/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include // NOTE: We can't include during the toolchain bootstrap, // since it's part of libstdc++, and libstdc++ depends on LibC. // For this reason, we don't support Vector(initializer_list) in LibC. #ifndef SERENITY_LIBC_BUILD # include #endif #ifndef __serenity__ # include #endif namespace AK { template class Vector { public: using ValueType = T; Vector() : m_capacity(inline_capacity) { } ~Vector() { clear(); } #ifndef SERENITY_LIBC_BUILD Vector(std::initializer_list list) { ensure_capacity(list.size()); for (auto& item : list) unchecked_append(item); } #endif Vector(Vector&& other) : m_size(other.m_size) , m_capacity(other.m_capacity) , m_outline_buffer(other.m_outline_buffer) { if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) T(move(other.inline_buffer()[i])); other.inline_buffer()[i].~T(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } Vector(const Vector& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } template Vector(const Vector& other) { ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } Span span() { return { data(), size() }; } Span span() const { return { data(), size() }; } // FIXME: What about assigning from a vector with lower inline capacity? Vector& operator=(Vector&& other) { if (this != &other) { clear(); m_size = other.m_size; m_capacity = other.m_capacity; m_outline_buffer = other.m_outline_buffer; if constexpr (inline_capacity > 0) { if (!m_outline_buffer) { for (size_t i = 0; i < m_size; ++i) { new (&inline_buffer()[i]) T(move(other.inline_buffer()[i])); other.inline_buffer()[i].~T(); } } } other.m_outline_buffer = nullptr; other.m_size = 0; other.reset_capacity(); } return *this; } void clear() { clear_with_capacity(); if (m_outline_buffer) { kfree(m_outline_buffer); m_outline_buffer = nullptr; } reset_capacity(); } void clear_with_capacity() { for (size_t i = 0; i < m_size; ++i) data()[i].~T(); m_size = 0; } template bool operator==(const V& other) const { if (m_size != other.size()) return false; return TypedTransfer::compare(data(), other.data(), size()); } operator Span() { return span(); } operator Span() const { return span(); } bool contains_slow(const T& value) const { for (size_t i = 0; i < size(); ++i) { if (Traits::equals(at(i), value)) return true; } return false; } bool contains_in_range(const T& value, const size_t start, const size_t end) const { VERIFY(start <= end); VERIFY(end < size()); for (size_t i = start; i <= end; ++i) { if (Traits::equals(at(i), value)) return true; } return false; } bool is_empty() const { return size() == 0; } ALWAYS_INLINE size_t size() const { return m_size; } size_t capacity() const { return m_capacity; } T* data() { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } const T* data() const { if constexpr (inline_capacity > 0) return m_outline_buffer ? m_outline_buffer : inline_buffer(); return m_outline_buffer; } ALWAYS_INLINE const T& at(size_t i) const { VERIFY(i < m_size); return data()[i]; } ALWAYS_INLINE T& at(size_t i) { VERIFY(i < m_size); return data()[i]; } ALWAYS_INLINE const T& operator[](size_t i) const { return at(i); } ALWAYS_INLINE T& operator[](size_t i) { return at(i); } const T& first() const { return at(0); } T& first() { return at(0); } const T& last() const { return at(size() - 1); } T& last() { return at(size() - 1); } T take_last() { VERIFY(!is_empty()); T value = move(last()); last().~T(); --m_size; return value; } T take_first() { VERIFY(!is_empty()); T value = move(first()); remove(0); return value; } T take(size_t index) { T value = move(at(index)); remove(index); return value; } T unstable_take(size_t index) { VERIFY(index < m_size); swap(at(index), at(m_size - 1)); return take_last(); } void remove(size_t index) { VERIFY(index < m_size); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(slot(index), slot(index + 1), m_size - index - 1); } else { at(index).~T(); for (size_t i = index + 1; i < m_size; ++i) { new (slot(i - 1)) T(move(at(i))); at(i).~T(); } } --m_size; } void remove(size_t index, size_t count) { if (count == 0) return; VERIFY(index + count > index); VERIFY(index + count <= m_size); if constexpr (Traits::is_trivial()) { TypedTransfer::copy(slot(index), slot(index + count), m_size - index - count); } else { for (size_t i = index; i < index + count; i++) at(i).~T(); for (size_t i = index + count; i < m_size; ++i) { new (slot(i - count)) T(move(at(i))); at(i).~T(); } } m_size -= count; } template [[nodiscard]] bool try_insert(size_t index, U&& value) { if (index > size()) return false; if (index == size()) return try_append(forward(value)); if (!try_grow_capacity(size() + 1)) return false; ++m_size; if constexpr (Traits::is_trivial()) { TypedTransfer::move(slot(index + 1), slot(index), m_size - index - 1); } else { for (size_t i = size() - 1; i > index; --i) { new (slot(i)) T(move(at(i - 1))); at(i - 1).~T(); } } new (slot(index)) T(forward(value)); return true; } template void insert(size_t index, U&& value) { auto did_allocate = try_insert(index, forward(value)); VERIFY(did_allocate); } template [[nodiscard]] bool try_insert_before_matching(U&& value, C callback, size_t first_index = 0, size_t* inserted_index = nullptr) { for (size_t i = first_index; i < size(); ++i) { if (callback(at(i))) { if (!try_insert(i, forward(value))) return false; if (inserted_index) *inserted_index = i; return true; } } if (!try_append(forward(value))) return false; if (inserted_index) *inserted_index = size() - 1; return true; } template void insert_before_matching(U&& value, C callback, size_t first_index = 0, size_t* inserted_index = nullptr) { auto did_allocate = try_insert_before_matching(forward(value), callback, first_index, inserted_index); VERIFY(did_allocate); } Vector& operator=(const Vector& other) { if (this != &other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); } return *this; } template Vector& operator=(const Vector& other) { clear(); ensure_capacity(other.size()); TypedTransfer::copy(data(), other.data(), other.size()); m_size = other.size(); return *this; } [[nodiscard]] bool try_append(Vector&& other) { if (is_empty()) { *this = move(other); return true; } auto other_size = other.size(); Vector tmp = move(other); if (!try_grow_capacity(size() + other_size)) return false; TypedTransfer::move(data() + m_size, tmp.data(), other_size); m_size += other_size; return true; } void append(Vector&& other) { auto did_allocate = try_append(move(other)); VERIFY(did_allocate); } [[nodiscard]] bool try_append(const Vector& other) { if (!try_grow_capacity(size() + other.size())) return false; TypedTransfer::copy(data() + m_size, other.data(), other.size()); m_size += other.m_size; return true; } void append(const Vector& other) { auto did_allocate = try_append(other); VERIFY(did_allocate); } template Optional first_matching(Callback callback) { for (size_t i = 0; i < size(); ++i) { if (callback(at(i))) { return at(i); } } return {}; } template Optional last_matching(Callback callback) { for (ssize_t i = size() - 1; i >= 0; --i) { if (callback(at(i))) { return at(i); } } return {}; } template bool remove_first_matching(Callback callback) { for (size_t i = 0; i < size(); ++i) { if (callback(at(i))) { remove(i); return true; } } return false; } template void remove_all_matching(Callback callback) { for (size_t i = 0; i < size();) { if (callback(at(i))) { remove(i); } else { ++i; } } } template ALWAYS_INLINE void unchecked_append(U&& value) { VERIFY((size() + 1) <= capacity()); new (slot(m_size)) T(forward(value)); ++m_size; } template [[nodiscard]] bool try_empend(Args&&... args) { if (!try_grow_capacity(m_size + 1)) return false; new (slot(m_size)) T { forward(args)... }; ++m_size; return true; } template void empend(Args&&... args) { auto did_allocate = try_empend(forward(args)...); VERIFY(did_allocate); } [[nodiscard]] ALWAYS_INLINE bool try_append(T&& value) { if (!try_grow_capacity(size() + 1)) return false; new (slot(m_size)) T(move(value)); ++m_size; return true; } ALWAYS_INLINE void append(T&& value) { auto did_allocate = try_append(move(value)); VERIFY(did_allocate); } [[nodiscard]] ALWAYS_INLINE bool try_append(const T& value) { return try_append(T(value)); } ALWAYS_INLINE void append(const T& value) { auto did_allocate = try_append(T(value)); VERIFY(did_allocate); } template [[nodiscard]] bool try_prepend(U&& value) { return try_insert(0, forward(value)); } template void prepend(U&& value) { auto did_allocate = try_insert(0, forward(value)); VERIFY(did_allocate); } [[nodiscard]] bool try_prepend(Vector&& other) { if (other.is_empty()) return true; if (is_empty()) { *this = move(other); return true; } auto other_size = other.size(); if (!try_grow_capacity(size() + other_size)) return false; for (size_t i = size() + other_size - 1; i >= other.size(); --i) { new (slot(i)) T(move(at(i - other_size))); at(i - other_size).~T(); } Vector tmp = move(other); TypedTransfer::move(slot(0), tmp.data(), tmp.size()); m_size += other_size; return true; } void prepend(Vector&& other) { auto did_allocate = try_prepend(move(other)); VERIFY(did_allocate); } [[nodiscard]] bool try_prepend(const T* values, size_t count) { if (!count) return true; if (!try_grow_capacity(size() + count)) return false; TypedTransfer::move(slot(count), slot(0), m_size); TypedTransfer::copy(slot(0), values, count); m_size += count; return true; } void prepend(const T* values, size_t count) { auto did_allocate = try_prepend(values, count); VERIFY(did_allocate); } [[nodiscard]] bool try_append(const T* values, size_t count) { if (!count) return true; if (!try_grow_capacity(size() + count)) return false; TypedTransfer::copy(slot(m_size), values, count); m_size += count; return true; } void append(const T* values, size_t count) { auto did_allocate = try_append(values, count); VERIFY(did_allocate); } [[nodiscard]] bool try_grow_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return true; return try_ensure_capacity(padded_capacity(needed_capacity)); } void grow_capacity(size_t needed_capacity) { auto did_allocate = try_grow_capacity(needed_capacity); VERIFY(did_allocate); } [[nodiscard]] bool try_ensure_capacity(size_t needed_capacity) { if (m_capacity >= needed_capacity) return true; size_t new_capacity = kmalloc_good_size(needed_capacity * sizeof(T)) / sizeof(T); auto* new_buffer = (T*)kmalloc(new_capacity * sizeof(T)); if (new_buffer == nullptr) return false; if constexpr (Traits::is_trivial()) { TypedTransfer::copy(new_buffer, data(), m_size); } else { for (size_t i = 0; i < m_size; ++i) { new (&new_buffer[i]) T(move(at(i))); at(i).~T(); } } if (m_outline_buffer) kfree(m_outline_buffer); m_outline_buffer = new_buffer; m_capacity = new_capacity; return true; } void ensure_capacity(size_t needed_capacity) { auto did_allocate = try_ensure_capacity(needed_capacity); VERIFY(did_allocate); } void shrink(size_t new_size, bool keep_capacity = false) { VERIFY(new_size <= size()); if (new_size == size()) return; if (!new_size) { if (keep_capacity) clear_with_capacity(); else clear(); return; } for (size_t i = new_size; i < size(); ++i) at(i).~T(); m_size = new_size; } [[nodiscard]] bool try_resize(size_t new_size, bool keep_capacity = false) { if (new_size <= size()) { shrink(new_size, keep_capacity); return true; } if (!try_ensure_capacity(new_size)) return false; for (size_t i = size(); i < new_size; ++i) new (slot(i)) T {}; m_size = new_size; return true; } void resize(size_t new_size, bool keep_capacity = false) { auto did_allocate = try_resize(new_size, keep_capacity); VERIFY(did_allocate); } [[nodiscard]] bool try_resize_and_keep_capacity(size_t new_size) { return try_resize(new_size, true); } void resize_and_keep_capacity(size_t new_size) { auto did_allocate = try_resize_and_keep_capacity(new_size); VERIFY(did_allocate); } using ConstIterator = SimpleIterator; using Iterator = SimpleIterator; ConstIterator begin() const { return ConstIterator::begin(*this); } Iterator begin() { return Iterator::begin(*this); } ConstIterator end() const { return ConstIterator::end(*this); } Iterator end() { return Iterator::end(*this); } template ConstIterator find_if(TUnaryPredicate&& finder) const { return AK::find_if(begin(), end(), forward(finder)); } template Iterator find_if(TUnaryPredicate&& finder) { return AK::find_if(begin(), end(), forward(finder)); } ConstIterator find(const T& value) const { return AK::find(begin(), end(), value); } Iterator find(const T& value) { return AK::find(begin(), end(), value); } Optional find_first_index(const T& value) const { if (const auto index = AK::find_index(begin(), end(), value); index < size()) { return index; } return {}; } private: void reset_capacity() { m_capacity = inline_capacity; } static size_t padded_capacity(size_t capacity) { return max(static_cast(4), capacity + (capacity / 4) + 4); } T* slot(size_t i) { return &data()[i]; } const T* slot(size_t i) const { return &data()[i]; } T* inline_buffer() { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } const T* inline_buffer() const { static_assert(inline_capacity > 0); return reinterpret_cast(m_inline_buffer_storage); } size_t m_size { 0 }; size_t m_capacity { 0 }; alignas(T) unsigned char m_inline_buffer_storage[sizeof(T) * inline_capacity]; T* m_outline_buffer { nullptr }; }; } using AK::Vector;