASSERT(success); } } for (unsigned i = indirect_block_count; i < entries_per_block; ++i) { if (dind_block_as_pointers[i] != 0) { dind_block_as_pointers[i] = 0; dind_block_dirty = true; } } if (dind_block_dirty) { bool success = write_block(e2inode.i_block[EXT2_DIND_BLOCK], dind_block_contents.data()); ASSERT(success); } } if (!remaining_blocks) return true; // FIXME: Implement! dbg() << "we don't know how to write tind ext2fs blocks yet!"; ASSERT_NOT_REACHED(); } Vector Ext2FS::block_list_for_inode(const ext2_inode& e2inode, bool include_block_list_blocks) const { LOCKER(m_lock); unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block()); // NOTE: i_blocks is number of 512-byte blocks, not number of fs-blocks. unsigned block_count = e2inode.i_blocks / (block_size() / 512); #ifdef EXT2_DEBUG dbgprintf("Ext2FS::block_list_for_inode(): i_size=%u, i_blocks=%u, block_count=%u\n", e2inode.i_size, block_count); #endif unsigned blocks_remaining = block_count; Vector list; if (include_block_list_blocks) { // This seems like an excessive over-estimate but w/e. list.ensure_capacity(blocks_remaining * 2); } else { list.ensure_capacity(blocks_remaining); } unsigned direct_count = min(block_count, (unsigned)EXT2_NDIR_BLOCKS); for (unsigned i = 0; i < direct_count; ++i) { auto block_index = e2inode.i_block[i]; if (!block_index) return list; list.unchecked_append(block_index); --blocks_remaining; } if (!blocks_remaining) return list; auto process_block_array = [&](unsigned array_block_index, auto&& callback) { if (include_block_list_blocks) callback(array_block_index); auto array_block = ByteBuffer::create_uninitialized(block_size()); read_block(array_block_index, array_block.data()); ASSERT(array_block); auto* array = reinterpret_cast(array_block.data()); unsigned count = min(blocks_remaining, entries_per_block); for (unsigned i = 0; i < count; ++i) { if (!array[i]) { blocks_remaining = 0; return; } callback(array[i]); --blocks_remaining; } }; process_block_array(e2inode.i_block[EXT2_IND_BLOCK], [&](unsigned entry) { list.unchecked_append(entry); }); if (!blocks_remaining) return list; process_block_array(e2inode.i_block[EXT2_DIND_BLOCK], [&](unsigned entry) { process_block_array(entry, [&](unsigned entry) { list.unchecked_append(entry); }); }); if (!blocks_remaining) return list; process_block_array(e2inode.i_block[EXT2_TIND_BLOCK], [&](unsigned entry) { process_block_array(entry, [&](unsigned entry) { process_block_array(entry, [&](unsigned entry) { list.unchecked_append(entry); }); }); }); return list; } void Ext2FS::free_inode(Ext2FSInode& inode) { LOCKER(m_lock); ASSERT(inode.m_raw_inode.i_links_count == 0); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: inode %u has no more links, time to delete!\n", inode.index()); #endif struct timeval now; kgettimeofday(now); inode.m_raw_inode.i_dtime = now.tv_sec; write_ext2_inode(inode.index(), inode.m_raw_inode); auto block_list = block_list_for_inode(inode.m_raw_inode, true); for (auto block_index : block_list) set_block_allocation_state(block_index, false); set_inode_allocation_state(inode.index(), false); if (inode.is_directory()) { auto& bgd = const_cast(group_descriptor(group_index_from_inode(inode.index()))); --bgd.bg_used_dirs_count; dbgprintf("Ext2FS: decremented bg_used_dirs_count %u -> %u\n", bgd.bg_used_dirs_count - 1, bgd.bg_used_dirs_count); m_block_group_descriptors_dirty = true; } } void Ext2FS::flush_block_group_descriptor_table() { LOCKER(m_lock); unsigned blocks_to_write = ceil_div(m_block_group_count * (unsigned)sizeof(ext2_group_desc), block_size()); unsigned first_block_of_bgdt = block_size() == 1024 ? 2 : 1; write_blocks(first_block_of_bgdt, blocks_to_write, (const u8*)block_group_descriptors()); } void Ext2FS::flush_writes() { LOCKER(m_lock); if (m_super_block_dirty) { flush_super_block(); m_super_block_dirty = false; } if (m_block_group_descriptors_dirty) { flush_block_group_descriptor_table(); m_block_group_descriptors_dirty = false; } for (auto& cached_bitmap : m_cached_bitmaps) { if (cached_bitmap->dirty) { write_block(cached_bitmap->bitmap_block_index, cached_bitmap->buffer.data()); cached_bitmap->dirty = false; #ifdef EXT2_DEBUG dbg() << "Flushed bitmap block " << cached_bitmap->bitmap_block_index; #endif } } DiskBackedFS::flush_writes(); // Uncache Inodes that are only kept alive by the index-to-inode lookup cache. // We don't uncache Inodes that are being watched by at least one InodeWatcher. // FIXME: It would be better to keep a capped number of Inodes around. // The problem is that they are quite heavy objects, and use a lot of heap memory // for their (child name lookup) and (block list) caches. Vector unused_inodes; for (auto& it : m_inode_cache) { if (it.value->ref_count() != 1) continue; if (it.value->has_watchers()) continue; unused_inodes.append(it.key); } for (auto index : unused_inodes) uncache_inode(index); } Ext2FSInode::Ext2FSInode(Ext2FS& fs, unsigned index) : Inode(fs, index) { } Ext2FSInode::~Ext2FSInode() { if (m_raw_inode.i_links_count == 0) fs().free_inode(*this); } InodeMetadata Ext2FSInode::metadata() const { // FIXME: This should probably take the inode lock, no? InodeMetadata metadata; metadata.inode = identifier(); metadata.size = m_raw_inode.i_size; metadata.mode = m_raw_inode.i_mode; metadata.uid = m_raw_inode.i_uid; metadata.gid = m_raw_inode.i_gid; metadata.link_count = m_raw_inode.i_links_count; metadata.atime = m_raw_inode.i_atime; metadata.ctime = m_raw_inode.i_ctime; metadata.mtime = m_raw_inode.i_mtime; metadata.dtime = m_raw_inode.i_dtime; metadata.block_size = fs().block_size(); metadata.block_count = m_raw_inode.i_blocks; if (::is_character_device(m_raw_inode.i_mode) || ::is_block_device(m_raw_inode.i_mode)) { unsigned dev = m_raw_inode.i_block[0]; if (!dev) dev = m_raw_inode.i_block[1]; metadata.major_device = (dev & 0xfff00) >> 8; metadata.minor_device = (dev & 0xff) | ((dev >> 12) & 0xfff00); } return metadata; } void Ext2FSInode::flush_metadata() { LOCKER(m_lock); #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode: flush_metadata for inode %u\n", index()); #endif fs().write_ext2_inode(index(), m_raw_inode); if (is_directory()) { // Unless we're about to go away permanently, invalidate the lookup cache. if (m_raw_inode.i_links_count != 0) { // FIXME: This invalidation is way too hardcore. It's sad to throw away the whole cache. m_lookup_cache.clear(); } } set_metadata_dirty(false); } RefPtr Ext2FS::get_inode(InodeIdentifier inode) const { LOCKER(m_lock); ASSERT(inode.fsid() == fsid()); { auto it = m_inode_cache.find(inode.index()); if (it != m_inode_cache.end()) return (*it).value; } if (!get_inode_allocation_state(inode.index())) { m_inode_cache.set(inode.index(), nullptr); return nullptr; } unsigned block_index; unsigned offset; u8 block[max_block_size]; if (!read_block_containing_inode(inode.index(), block_index, offset, block)) return {}; // FIXME: Do we really need to check the cache once again? // We've been holding m_lock this whole time. auto it = m_inode_cache.find(inode.index()); if (it != m_inode_cache.end()) return (*it).value; auto new_inode = adopt(*new Ext2FSInode(const_cast(*this), inode.index())); memcpy(&new_inode->m_raw_inode, reinterpret_cast(block + offset), sizeof(ext2_inode)); m_inode_cache.set(inode.index(), new_inode); return new_inode; } ssize_t Ext2FSInode::read_bytes(off_t offset, ssize_t count, u8* buffer, FileDescription* description) const { Locker inode_locker(m_lock); ASSERT(offset >= 0); if (m_raw_inode.i_size == 0) return 0; // Symbolic links shorter than 60 characters are store inline inside the i_block array. // This avoids wasting an entire block on short links. (Most links are short.) if (is_symlink() && size() < max_inline_symlink_length) { ssize_t nread = min((off_t)size() - offset, static_cast(count)); memcpy(buffer, ((const u8*)m_raw_inode.i_block) + offset, (size_t)nread); return nread; } Locker fs_locker(fs().m_lock); if (m_block_list.is_empty()) m_block_list = fs().block_list_for_inode(m_raw_inode); if (m_block_list.is_empty()) { kprintf("ext2fs: read_bytes: empty block list for inode %u\n", index()); return -EIO; } const int block_size = fs().block_size(); int first_block_logical_index = offset / block_size; int last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= m_block_list.size()) last_block_logical_index = m_block_list.size() - 1; int offset_into_first_block = offset % block_size; ssize_t nread = 0; int remaining_count = min((off_t)count, (off_t)size() - offset); u8* out = buffer; #ifdef EXT2_DEBUG kprintf("Ext2FS: Reading up to %u bytes %d bytes into inode %u:%u to %p\n", count, offset, identifier().fsid(), identifier().index(), buffer); //kprintf("ok let's do it, read(%u, %u) -> blocks %u thru %u, oifb: %u\n", offset, count, first_block_logical_index, last_block_logical_index, offset_into_first_block); #endif u8 block[max_block_size]; for (int bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; ++bi) { bool success = fs().read_block(m_block_list[bi], block, description); if (!success) { kprintf("ext2fs: read_bytes: read_block(%u) failed (lbi: %u)\n", m_block_list[bi], bi); return -EIO; } int offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; int num_bytes_to_copy = min(block_size - offset_into_block, remaining_count); memcpy(out, block + offset_into_block, num_bytes_to_copy); remaining_count -= num_bytes_to_copy; nread += num_bytes_to_copy; out += num_bytes_to_copy; } return nread; } KResult Ext2FSInode::resize(u64 new_size) { u64 old_size = size(); if (old_size == new_size) return KSuccess; u64 block_size = fs().block_size(); int blocks_needed_before = ceil_div(old_size, block_size); int blocks_needed_after = ceil_div(new_size, block_size); #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::resize(): blocks needed before (size was %Q): %d\n", old_size, blocks_needed_before); dbgprintf("Ext2FSInode::resize(): blocks needed after (size is %Q): %d\n", new_size, blocks_needed_after); #endif if (blocks_needed_after > blocks_needed_before) { u32 additional_blocks_needed = blocks_needed_after - blocks_needed_before; if (additional_blocks_needed > fs().super_block().s_free_blocks_count) return KResult(-ENOSPC); } auto block_list = fs().block_list_for_inode(m_raw_inode); if (blocks_needed_after > blocks_needed_before) { auto new_blocks = fs().allocate_blocks(fs().group_index_from_inode(index()), blocks_needed_after - blocks_needed_before); block_list.append(move(new_blocks)); } else if (blocks_needed_after < blocks_needed_before) { #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::resize(): Shrinking. Old block list is %d entries:\n", block_list.size()); for (auto block_index : block_list) { dbgprintf(" # %u\n", block_index); } #endif while (block_list.size() != blocks_needed_after) { auto block_index = block_list.take_last(); fs().set_block_allocation_state(block_index, false); } } bool success = fs().write_block_list_for_inode(index(), m_raw_inode, block_list); if (!success) return KResult(-EIO); m_raw_inode.i_size = new_size; set_metadata_dirty(true); m_block_list = move(block_list); return KSuccess; } ssize_t Ext2FSInode::write_bytes(off_t offset, ssize_t count, const u8* data, FileDescription* description) { ASSERT(offset >= 0); ASSERT(count >= 0); Locker inode_locker(m_lock); Locker fs_locker(fs().m_lock); if (is_symlink()) { // FIXME: This doesn't seem right if the inode is already bigger than 'max_inline_symlink_length' if ((offset + count) < max_inline_symlink_length) { #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode: write_bytes poking into i_block array for inline symlink '%s' (%u bytes)\n", String((const char*)data, count).characters(), count); #endif memcpy(((u8*)m_raw_inode.i_block) + offset, data, (size_t)count); if ((offset + count) > (off_t)m_raw_inode.i_size) m_raw_inode.i_size = offset + count; set_metadata_dirty(true); return count; } } const ssize_t block_size = fs().block_size(); u64 old_size = size(); u64 new_size = max(static_cast(offset) + count, (u64)size()); auto resize_result = resize(new_size); if (resize_result.is_error()) return resize_result; if (m_block_list.is_empty()) m_block_list = fs().block_list_for_inode(m_raw_inode); if (m_block_list.is_empty()) { dbg() << "Ext2FSInode::write_bytes(): empty block list for inode " << index(); return -EIO; } int first_block_logical_index = offset / block_size; int last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= m_block_list.size()) last_block_logical_index = m_block_list.size() - 1; int offset_into_first_block = offset % block_size; int last_logical_block_index_in_file = new_size / block_size; ssize_t nwritten = 0; int remaining_count = min((off_t)count, (off_t)new_size - offset); const u8* in = data; #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: Writing %u bytes %d bytes into inode %u:%u from %p\n", count, offset, fsid(), index(), data); #endif auto buffer_block = ByteBuffer::create_uninitialized(block_size); for (int bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; ++bi) { int offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; int num_bytes_to_copy = min(block_size - offset_into_block, remaining_count); ByteBuffer block; if (offset_into_block != 0 || num_bytes_to_copy != block_size) { block = ByteBuffer::create_uninitialized(block_size); bool success = fs().read_block(m_block_list[bi], block.data(), description); if (!success) { kprintf("Ext2FSInode::write_bytes: read_block(%u) failed (lbi: %u)\n", m_block_list[bi], bi); return -EIO; } } else block = buffer_block; memcpy(block.data() + offset_into_block, in, num_bytes_to_copy); if (bi == last_logical_block_index_in_file && num_bytes_to_copy < block_size) { int padding_start = new_size % block_size; int padding_bytes = block_size - padding_start; #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes padding last block of file with zero x %u (new_size=%u, offset_into_block=%u, num_bytes_to_copy=%u)\n", padding_bytes, new_size, offset_into_block, num_bytes_to_copy); #endif memset(block.data() + padding_start, 0, padding_bytes); } #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: writing block %u (offset_into_block: %u)\n", m_block_list[bi], offset_into_block); #endif bool success = fs().write_block(m_block_list[bi], block.data(), description); if (!success) { kprintf("Ext2FSInode::write_bytes: write_block(%u) failed (lbi: %u)\n", m_block_list[bi], bi); ASSERT_NOT_REACHED(); return -EIO; } remaining_count -= num_bytes_to_copy; nwritten += num_bytes_to_copy; in += num_bytes_to_copy; } #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: after write, i_size=%u, i_blocks=%u (%u blocks in list)\n", m_raw_inode.i_size, m_raw_inode.i_blocks, m_block_list.size()); #endif if (old_size != new_size) inode_size_changed(old_size, new_size); inode_contents_changed(offset, count, data); return nwritten; } bool Ext2FSInode::traverse_as_directory(Function callback) const { LOCKER(m_lock); ASSERT(is_directory()); #ifdef EXT2_DEBUG kprintf("Ext2Inode::traverse_as_directory: inode=%u:\n", index()); #endif auto buffer = read_entire(); ASSERT(buffer); auto* entry = reinterpret_cast(buffer.data()); while (entry < buffer.end_pointer()) { if (entry->inode != 0) { #ifdef EXT2_DEBUG kprintf("Ext2Inode::traverse_as_directory: %u, name_len: %u, rec_len: %u, file_type: %u, name: %s\n", entry->inode, entry->name_len, entry->rec_len, entry->file_type, String(entry->name, entry->name_len).characters()); #endif if (!callback({ entry->name, entry->name_len, { fsid(), entry->inode }, entry->file_type })) break; } entry = (ext2_dir_entry_2*)((char*)entry + entry->rec_len); } return true; } bool Ext2FSInode::write_directory(const Vector& entries) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: New directory inode %u contents to write:\n", index()); #endif int directory_size = 0; for (auto& entry : entries) { //kprintf(" - %08u %s\n", entry.inode.index(), entry.name); directory_size += EXT2_DIR_REC_LEN(entry.name_length); } auto block_size = fs().block_size(); int blocks_needed = ceil_div(directory_size, block_size); int occupied_size = blocks_needed * block_size; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: directory size: %u (occupied: %u)\n", directory_size, occupied_size); #endif auto directory_data = ByteBuffer::create_uninitialized(occupied_size); BufferStream stream(directory_data); for (int i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; int record_length = EXT2_DIR_REC_LEN(entry.name_length); if (i == entries.size() - 1) record_length += occupied_size - directory_size; #ifdef EXT2_DEBUG dbgprintf("* inode: %u", entry.inode.index()); dbgprintf(", name_len: %u", u16(entry.name_length)); dbgprintf(", rec_len: %u", u16(record_length)); dbgprintf(", file_type: %u", u8(entry.file_type)); dbgprintf(", name: %s\n", entry.name); #endif stream << u32(entry.inode.index()); stream << u16(record_length); stream << u8(entry.name_length); stream << u8(entry.file_type); stream << entry.name; int padding = record_length - entry.name_length - 8; for (int j = 0; j < padding; ++j) stream << u8(0); } stream.fill_to_end(0); ssize_t nwritten = write_bytes(0, directory_data.size(), directory_data.data(), nullptr); return nwritten == directory_data.size(); } KResult Ext2FSInode::add_child(InodeIdentifier child_id, const StringView& name, mode_t mode) { LOCKER(m_lock); ASSERT(is_directory()); if (name.length() > EXT2_NAME_LEN) return KResult(-ENAMETOOLONG); #ifdef EXT2_DEBUG dbg() << "Ext2FSInode::add_child(): Adding inode " << child_id.index() << " with name '" << name << " and mode " << mode << " to directory " << index(); #endif Vector entries; bool name_already_exists = false; traverse_as_directory([&](auto& entry) { if (name == entry.name) { name_already_exists = true; return false; } entries.append(entry); return true; }); if (name_already_exists) { dbg() << "Ext2FSInode::add_child(): Name '" << name << "' already exists in inode " << index(); return KResult(-EEXIST); } auto child_inode = fs().get_inode(child_id); if (child_inode) child_inode->increment_link_count(); entries.empend(name.characters_without_null_termination(), name.length(), child_id, to_ext2_file_type(mode)); bool success = write_directory(entries); if (success) m_lookup_cache.set(name, child_id.index()); return KSuccess; } KResult Ext2FSInode::remove_child(const StringView& name) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbg() << "Ext2FSInode::remove_child(" << name << ") in inode " << index(); #endif ASSERT(is_directory()); auto it = m_lookup_cache.find(name); if (it == m_lookup_cache.end()) return KResult(-ENOENT); auto child_inode_index = (*it).value; InodeIdentifier child_id { fsid(), child_inode_index }; #ifdef EXT2_DEBUG dbg() << "Ext2FSInode::remove_child(): Removing '" << name << "' in directory " << index(); #endif Vector entries; traverse_as_directory([&](auto& entry) { if (name != entry.name) entries.append(entry); return true; }); bool success = write_directory(entries); if (!success) { // FIXME: Plumb error from write_directory(). return KResult(-EIO); } m_lookup_cache.remove(name); auto child_inode = fs().get_inode(child_id); child_inode->decrement_link_count(); return KSuccess; } unsigned Ext2FS::inodes_per_block() const { return EXT2_INODES_PER_BLOCK(&super_block()); } unsigned Ext2FS::inodes_per_group() const { return EXT2_INODES_PER_GROUP(&super_block()); } unsigned Ext2FS::inode_size() const { return EXT2_INODE_SIZE(&super_block()); } unsigned Ext2FS::blocks_per_group() const { return EXT2_BLOCKS_PER_GROUP(&super_block()); } bool Ext2FS::write_ext2_inode(unsigned inode, const ext2_inode& e2inode) { LOCKER(m_lock); unsigned block_index; unsigned offset; u8 block[max_block_size]; if (!read_block_containing_inode(inode, block_index, offset, block)) return false; memcpy(reinterpret_cast(block + offset), &e2inode, inode_size()); bool success = write_block(block_index, block); ASSERT(success); return success; } Ext2FS::BlockIndex Ext2FS::allocate_block(GroupIndex preferred_group_index) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbg() << "Ext2FS: allocate_block() preferred_group_index: " << preferred_group_index; #endif bool found_a_group = false; GroupIndex group_index = preferred_group_index; if (group_descriptor(preferred_group_index).bg_free_blocks_count) { found_a_group = true; } else { for (group_index = 1; group_index < m_block_group_count; ++group_index) { if (group_descriptor(group_index).bg_free_blocks_count) { found_a_group = true; break; } } } ASSERT(found_a_group); auto& bgd = group_descriptor(group_index); auto& cached_bitmap = get_bitmap_block(bgd.bg_block_bitmap); int blocks_in_group = min(blocks_per_group(), super_block().s_blocks_count); auto block_bitmap = Bitmap::wrap(cached_bitmap.buffer.data(), blocks_in_group); BlockIndex first_block_in_group = (group_index - 1) * blocks_per_group() + first_block_index(); int first_unset_bit_index = block_bitmap.find_first_unset(); ASSERT(first_unset_bit_index != -1); BlockIndex block_index = (unsigned)first_unset_bit_index + first_block_in_group; set_block_allocation_state(block_index, true); return block_index; } Vector Ext2FS::allocate_blocks(GroupIndex preferred_group_index, int count) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: allocate_blocks(preferred group: %u, count: %u)\n", preferred_group_index, count); #endif if (count == 0) return {}; Vector blocks; #ifdef EXT2_DEBUG dbg() << "Ext2FS: allocate_blocks:"; #endif blocks.ensure_capacity(count); for (int i = 0; i < count; ++i) { auto block_index = allocate_block(preferred_group_index); blocks.unchecked_append(block_index); #ifdef EXT2_DEBUG dbg() << " > " << block_index; #endif } ASSERT(blocks.size() == count); return blocks; } unsigned Ext2FS::allocate_inode(GroupIndex preferred_group, off_t expected_size) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: allocate_inode(preferredGroup: %u, expected_size: %u)\n", preferred_group, expected_size); #endif unsigned needed_blocks = ceil_div(expected_size, block_size()); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: minimum needed blocks: %u\n", needed_blocks); #endif unsigned group_index = 0; // FIXME: We shouldn't refuse to allocate an inode if there is no group that can house the whole thing. // In those cases we should just spread it across multiple groups. auto is_suitable_group = [this, needed_blocks](GroupIndex group_index) { auto& bgd = group_descriptor(group_index); return bgd.bg_free_inodes_count && bgd.bg_free_blocks_count >= needed_blocks; }; if (preferred_group && is_suitable_group(preferred_group)) { group_index = preferred_group; } else { for (unsigned i = 1; i <= m_block_group_count; ++i) { if (is_suitable_group(i)) group_index = i; } } if (!group_index) { kprintf("Ext2FS: allocate_inode: no suitable group found for new inode with %u blocks needed :(\n", needed_blocks); return 0; } #ifdef EXT2_DEBUG dbgprintf("Ext2FS: allocate_inode: found suitable group [%u] for new inode with %u blocks needed :^)\n", group_index, needed_blocks); #endif auto& bgd = group_descriptor(group_index); unsigned inodes_in_group = min(inodes_per_group(), super_block().s_inodes_count); unsigned first_free_inode_in_group = 0; unsigned first_inode_in_group = (group_index - 1) * inodes_per_group() + 1; auto& cached_bitmap = get_bitmap_block(bgd.bg_inode_bitmap); auto inode_bitmap = Bitmap::wrap(cached_bitmap.buffer.data(), inodes_in_group); for (int i = 0; i < inode_bitmap.size(); ++i) { if (inode_bitmap.get(i)) continue; first_free_inode_in_group = first_inode_in_group + i; break; } if (!first_free_inode_in_group) { kprintf("Ext2FS: first_free_inode_in_group returned no inode, despite bgd claiming there are inodes :(\n"); return 0; } unsigned inode = first_free_inode_in_group; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: found suitable inode %u\n", inode); #endif ASSERT(get_inode_allocation_state(inode) == false); // FIXME: allocate blocks if needed! return inode; } Ext2FS::GroupIndex Ext2FS::group_index_from_block_index(BlockIndex block_index) const { if (!block_index) return 0; return (block_index - 1) / blocks_per_group() + 1; } unsigned Ext2FS::group_index_from_inode(unsigned inode) const { if (!inode) return 0; return (inode - 1) / inodes_per_group() + 1; } bool Ext2FS::get_inode_allocation_state(InodeIndex index) const { LOCKER(m_lock); if (index == 0) return true; unsigned group_index = group_index_from_inode(index); auto& bgd = group_descriptor(group_index); unsigned index_in_group = index - ((group_index - 1) * inodes_per_group()); unsigned bit_index = (index_in_group - 1) % inodes_per_group(); auto& cached_bitmap = const_cast(*this).get_bitmap_block(bgd.bg_inode_bitmap); return cached_bitmap.bitmap(inodes_per_group()).get(bit_index); } bool Ext2FS::set_inode_allocation_state(InodeIndex inode_index, bool new_state) { LOCKER(m_lock); unsigned group_index = group_index_from_inode(inode_index); auto& bgd = group_descriptor(group_index); unsigned index_in_group = inode_index - ((group_index - 1) * inodes_per_group()); unsigned bit_index = (index_in_group - 1) % inodes_per_group(); auto& cached_bitmap = get_bitmap_block(bgd.bg_inode_bitmap); bool current_state = cached_bitmap.bitmap(inodes_per_group()).get(bit_index); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: set_inode_allocation_state(%u) %u -> %u\n", inode_index, current_state, new_state); #endif if (current_state == new_state) { ASSERT_NOT_REACHED(); return true; } cached_bitmap.bitmap(inodes_per_group()).set(bit_index, new_state); cached_bitmap.dirty = true; // Update superblock #ifdef EXT2_DEBUG dbgprintf("Ext2FS: superblock free inode count %u -> %u\n", m_super_block.s_free_inodes_count, m_super_block.s_free_inodes_count - 1); #endif if (new_state) --m_super_block.s_free_inodes_count; else ++m_super_block.s_free_inodes_count; m_super_block_dirty = true; // Update BGD auto& mutable_bgd = const_cast(bgd); if (new_state) --mutable_bgd.bg_free_inodes_count; else ++mutable_bgd.bg_free_inodes_count; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: group free inode count %u -> %u\n", bgd.bg_free_inodes_count, bgd.bg_free_inodes_count - 1); #endif m_block_group_descriptors_dirty = true; return true; } Ext2FS::BlockIndex Ext2FS::first_block_index() const { return block_size() == 1024 ? 1 : 0; } Ext2FS::CachedBitmap& Ext2FS::get_bitmap_block(BlockIndex bitmap_block_index) { for (auto& cached_bitmap : m_cached_bitmaps) { if (cached_bitmap->bitmap_block_index == bitmap_block_index) return *cached_bitmap; } auto block = KBuffer::create_with_size(block_size()); bool success = read_block(bitmap_block_index, block.data()); ASSERT(success); m_cached_bitmaps.append(make(bitmap_block_index, move(block))); return *m_cached_bitmaps.last(); } bool Ext2FS::set_block_allocation_state(BlockIndex block_index, bool new_state) { LOCKER(m_lock); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: set_block_allocation_state(block=%u, state=%u)\n", block_index, new_state); #endif GroupIndex group_index = group_index_from_block_index(block_index); auto& bgd = group_descriptor(group_index); BlockIndex index_in_group = (block_index - first_block_index()) - ((group_index - 1) * blocks_per_group()); unsigned bit_index = index_in_group % blocks_per_group(); auto& cached_bitmap = get_bitmap_block(bgd.bg_block_bitmap); bool current_state = cached_bitmap.bitmap(blocks_per_group()).get(bit_index); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: block %u state: %u -> %u (in bitmap block %u)\n", block_index, current_state, new_state, bgd.bg_block_bitmap); #endif if (current_state == new_state) { ASSERT_NOT_REACHED(); return true; } cached_bitmap.bitmap(blocks_per_group()).set(bit_index, new_state); cached_bitmap.dirty = true; // Update superblock #ifdef EXT2_DEBUG dbgprintf("Ext2FS: superblock free block count %u -> %u\n", m_super_block.s_free_blocks_count, m_super_block.s_free_blocks_count - 1); #endif if (new_state) --m_super_block.s_free_blocks_count; else ++m_super_block.s_free_blocks_count; m_super_block_dirty = true; // Update BGD auto& mutable_bgd = const_cast(bgd); if (new_state) --mutable_bgd.bg_free_blocks_count; else ++mutable_bgd.bg_free_blocks_count; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: group %u free block count %u -> %u\n", group_index, bgd.bg_free_blocks_count, bgd.bg_free_blocks_count - 1); #endif m_block_group_descriptors_dirty = true; return true; } RefPtr Ext2FS::create_directory(InodeIdentifier parent_id, const String& name, mode_t mode, int& error) { LOCKER(m_lock); ASSERT(parent_id.fsid() == fsid()); // Fix up the mode to definitely be a directory. // FIXME: This is a bit on the hackish side. mode &= ~0170000; mode |= 0040000; // NOTE: When creating a new directory, make the size 1 block. // There's probably a better strategy here, but this works for now. auto inode = create_inode(parent_id, name, mode, block_size(), 0, error); if (!inode) return nullptr; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: create_directory: created new directory named '%s' with inode %u\n", name.characters(), inode->identifier().index()); #endif Vector entries; entries.empend(".", inode->identifier(), EXT2_FT_DIR); entries.empend("..", parent_id, EXT2_FT_DIR); bool success = static_cast(*inode).write_directory(entries); ASSERT(success); auto parent_inode = get_inode(parent_id); error = parent_inode->increment_link_count(); if (error < 0) return nullptr; auto& bgd = const_cast(group_descriptor(group_index_from_inode(inode->identifier().index()))); ++bgd.bg_used_dirs_count; #ifdef EXT2_DEBUG dbgprintf("Ext2FS: incremented bg_used_dirs_count %u -> %u\n", bgd.bg_used_dirs_count - 1, bgd.bg_used_dirs_count); #endif m_block_group_descriptors_dirty = true; error = 0; return inode; } RefPtr Ext2FS::create_inode(InodeIdentifier parent_id, const String& name, mode_t mode, off_t size, dev_t dev, int& error) { LOCKER(m_lock); ASSERT(parent_id.fsid() == fsid()); auto parent_inode = get_inode(parent_id); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: Adding inode '%s' (mode %o) to parent directory %u:\n", name.characters(), mode, parent_inode->identifier().index()); #endif auto needed_blocks = ceil_div(size, block_size()); if ((size_t)needed_blocks > super_block().s_free_blocks_count) { dbg() << "Ext2FS: create_inode: not enough free blocks"; error = -ENOSPC; return {}; } // NOTE: This doesn't commit the inode allocation just yet! // FIXME: Change the name of allocate_inode since it behaves differently than allocate_block auto inode_id = allocate_inode(0, size); if (!inode_id) { kprintf("Ext2FS: create_inode: allocate_inode failed\n"); error = -ENOSPC; return {}; } // Try adding it to the directory first, in case the name is already in use. auto result = parent_inode->add_child({ fsid(), inode_id }, name, mode); if (result.is_error()) { error = result; return {}; } auto blocks = allocate_blocks(group_index_from_inode(inode_id), needed_blocks); ASSERT(blocks.size() == needed_blocks); // Looks like we're good, time to update the inode bitmap and group+global inode counters. bool success = set_inode_allocation_state(inode_id, true); ASSERT(success); unsigned initial_links_count; if (is_directory(mode)) initial_links_count = 2; // (parent directory + "." entry in self) else initial_links_count = 1; struct timeval now; kgettimeofday(now); ext2_inode e2inode; memset(&e2inode, 0, sizeof(ext2_inode)); e2inode.i_mode = mode; e2inode.i_uid = current->process().euid(); e2inode.i_gid = current->process().egid(); e2inode.i_size = size; e2inode.i_atime = now.tv_sec; e2inode.i_ctime = now.tv_sec; e2inode.i_mtime = now.tv_sec; e2inode.i_dtime = 0; e2inode.i_links_count = initial_links_count; if (is_character_device(mode)) e2inode.i_block[0] = dev; else if (is_block_device(mode)) e2inode.i_block[1] = dev; success = write_block_list_for_inode(inode_id, e2inode, blocks); ASSERT(success); #ifdef EXT2_DEBUG dbgprintf("Ext2FS: writing initial metadata for inode %u\n", inode_id); #endif e2inode.i_flags = 0; success = write_ext2_inode(inode_id, e2inode); ASSERT(success); // We might have cached the fact that this inode didn't exist. Wipe the slate. m_inode_cache.remove(inode_id); auto inode = get_inode({ fsid(), inode_id }); // If we've already computed a block list, no sense in throwing it away. static_cast(*inode).m_block_list = move(blocks); return inode; } void Ext2FSInode::populate_lookup_cache() const { LOCKER(m_lock); if (!m_lookup_cache.is_empty()) return; HashMap children; traverse_as_directory([&children](auto& entry) { children.set(String(entry.name, entry.name_length), entry.inode.index()); return true; }); if (!m_lookup_cache.is_empty()) return; m_lookup_cache = move(children); } InodeIdentifier Ext2FSInode::lookup(StringView name) { ASSERT(is_directory()); populate_lookup_cache(); LOCKER(m_lock); auto it = m_lookup_cache.find(name.hash(), [&](auto& entry) { return entry.key == name; }); if (it != m_lookup_cache.end()) return { fsid(), (*it).value }; return {}; } void Ext2FSInode::one_ref_left() { // FIXME: I would like to not live forever, but uncached Ext2FS is fucking painful right now. } int Ext2FSInode::set_atime(time_t t) { LOCKER(m_lock); if (fs().is_readonly()) return -EROFS; m_raw_inode.i_atime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::set_ctime(time_t t) { LOCKER(m_lock); if (fs().is_readonly()) return -EROFS; m_raw_inode.i_ctime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::set_mtime(time_t t) { LOCKER(m_lock); if (fs().is_readonly()) return -EROFS; m_raw_inode.i_mtime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::increment_link_count() { LOCKER(m_lock); if (fs().is_readonly()) return -EROFS; ++m_raw_inode.i_links_count; set_metadata_dirty(true); return 0; } int Ext2FSInode::decrement_link_count() { LOCKER(m_lock); if (fs().is_readonly()) return -EROFS; ASSERT(m_raw_inode.i_links_count); --m_raw_inode.i_links_count; if (m_raw_inode.i_links_count == 0) fs().uncache_inode(index()); set_metadata_dirty(true); return 0; } void Ext2FS::uncache_inode(InodeIndex index) { LOCKER(m_lock); m_inode_cache.remove(index); } size_t Ext2FSInode::directory_entry_count() const { ASSERT(is_directory()); LOCKER(m_lock); populate_lookup_cache(); return m_lookup_cache.size(); } KResult Ext2FSInode::chmod(mode_t mode) { LOCKER(m_lock); if (m_raw_inode.i_mode == mode) return KSuccess; m_raw_inode.i_mode = mode; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::chown(uid_t uid, gid_t gid) { LOCKER(m_lock); if (m_raw_inode.i_uid == uid && m_raw_inode.i_gid == gid) return KSuccess; m_raw_inode.i_uid = uid; m_raw_inode.i_gid = gid; set_metadata_dirty(true); return KSuccess; } KResult Ext2FSInode::truncate(off_t size) { LOCKER(m_lock); if ((off_t)m_raw_inode.i_size == size) return KSuccess; auto result = resize(size); if (result.is_error()) return result; set_metadata_dirty(true); return KSuccess; } unsigned Ext2FS::total_block_count() const { LOCKER(m_lock); return super_block().s_blocks_count; } unsigned Ext2FS::free_block_count() const { LOCKER(m_lock); return super_block().s_free_blocks_count; } unsigned Ext2FS::total_inode_count() const { LOCKER(m_lock); return super_block().s_inodes_count; } unsigned Ext2FS::free_inode_count() const { LOCKER(m_lock); return super_block().s_free_inodes_count; } KResult Ext2FS::prepare_to_unmount() const { LOCKER(m_lock); for (auto& it : m_inode_cache) { if (it.value->ref_count() > 1) return KResult(-EBUSY); } m_inode_cache.clear(); return KSuccess; }