ladybird/Kernel/FileSystem/ProcFS.cpp
Idan Horowitz 2c93123daf Kernel: Replace process' regions vector with a Red Black tree
This should provide some speed up, as currently searches for regions
containing a given address were performed in O(n) complexity, while
this container allows us to do those in O(logn).
2021-04-12 18:03:44 +02:00

1750 lines
60 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/JsonArraySerializer.h>
#include <AK/JsonObject.h>
#include <AK/JsonObjectSerializer.h>
#include <AK/JsonValue.h>
#include <AK/ScopeGuard.h>
#include <Kernel/Arch/x86/CPU.h>
#include <Kernel/Arch/x86/ProcessorInfo.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Console.h>
#include <Kernel/DMI.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/BlockDevice.h>
#include <Kernel/Devices/HID/HIDManagement.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/FileBackedFileSystem.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/ProcFS.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/GenericInterruptHandler.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KSyms.h>
#include <Kernel/Module.h>
#include <Kernel/Net/LocalSocket.h>
#include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/Net/Routing.h>
#include <Kernel/Net/TCPSocket.h>
#include <Kernel/Net/UDPSocket.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/StdLib.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/UBSanitizer.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibC/errno_numbers.h>
namespace Kernel {
enum ProcParentDirectory {
PDI_AbstractRoot = 0,
PDI_Root,
PDI_Root_sys,
PDI_Root_net,
PDI_PID,
PDI_PID_fd,
PDI_PID_stacks,
};
static_assert(PDI_PID_stacks < 16, "Too many directories for identifier scheme");
enum ProcFileType {
FI_Invalid = 0,
FI_Root = 1, // directory
__FI_Root_Start,
FI_Root_df,
FI_Root_all,
FI_Root_memstat,
FI_Root_cpuinfo,
FI_Root_dmesg,
FI_Root_interrupts,
FI_Root_dmi,
FI_Root_smbios_entry_point,
FI_Root_keymap,
FI_Root_pci,
FI_Root_devices,
FI_Root_uptime,
FI_Root_cmdline,
FI_Root_modules,
FI_Root_profile,
FI_Root_self, // symlink
FI_Root_sys, // directory
FI_Root_net, // directory
__FI_Root_End,
FI_Root_sys_variable,
FI_Root_net_adapters,
FI_Root_net_arp,
FI_Root_net_tcp,
FI_Root_net_udp,
FI_Root_net_local,
FI_PID,
__FI_PID_Start,
FI_PID_perf_events,
FI_PID_vm,
FI_PID_stacks, // directory
FI_PID_fds,
FI_PID_unveil,
FI_PID_exe, // symlink
FI_PID_cwd, // symlink
FI_PID_root, // symlink
FI_PID_fd, // directory
__FI_PID_End,
FI_MaxStaticFileIndex,
};
static inline ProcessID to_pid(const InodeIdentifier& identifier)
{
return identifier.index().value() >> 16u;
}
static inline ThreadID to_tid(const InodeIdentifier& identifier)
{
// Sneakily, use the exact same mechanism.
return to_pid(identifier).value();
}
static inline ProcParentDirectory to_proc_parent_directory(const InodeIdentifier& identifier)
{
return (ProcParentDirectory)((identifier.index().value() >> 12) & 0xf);
}
static inline ProcFileType to_proc_file_type(const InodeIdentifier& identifier)
{
return (ProcFileType)(identifier.index().value() & 0xff);
}
static inline int to_fd(const InodeIdentifier& identifier)
{
VERIFY(to_proc_parent_directory(identifier) == PDI_PID_fd);
return (identifier.index().value() & 0xff) - FI_MaxStaticFileIndex;
}
static inline size_t to_sys_index(const InodeIdentifier& identifier)
{
VERIFY(to_proc_parent_directory(identifier) == PDI_Root_sys);
VERIFY(to_proc_file_type(identifier) == FI_Root_sys_variable);
return identifier.index().value() >> 16u;
}
static inline InodeIdentifier to_identifier(unsigned fsid, ProcParentDirectory parent, ProcessID pid, ProcFileType proc_file_type)
{
return { fsid, ((unsigned)parent << 12u) | ((unsigned)pid.value() << 16u) | (unsigned)proc_file_type };
}
static inline InodeIdentifier to_identifier_with_fd(unsigned fsid, ProcessID pid, int fd)
{
return { fsid, (PDI_PID_fd << 12u) | ((unsigned)pid.value() << 16u) | (FI_MaxStaticFileIndex + fd) };
}
static inline InodeIdentifier to_identifier_with_stack(unsigned fsid, ThreadID tid)
{
return { fsid, (PDI_PID_stacks << 12u) | ((unsigned)tid.value() << 16u) | FI_MaxStaticFileIndex };
}
static inline InodeIdentifier sys_var_to_identifier(unsigned fsid, unsigned index)
{
VERIFY(index < 256);
return { fsid, (PDI_Root_sys << 12u) | (index << 16u) | FI_Root_sys_variable };
}
static inline InodeIdentifier to_parent_id(const InodeIdentifier& identifier)
{
switch (to_proc_parent_directory(identifier)) {
case PDI_AbstractRoot:
case PDI_Root:
return { identifier.fsid(), FI_Root };
case PDI_Root_sys:
return { identifier.fsid(), FI_Root_sys };
case PDI_Root_net:
return { identifier.fsid(), FI_Root_net };
case PDI_PID:
return to_identifier(identifier.fsid(), PDI_Root, to_pid(identifier), FI_PID);
case PDI_PID_fd:
return to_identifier(identifier.fsid(), PDI_PID, to_pid(identifier), FI_PID_fd);
case PDI_PID_stacks:
return to_identifier(identifier.fsid(), PDI_PID, to_pid(identifier), FI_PID_stacks);
}
VERIFY_NOT_REACHED();
}
#if 0
static inline u8 to_unused_metadata(const InodeIdentifier& identifier)
{
return (identifier.index() >> 8) & 0xf;
}
#endif
static inline bool is_process_related_file(const InodeIdentifier& identifier)
{
if (to_proc_file_type(identifier) == FI_PID)
return true;
auto proc_parent_directory = to_proc_parent_directory(identifier);
switch (proc_parent_directory) {
case PDI_PID:
case PDI_PID_fd:
return true;
default:
return false;
}
}
static inline bool is_thread_related_file(const InodeIdentifier& identifier)
{
auto proc_parent_directory = to_proc_parent_directory(identifier);
return proc_parent_directory == PDI_PID_stacks;
}
static inline bool is_directory(const InodeIdentifier& identifier)
{
auto proc_file_type = to_proc_file_type(identifier);
switch (proc_file_type) {
case FI_Root:
case FI_Root_sys:
case FI_Root_net:
case FI_PID:
case FI_PID_fd:
case FI_PID_stacks:
return true;
default:
return false;
}
}
static inline bool is_persistent_inode(const InodeIdentifier& identifier)
{
return to_proc_parent_directory(identifier) == PDI_Root_sys;
}
struct ProcFSInodeData : public FileDescriptionData {
RefPtr<KBufferImpl> buffer;
};
NonnullRefPtr<ProcFS> ProcFS::create()
{
return adopt(*new ProcFS);
}
ProcFS::~ProcFS()
{
}
static bool procfs$pid_fds(InodeIdentifier identifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
auto process = Process::from_pid(to_pid(identifier));
if (!process) {
array.finish();
return true;
}
if (process->number_of_open_file_descriptors() == 0) {
array.finish();
return true;
}
for (int i = 0; i < process->max_open_file_descriptors(); ++i) {
auto description = process->file_description(i);
if (!description)
continue;
bool cloexec = process->fd_flags(i) & FD_CLOEXEC;
auto description_object = array.add_object();
description_object.add("fd", i);
description_object.add("absolute_path", description->absolute_path());
description_object.add("seekable", description->file().is_seekable());
description_object.add("class", description->file().class_name());
description_object.add("offset", description->offset());
description_object.add("cloexec", cloexec);
description_object.add("blocking", description->is_blocking());
description_object.add("can_read", description->can_read());
description_object.add("can_write", description->can_write());
}
array.finish();
return true;
}
static bool procfs$pid_fd_entry(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
int fd = to_fd(identifier);
auto description = process->file_description(fd);
if (!description)
return false;
builder.append_bytes(description->absolute_path().bytes());
return true;
}
static bool procfs$pid_vm(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
JsonArraySerializer array { builder };
{
ScopedSpinLock lock(process->space().get_lock());
for (auto& region : process->space().regions()) {
if (!region->is_user() && !Process::current()->is_superuser())
continue;
auto region_object = array.add_object();
region_object.add("readable", region->is_readable());
region_object.add("writable", region->is_writable());
region_object.add("executable", region->is_executable());
region_object.add("stack", region->is_stack());
region_object.add("shared", region->is_shared());
region_object.add("syscall", region->is_syscall_region());
region_object.add("purgeable", region->vmobject().is_anonymous());
if (region->vmobject().is_anonymous()) {
region_object.add("volatile", static_cast<const AnonymousVMObject&>(region->vmobject()).is_any_volatile());
}
region_object.add("cacheable", region->is_cacheable());
region_object.add("address", region->vaddr().get());
region_object.add("size", region->size());
region_object.add("amount_resident", region->amount_resident());
region_object.add("amount_dirty", region->amount_dirty());
region_object.add("cow_pages", region->cow_pages());
region_object.add("name", region->name());
region_object.add("vmobject", region->vmobject().class_name());
StringBuilder pagemap_builder;
for (size_t i = 0; i < region->page_count(); ++i) {
auto* page = region->physical_page(i);
if (!page)
pagemap_builder.append('N');
else if (page->is_shared_zero_page() || page->is_lazy_committed_page())
pagemap_builder.append('Z');
else
pagemap_builder.append('P');
}
region_object.add("pagemap", pagemap_builder.to_string());
}
}
array.finish();
return true;
}
static bool procfs$pci(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
PCI::enumerate([&array](PCI::Address address, PCI::ID id) {
auto obj = array.add_object();
obj.add("seg", address.seg());
obj.add("bus", address.bus());
obj.add("device", address.device());
obj.add("function", address.function());
obj.add("vendor_id", id.vendor_id);
obj.add("device_id", id.device_id);
obj.add("revision_id", PCI::get_revision_id(address));
obj.add("subclass", PCI::get_subclass(address));
obj.add("class", PCI::get_class(address));
obj.add("subsystem_id", PCI::get_subsystem_id(address));
obj.add("subsystem_vendor_id", PCI::get_subsystem_vendor_id(address));
});
array.finish();
return true;
}
static bool procfs$dmi(InodeIdentifier, KBufferBuilder& builder)
{
if (!DMIExpose::the().is_available())
return false;
auto structures_ptr = DMIExpose::the().structure_table();
builder.append_bytes(ReadonlyBytes { structures_ptr->data(), structures_ptr->size() });
return true;
}
static bool procfs$smbios_entry_point(InodeIdentifier, KBufferBuilder& builder)
{
if (!DMIExpose::the().is_available())
return false;
auto structures_ptr = DMIExpose::the().entry_point();
builder.append_bytes(ReadonlyBytes { structures_ptr->data(), structures_ptr->size() });
return true;
}
static bool procfs$interrupts(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
InterruptManagement::the().enumerate_interrupt_handlers([&array](GenericInterruptHandler& handler) {
auto obj = array.add_object();
obj.add("purpose", handler.purpose());
obj.add("interrupt_line", handler.interrupt_number());
obj.add("controller", handler.controller());
obj.add("cpu_handler", 0); // FIXME: Determine the responsible CPU for each interrupt handler.
obj.add("device_sharing", (unsigned)handler.sharing_devices_count());
obj.add("call_count", (unsigned)handler.get_invoking_count());
});
array.finish();
return true;
}
static bool procfs$keymap(InodeIdentifier, KBufferBuilder& builder)
{
JsonObjectSerializer<KBufferBuilder> json { builder };
json.add("keymap", HIDManagement::the().keymap_name());
json.finish();
return true;
}
static bool procfs$devices(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
Device::for_each([&array](auto& device) {
auto obj = array.add_object();
obj.add("major", device.major());
obj.add("minor", device.minor());
obj.add("class_name", device.class_name());
if (device.is_block_device())
obj.add("type", "block");
else if (device.is_character_device())
obj.add("type", "character");
else
VERIFY_NOT_REACHED();
});
array.finish();
return true;
}
static bool procfs$uptime(InodeIdentifier, KBufferBuilder& builder)
{
builder.appendff("{}\n", TimeManagement::the().uptime_ms() / 1000);
return true;
}
static bool procfs$cmdline(InodeIdentifier, KBufferBuilder& builder)
{
builder.append(kernel_command_line().string());
builder.append('\n');
return true;
}
static bool procfs$modules(InodeIdentifier, KBufferBuilder& builder)
{
extern HashMap<String, OwnPtr<Module>>* g_modules;
JsonArraySerializer array { builder };
for (auto& it : *g_modules) {
auto obj = array.add_object();
obj.add("name", it.value->name);
obj.add("module_init", it.value->module_init);
obj.add("module_fini", it.value->module_fini);
u32 size = 0;
for (auto& section : it.value->sections) {
size += section.capacity();
}
obj.add("size", size);
}
array.finish();
return true;
}
static bool procfs$profile(InodeIdentifier, KBufferBuilder& builder)
{
extern PerformanceEventBuffer* g_global_perf_events;
if (!g_global_perf_events)
return false;
return g_global_perf_events->to_json(builder);
}
static bool procfs$pid_perf_events(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
InterruptDisabler disabler;
if (!process->perf_events())
return false;
return process->perf_events()->to_json(builder);
}
static bool procfs$net_adapters(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
NetworkAdapter::for_each([&array](auto& adapter) {
auto obj = array.add_object();
obj.add("name", adapter.name());
obj.add("class_name", adapter.class_name());
obj.add("mac_address", adapter.mac_address().to_string());
if (!adapter.ipv4_address().is_zero()) {
obj.add("ipv4_address", adapter.ipv4_address().to_string());
obj.add("ipv4_netmask", adapter.ipv4_netmask().to_string());
}
if (!adapter.ipv4_gateway().is_zero())
obj.add("ipv4_gateway", adapter.ipv4_gateway().to_string());
obj.add("packets_in", adapter.packets_in());
obj.add("bytes_in", adapter.bytes_in());
obj.add("packets_out", adapter.packets_out());
obj.add("bytes_out", adapter.bytes_out());
obj.add("link_up", adapter.link_up());
obj.add("mtu", adapter.mtu());
});
array.finish();
return true;
}
static bool procfs$net_arp(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
LOCKER(arp_table().lock(), Lock::Mode::Shared);
for (auto& it : arp_table().resource()) {
auto obj = array.add_object();
obj.add("mac_address", it.value.to_string());
obj.add("ip_address", it.key.to_string());
}
array.finish();
return true;
}
static bool procfs$net_tcp(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
TCPSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("local_address", socket.local_address().to_string());
obj.add("local_port", socket.local_port());
obj.add("peer_address", socket.peer_address().to_string());
obj.add("peer_port", socket.peer_port());
obj.add("state", TCPSocket::to_string(socket.state()));
obj.add("ack_number", socket.ack_number());
obj.add("sequence_number", socket.sequence_number());
obj.add("packets_in", socket.packets_in());
obj.add("bytes_in", socket.bytes_in());
obj.add("packets_out", socket.packets_out());
obj.add("bytes_out", socket.bytes_out());
});
array.finish();
return true;
}
static bool procfs$net_udp(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
UDPSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("local_address", socket.local_address().to_string());
obj.add("local_port", socket.local_port());
obj.add("peer_address", socket.peer_address().to_string());
obj.add("peer_port", socket.peer_port());
});
array.finish();
return true;
}
static bool procfs$net_local(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
LocalSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("path", String(socket.socket_path()));
obj.add("origin_pid", socket.origin_pid());
obj.add("origin_uid", socket.origin_uid());
obj.add("origin_gid", socket.origin_gid());
obj.add("acceptor_pid", socket.acceptor_pid());
obj.add("acceptor_uid", socket.acceptor_uid());
obj.add("acceptor_gid", socket.acceptor_gid());
});
array.finish();
return true;
}
static bool procfs$pid_unveil(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
JsonArraySerializer array { builder };
for (auto& unveiled_path : process->unveiled_paths()) {
if (!unveiled_path.was_explicitly_unveiled())
continue;
auto obj = array.add_object();
obj.add("path", unveiled_path.path());
StringBuilder permissions_builder;
if (unveiled_path.permissions() & UnveilAccess::Read)
permissions_builder.append('r');
if (unveiled_path.permissions() & UnveilAccess::Write)
permissions_builder.append('w');
if (unveiled_path.permissions() & UnveilAccess::Execute)
permissions_builder.append('x');
if (unveiled_path.permissions() & UnveilAccess::CreateOrRemove)
permissions_builder.append('c');
if (unveiled_path.permissions() & UnveilAccess::Browse)
permissions_builder.append('b');
obj.add("permissions", permissions_builder.to_string());
}
array.finish();
return true;
}
static bool procfs$tid_stack(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto thread = Thread::from_tid(to_tid(identifier));
if (!thread)
return false;
JsonArraySerializer array { builder };
bool show_kernel_addresses = Process::current()->is_superuser();
for (auto address : Processor::capture_stack_trace(*thread, 1024)) {
if (!show_kernel_addresses && !is_user_address(VirtualAddress { address }))
address = 0xdeadc0de;
array.add(JsonValue(address));
}
array.finish();
return true;
}
static bool procfs$pid_exe(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
auto* custody = process->executable();
VERIFY(custody);
builder.append(custody->absolute_path().bytes());
return true;
}
static bool procfs$pid_cwd(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
builder.append_bytes(process->current_directory().absolute_path().bytes());
return true;
}
static bool procfs$pid_root(InodeIdentifier identifier, KBufferBuilder& builder)
{
auto process = Process::from_pid(to_pid(identifier));
if (!process)
return false;
builder.append_bytes(process->root_directory_relative_to_global_root().absolute_path().to_byte_buffer());
return true;
}
static bool procfs$self(InodeIdentifier, KBufferBuilder& builder)
{
builder.appendff("{}", Process::current()->pid().value());
return true;
}
static bool procfs$dmesg(InodeIdentifier, KBufferBuilder& builder)
{
InterruptDisabler disabler;
for (char ch : Console::the().logbuffer())
builder.append(ch);
return true;
}
static bool procfs$df(InodeIdentifier, KBufferBuilder& builder)
{
// FIXME: This is obviously racy against the VFS mounts changing.
JsonArraySerializer array { builder };
VFS::the().for_each_mount([&array](auto& mount) {
auto& fs = mount.guest_fs();
auto fs_object = array.add_object();
fs_object.add("class_name", fs.class_name());
fs_object.add("total_block_count", fs.total_block_count());
fs_object.add("free_block_count", fs.free_block_count());
fs_object.add("total_inode_count", fs.total_inode_count());
fs_object.add("free_inode_count", fs.free_inode_count());
fs_object.add("mount_point", mount.absolute_path());
fs_object.add("block_size", static_cast<u64>(fs.block_size()));
fs_object.add("readonly", fs.is_readonly());
fs_object.add("mount_flags", mount.flags());
if (fs.is_file_backed())
fs_object.add("source", static_cast<const FileBackedFS&>(fs).file_description().absolute_path());
else
fs_object.add("source", "none");
});
array.finish();
return true;
}
static bool procfs$cpuinfo(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
Processor::for_each(
[&](Processor& proc) -> IterationDecision {
auto& info = proc.info();
auto obj = array.add_object();
JsonArray features;
for (auto& feature : info.features().split(' '))
features.append(feature);
obj.add("processor", proc.get_id());
obj.add("cpuid", info.cpuid());
obj.add("family", info.display_family());
obj.add("features", features);
obj.add("model", info.display_model());
obj.add("stepping", info.stepping());
obj.add("type", info.type());
obj.add("brandstr", info.brandstr());
return IterationDecision::Continue;
});
array.finish();
return true;
}
static bool procfs$memstat(InodeIdentifier, KBufferBuilder& builder)
{
InterruptDisabler disabler;
kmalloc_stats stats;
get_kmalloc_stats(stats);
ScopedSpinLock mm_lock(s_mm_lock);
auto user_physical_pages_total = MM.user_physical_pages();
auto user_physical_pages_used = MM.user_physical_pages_used();
auto user_physical_pages_committed = MM.user_physical_pages_committed();
auto user_physical_pages_uncommitted = MM.user_physical_pages_uncommitted();
auto super_physical_total = MM.super_physical_pages();
auto super_physical_used = MM.super_physical_pages_used();
mm_lock.unlock();
JsonObjectSerializer<KBufferBuilder> json { builder };
json.add("kmalloc_allocated", stats.bytes_allocated);
json.add("kmalloc_available", stats.bytes_free);
json.add("kmalloc_eternal_allocated", stats.bytes_eternal);
json.add("user_physical_allocated", user_physical_pages_used);
json.add("user_physical_available", user_physical_pages_total - user_physical_pages_used);
json.add("user_physical_committed", user_physical_pages_committed);
json.add("user_physical_uncommitted", user_physical_pages_uncommitted);
json.add("super_physical_allocated", super_physical_used);
json.add("super_physical_available", super_physical_total - super_physical_used);
json.add("kmalloc_call_count", stats.kmalloc_call_count);
json.add("kfree_call_count", stats.kfree_call_count);
slab_alloc_stats([&json](size_t slab_size, size_t num_allocated, size_t num_free) {
auto prefix = String::formatted("slab_{}", slab_size);
json.add(String::formatted("{}_num_allocated", prefix), num_allocated);
json.add(String::formatted("{}_num_free", prefix), num_free);
});
json.finish();
return true;
}
static bool procfs$all(InodeIdentifier, KBufferBuilder& builder)
{
JsonArraySerializer array { builder };
// Keep this in sync with CProcessStatistics.
auto build_process = [&](const Process& process) {
auto process_object = array.add_object();
if (process.is_user_process()) {
StringBuilder pledge_builder;
#define __ENUMERATE_PLEDGE_PROMISE(promise) \
if (process.has_promised(Pledge::promise)) { \
pledge_builder.append(#promise " "); \
}
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
process_object.add("pledge", pledge_builder.to_string());
switch (process.veil_state()) {
case VeilState::None:
process_object.add("veil", "None");
break;
case VeilState::Dropped:
process_object.add("veil", "Dropped");
break;
case VeilState::Locked:
process_object.add("veil", "Locked");
break;
}
} else {
process_object.add("pledge", String());
process_object.add("veil", String());
}
process_object.add("pid", process.pid().value());
process_object.add("pgid", process.tty() ? process.tty()->pgid().value() : 0);
process_object.add("pgp", process.pgid().value());
process_object.add("sid", process.sid().value());
process_object.add("uid", process.uid());
process_object.add("gid", process.gid());
process_object.add("ppid", process.ppid().value());
process_object.add("nfds", process.number_of_open_file_descriptors());
process_object.add("name", process.name());
process_object.add("executable", process.executable() ? process.executable()->absolute_path() : "");
process_object.add("tty", process.tty() ? process.tty()->tty_name() : "notty");
process_object.add("amount_virtual", process.space().amount_virtual());
process_object.add("amount_resident", process.space().amount_resident());
process_object.add("amount_dirty_private", process.space().amount_dirty_private());
process_object.add("amount_clean_inode", process.space().amount_clean_inode());
process_object.add("amount_shared", process.space().amount_shared());
process_object.add("amount_purgeable_volatile", process.space().amount_purgeable_volatile());
process_object.add("amount_purgeable_nonvolatile", process.space().amount_purgeable_nonvolatile());
process_object.add("dumpable", process.is_dumpable());
process_object.add("kernel", process.is_kernel_process());
auto thread_array = process_object.add_array("threads");
process.for_each_thread([&](const Thread& thread) {
auto thread_object = thread_array.add_object();
thread_object.add("tid", thread.tid().value());
thread_object.add("name", thread.name());
thread_object.add("times_scheduled", thread.times_scheduled());
thread_object.add("ticks_user", thread.ticks_in_user());
thread_object.add("ticks_kernel", thread.ticks_in_kernel());
thread_object.add("state", thread.state_string());
thread_object.add("cpu", thread.cpu());
thread_object.add("priority", thread.priority());
thread_object.add("syscall_count", thread.syscall_count());
thread_object.add("inode_faults", thread.inode_faults());
thread_object.add("zero_faults", thread.zero_faults());
thread_object.add("cow_faults", thread.cow_faults());
thread_object.add("file_read_bytes", thread.file_read_bytes());
thread_object.add("file_write_bytes", thread.file_write_bytes());
thread_object.add("unix_socket_read_bytes", thread.unix_socket_read_bytes());
thread_object.add("unix_socket_write_bytes", thread.unix_socket_write_bytes());
thread_object.add("ipv4_socket_read_bytes", thread.ipv4_socket_read_bytes());
thread_object.add("ipv4_socket_write_bytes", thread.ipv4_socket_write_bytes());
return IterationDecision::Continue;
});
};
ScopedSpinLock lock(g_scheduler_lock);
auto processes = Process::all_processes();
build_process(*Scheduler::colonel());
for (auto& process : processes)
build_process(process);
array.finish();
return true;
}
struct SysVariable {
String name;
enum class Type : u8 {
Invalid,
Boolean,
String,
};
Type type { Type::Invalid };
Function<void()> notify_callback;
void* address { nullptr };
static SysVariable& for_inode(InodeIdentifier);
void notify()
{
if (notify_callback)
notify_callback();
}
};
static Vector<SysVariable, 16>* s_sys_variables;
static inline Vector<SysVariable, 16>& sys_variables()
{
if (s_sys_variables == nullptr) {
s_sys_variables = new Vector<SysVariable, 16>;
s_sys_variables->append({ "", SysVariable::Type::Invalid, nullptr, nullptr });
}
return *s_sys_variables;
}
SysVariable& SysVariable::for_inode(InodeIdentifier id)
{
auto index = to_sys_index(id);
if (index >= sys_variables().size())
return sys_variables()[0];
auto& variable = sys_variables()[index];
VERIFY(variable.address);
return variable;
}
static bool read_sys_bool(InodeIdentifier inode_id, KBufferBuilder& builder)
{
auto& variable = SysVariable::for_inode(inode_id);
VERIFY(variable.type == SysVariable::Type::Boolean);
u8 buffer[2];
auto* lockable_bool = reinterpret_cast<Lockable<bool>*>(variable.address);
{
LOCKER(lockable_bool->lock(), Lock::Mode::Shared);
buffer[0] = lockable_bool->resource() ? '1' : '0';
}
buffer[1] = '\n';
builder.append_bytes(ReadonlyBytes { buffer, sizeof(buffer) });
return true;
}
static ssize_t write_sys_bool(InodeIdentifier inode_id, const UserOrKernelBuffer& buffer, size_t size)
{
auto& variable = SysVariable::for_inode(inode_id);
VERIFY(variable.type == SysVariable::Type::Boolean);
char value = 0;
bool did_read = false;
ssize_t nread = buffer.read_buffered<1>(1, [&](const u8* data, size_t) {
if (did_read)
return 0;
value = (char)data[0];
did_read = true;
return 1;
});
if (nread < 0)
return nread;
VERIFY(nread == 0 || (nread == 1 && did_read));
if (nread == 0 || !(value == '0' || value == '1'))
return (ssize_t)size;
auto* lockable_bool = reinterpret_cast<Lockable<bool>*>(variable.address);
{
LOCKER(lockable_bool->lock());
lockable_bool->resource() = value == '1';
}
variable.notify();
return (ssize_t)size;
}
static bool read_sys_string(InodeIdentifier inode_id, KBufferBuilder& builder)
{
auto& variable = SysVariable::for_inode(inode_id);
VERIFY(variable.type == SysVariable::Type::String);
auto* lockable_string = reinterpret_cast<Lockable<String>*>(variable.address);
LOCKER(lockable_string->lock(), Lock::Mode::Shared);
builder.append_bytes(lockable_string->resource().bytes());
return true;
}
static ssize_t write_sys_string(InodeIdentifier inode_id, const UserOrKernelBuffer& buffer, size_t size)
{
auto& variable = SysVariable::for_inode(inode_id);
VERIFY(variable.type == SysVariable::Type::String);
auto string_copy = buffer.copy_into_string(size);
if (string_copy.is_null())
return -EFAULT;
{
auto* lockable_string = reinterpret_cast<Lockable<String>*>(variable.address);
LOCKER(lockable_string->lock());
lockable_string->resource() = move(string_copy);
}
variable.notify();
return (ssize_t)size;
}
void ProcFS::add_sys_bool(String&& name, Lockable<bool>& var, Function<void()>&& notify_callback)
{
InterruptDisabler disabler;
SysVariable variable;
variable.name = move(name);
variable.type = SysVariable::Type::Boolean;
variable.notify_callback = move(notify_callback);
variable.address = &var;
sys_variables().append(move(variable));
}
void ProcFS::add_sys_string(String&& name, Lockable<String>& var, Function<void()>&& notify_callback)
{
InterruptDisabler disabler;
SysVariable variable;
variable.name = move(name);
variable.type = SysVariable::Type::String;
variable.notify_callback = move(notify_callback);
variable.address = &var;
sys_variables().append(move(variable));
}
bool ProcFS::initialize()
{
static Lockable<bool>* kmalloc_stack_helper;
static Lockable<bool>* ubsan_deadly_helper;
if (kmalloc_stack_helper == nullptr) {
kmalloc_stack_helper = new Lockable<bool>();
kmalloc_stack_helper->resource() = g_dump_kmalloc_stacks;
ProcFS::add_sys_bool("kmalloc_stacks", *kmalloc_stack_helper, [] {
g_dump_kmalloc_stacks = kmalloc_stack_helper->resource();
});
ubsan_deadly_helper = new Lockable<bool>();
ubsan_deadly_helper->resource() = UBSanitizer::g_ubsan_is_deadly;
ProcFS::add_sys_bool("ubsan_is_deadly", *ubsan_deadly_helper, [] {
UBSanitizer::g_ubsan_is_deadly = ubsan_deadly_helper->resource();
});
}
return true;
}
const char* ProcFS::class_name() const
{
return "ProcFS";
}
NonnullRefPtr<Inode> ProcFS::root_inode() const
{
return *m_root_inode;
}
RefPtr<Inode> ProcFS::get_inode(InodeIdentifier inode_id) const
{
dbgln_if(PROCFS_DEBUG, "ProcFS::get_inode({})", inode_id.index());
if (inode_id == root_inode()->identifier())
return m_root_inode;
LOCKER(m_inodes_lock);
auto it = m_inodes.find(inode_id.index().value());
if (it != m_inodes.end()) {
// It's possible that the ProcFSInode ref count was dropped to 0 or
// the ~ProcFSInode destructor is even running already, but blocked
// from removing it from this map. So we need to *try* to ref it,
// and if that fails we cannot return this instance anymore and just
// create a new one.
if (it->value->try_ref())
return adopt(*it->value);
// We couldn't ref it, so just create a new one and replace the entry
}
auto inode = adopt(*new ProcFSInode(const_cast<ProcFS&>(*this), inode_id.index()));
auto result = m_inodes.set(inode_id.index().value(), inode.ptr());
VERIFY(result == ((it == m_inodes.end()) ? AK::HashSetResult::InsertedNewEntry : AK::HashSetResult::ReplacedExistingEntry));
return inode;
}
ProcFSInode::ProcFSInode(ProcFS& fs, InodeIndex index)
: Inode(fs, index)
{
}
ProcFSInode::~ProcFSInode()
{
LOCKER(fs().m_inodes_lock);
auto it = fs().m_inodes.find(index().value());
if (it != fs().m_inodes.end() && it->value == this)
fs().m_inodes.remove(it);
}
RefPtr<Process> ProcFSInode::process() const
{
return Process::from_pid(to_pid(identifier()));
}
KResult ProcFSInode::refresh_data(FileDescription& description) const
{
if (Kernel::is_directory(identifier()))
return KSuccess;
// For process-specific inodes, hold the process's ptrace lock across refresh
// and refuse to load data if the process is not dumpable.
// Without this, files opened before a process went non-dumpable could still be used for dumping.
auto process = this->process();
if (process) {
process->ptrace_lock().lock();
if (!process->is_dumpable()) {
process->ptrace_lock().unlock();
return EPERM;
}
}
ScopeGuard guard = [&] {
if (process)
process->ptrace_lock().unlock();
};
auto& cached_data = description.data();
auto* directory_entry = fs().get_directory_entry(identifier());
bool (*read_callback)(InodeIdentifier, KBufferBuilder&) = nullptr;
if (directory_entry) {
read_callback = directory_entry->read_callback;
VERIFY(read_callback);
} else {
switch (to_proc_parent_directory(identifier())) {
case PDI_PID_fd:
read_callback = procfs$pid_fd_entry;
break;
case PDI_PID_stacks:
read_callback = procfs$tid_stack;
break;
case PDI_Root_sys:
switch (SysVariable::for_inode(identifier()).type) {
case SysVariable::Type::Invalid:
VERIFY_NOT_REACHED();
case SysVariable::Type::Boolean:
read_callback = read_sys_bool;
break;
case SysVariable::Type::String:
read_callback = read_sys_string;
break;
}
break;
default:
VERIFY_NOT_REACHED();
}
VERIFY(read_callback);
}
if (!cached_data)
cached_data = new ProcFSInodeData;
auto& buffer = static_cast<ProcFSInodeData&>(*cached_data).buffer;
if (buffer) {
// If we're reusing the buffer, reset the size to 0 first. This
// ensures we don't accidentally leak previously written data.
buffer->set_size(0);
}
KBufferBuilder builder(buffer, true);
if (!read_callback(identifier(), builder))
return ENOENT;
// We don't use builder.build() here, which would steal our buffer
// and turn it into an OwnPtr. Instead, just flush to the buffer so
// that we can read all the data that was written.
if (!builder.flush())
return ENOMEM;
if (!buffer)
return ENOMEM;
return KSuccess;
}
KResult ProcFSInode::attach(FileDescription& description)
{
return refresh_data(description);
}
void ProcFSInode::did_seek(FileDescription& description, off_t new_offset)
{
if (new_offset != 0)
return;
auto result = refresh_data(description);
if (result.is_error()) {
// Subsequent calls to read will return EIO!
dbgln("ProcFS: Could not refresh contents: {}", result.error());
}
}
InodeMetadata ProcFSInode::metadata() const
{
dbgln_if(PROCFS_DEBUG, "ProcFSInode::metadata({})", index());
InodeMetadata metadata;
metadata.inode = identifier();
metadata.ctime = mepoch;
metadata.atime = mepoch;
metadata.mtime = mepoch;
auto proc_parent_directory = to_proc_parent_directory(identifier());
auto proc_file_type = to_proc_file_type(identifier());
dbgln_if(PROCFS_DEBUG, " -> pid={}, fi={}, pdi={}", to_pid(identifier()).value(), (int)proc_file_type, (int)proc_parent_directory);
if (is_process_related_file(identifier())) {
ProcessID pid = to_pid(identifier());
auto process = Process::from_pid(pid);
if (process && process->is_dumpable()) {
metadata.uid = process->euid();
metadata.gid = process->egid();
} else {
metadata.uid = 0;
metadata.gid = 0;
}
} else if (is_thread_related_file(identifier())) {
ThreadID tid = to_tid(identifier());
auto thread = Thread::from_tid(tid);
if (thread && thread->process().is_dumpable()) {
metadata.uid = thread->process().euid();
metadata.gid = thread->process().egid();
} else {
metadata.uid = 0;
metadata.gid = 0;
}
}
if (proc_parent_directory == PDI_PID_fd) {
metadata.mode = S_IFLNK | S_IRUSR | S_IWUSR | S_IXUSR;
return metadata;
}
switch (proc_file_type) {
case FI_Root_self:
metadata.mode = S_IFLNK | S_IRUSR | S_IRGRP | S_IROTH;
break;
case FI_PID_cwd:
case FI_PID_exe:
case FI_PID_root:
metadata.mode = S_IFLNK | S_IRUSR;
break;
case FI_Root:
case FI_Root_sys:
case FI_Root_net:
metadata.mode = S_IFDIR | S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH;
break;
case FI_PID:
case FI_PID_fd:
case FI_PID_stacks:
metadata.mode = S_IFDIR | S_IRUSR | S_IXUSR;
break;
case FI_Root_smbios_entry_point:
metadata.mode = S_IFREG | S_IRUSR | S_IRGRP | S_IROTH;
metadata.size = DMIExpose::the().entry_point_length();
break;
case FI_Root_dmi:
metadata.mode = S_IFREG | S_IRUSR | S_IRGRP | S_IROTH;
metadata.size = DMIExpose::the().structure_table_length();
break;
default:
metadata.mode = S_IFREG | S_IRUSR | S_IRGRP | S_IROTH;
break;
}
if (proc_file_type > FI_Invalid && proc_file_type < FI_MaxStaticFileIndex) {
if (fs().m_entries[proc_file_type].supervisor_only) {
metadata.uid = 0;
metadata.gid = 0;
metadata.mode &= ~077;
}
}
return metadata;
}
ssize_t ProcFSInode::read_bytes(off_t offset, ssize_t count, UserOrKernelBuffer& buffer, FileDescription* description) const
{
dbgln_if(PROCFS_DEBUG, "ProcFS: read_bytes offset: {} count: {}", offset, count);
VERIFY(offset >= 0);
VERIFY(buffer.user_or_kernel_ptr());
if (!description)
return -EIO;
if (!description->data()) {
dbgln_if(PROCFS_DEBUG, "ProcFS: Do not have cached data!");
return -EIO;
}
// Be sure to keep a reference to data_buffer while we use it!
RefPtr<KBufferImpl> data_buffer = static_cast<ProcFSInodeData&>(*description->data()).buffer;
if (!data_buffer || (size_t)offset >= data_buffer->size())
return 0;
ssize_t nread = min(static_cast<off_t>(data_buffer->size() - offset), static_cast<off_t>(count));
if (!buffer.write(data_buffer->data() + offset, nread))
return -EFAULT;
return nread;
}
InodeIdentifier ProcFS::ProcFSDirectoryEntry::identifier(unsigned fsid) const
{
return to_identifier(fsid, PDI_Root, 0, (ProcFileType)proc_file_type);
}
KResult ProcFSInode::traverse_as_directory(Function<bool(const FS::DirectoryEntryView&)> callback) const
{
dbgln_if(PROCFS_DEBUG, "ProcFS: traverse_as_directory {}", index());
if (!Kernel::is_directory(identifier()))
return ENOTDIR;
auto proc_file_type = to_proc_file_type(identifier());
auto parent_id = to_parent_id(identifier());
callback({ ".", identifier(), 2 });
callback({ "..", parent_id, 2 });
switch (proc_file_type) {
case FI_Root:
for (auto& entry : fs().m_entries) {
// FIXME: strlen() here is sad.
if (!entry.name)
continue;
if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End)
callback({ { entry.name, strlen(entry.name) }, to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type), 0 });
}
for (auto pid_child : Process::all_pids()) {
callback({ String::number(pid_child.value()), to_identifier(fsid(), PDI_Root, pid_child, FI_PID), 0 });
}
break;
case FI_Root_sys:
for (size_t i = 1; i < sys_variables().size(); ++i) {
auto& variable = sys_variables()[i];
callback({ variable.name, sys_var_to_identifier(fsid(), i), 0 });
}
break;
case FI_Root_net:
callback({ "adapters", to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_adapters), 0 });
callback({ "arp", to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_arp), 0 });
callback({ "tcp", to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_tcp), 0 });
callback({ "udp", to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_udp), 0 });
callback({ "local", to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_local), 0 });
break;
case FI_PID: {
auto pid = to_pid(identifier());
auto process = Process::from_pid(pid);
if (!process)
return ENOENT;
for (auto& entry : fs().m_entries) {
if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) {
if (entry.proc_file_type == FI_PID_exe && !process->executable())
continue;
// FIXME: strlen() here is sad.
callback({ { entry.name, strlen(entry.name) }, to_identifier(fsid(), PDI_PID, pid, (ProcFileType)entry.proc_file_type), 0 });
}
}
} break;
case FI_PID_fd: {
auto pid = to_pid(identifier());
auto process = Process::from_pid(pid);
if (!process)
return ENOENT;
for (int i = 0; i < process->max_open_file_descriptors(); ++i) {
auto description = process->file_description(i);
if (!description)
continue;
callback({ String::number(i), to_identifier_with_fd(fsid(), pid, i), 0 });
}
} break;
case FI_PID_stacks: {
auto pid = to_pid(identifier());
auto process = Process::from_pid(pid);
if (!process)
return ENOENT;
process->for_each_thread([&](const Thread& thread) -> IterationDecision {
int tid = thread.tid().value();
callback({ String::number(tid), to_identifier_with_stack(fsid(), tid), 0 });
return IterationDecision::Continue;
});
} break;
default:
return KSuccess;
}
return KSuccess;
}
RefPtr<Inode> ProcFSInode::lookup(StringView name)
{
VERIFY(is_directory());
if (name == ".")
return this;
if (name == "..")
return fs().get_inode(to_parent_id(identifier()));
auto proc_file_type = to_proc_file_type(identifier());
if (proc_file_type == FI_Root) {
for (auto& entry : fs().m_entries) {
if (entry.name == nullptr)
continue;
if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End) {
if (name == entry.name) {
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type));
}
}
}
auto name_as_number = name.to_uint();
if (!name_as_number.has_value())
return {};
bool process_exists = false;
{
InterruptDisabler disabler;
process_exists = Process::from_pid(name_as_number.value());
}
if (process_exists)
return fs().get_inode(to_identifier(fsid(), PDI_Root, name_as_number.value(), FI_PID));
return {};
}
if (proc_file_type == FI_Root_sys) {
for (size_t i = 1; i < sys_variables().size(); ++i) {
auto& variable = sys_variables()[i];
if (name == variable.name)
return fs().get_inode(sys_var_to_identifier(fsid(), i));
}
return {};
}
if (proc_file_type == FI_Root_net) {
if (name == "adapters")
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_adapters));
if (name == "arp")
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_arp));
if (name == "tcp")
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_tcp));
if (name == "udp")
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_udp));
if (name == "local")
return fs().get_inode(to_identifier(fsid(), PDI_Root, 0, FI_Root_net_local));
return {};
}
if (proc_file_type == FI_PID) {
auto process = Process::from_pid(to_pid(identifier()));
if (!process)
return {};
for (auto& entry : fs().m_entries) {
if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) {
if (entry.proc_file_type == FI_PID_exe && !process->executable())
continue;
if (entry.name == nullptr)
continue;
if (name == entry.name) {
return fs().get_inode(to_identifier(fsid(), PDI_PID, to_pid(identifier()), (ProcFileType)entry.proc_file_type));
}
}
}
return {};
}
if (proc_file_type == FI_PID_fd) {
auto name_as_number = name.to_uint();
if (!name_as_number.has_value())
return {};
bool fd_exists = false;
{
if (auto process = Process::from_pid(to_pid(identifier())))
fd_exists = process->file_description(name_as_number.value());
}
if (fd_exists)
return fs().get_inode(to_identifier_with_fd(fsid(), to_pid(identifier()), name_as_number.value()));
}
if (proc_file_type == FI_PID_stacks) {
auto name_as_number = name.to_int();
if (!name_as_number.has_value())
return {};
int tid = name_as_number.value();
if (tid <= 0) {
return {};
}
bool thread_exists = false;
{
auto process = Process::from_pid(to_pid(identifier()));
auto thread = Thread::from_tid(tid);
thread_exists = process && thread && process->pid() == thread->pid();
}
if (thread_exists)
return fs().get_inode(to_identifier_with_stack(fsid(), tid));
}
return {};
}
void ProcFSInode::flush_metadata()
{
}
ssize_t ProcFSInode::write_bytes(off_t offset, ssize_t size, const UserOrKernelBuffer& buffer, FileDescription*)
{
// For process-specific inodes, hold the process's ptrace lock across the write
// and refuse to write at all data if the process is not dumpable.
// Without this, files opened before a process went non-dumpable could still be used for dumping.
auto process = this->process();
if (process) {
process->ptrace_lock().lock();
if (!process->is_dumpable()) {
process->ptrace_lock().unlock();
return EPERM;
}
}
ScopeGuard guard = [&] {
if (process)
process->ptrace_lock().unlock();
};
auto result = prepare_to_write_data();
if (result.is_error())
return result;
auto* directory_entry = fs().get_directory_entry(identifier());
ssize_t (*write_callback)(InodeIdentifier, const UserOrKernelBuffer&, size_t) = nullptr;
if (directory_entry == nullptr) {
if (to_proc_parent_directory(identifier()) == PDI_Root_sys) {
switch (SysVariable::for_inode(identifier()).type) {
case SysVariable::Type::Invalid:
VERIFY_NOT_REACHED();
case SysVariable::Type::Boolean:
write_callback = write_sys_bool;
break;
case SysVariable::Type::String:
write_callback = write_sys_string;
break;
}
} else
return -EPERM;
} else {
if (!directory_entry->write_callback)
return -EPERM;
write_callback = directory_entry->write_callback;
}
VERIFY(is_persistent_inode(identifier()));
// FIXME: Being able to write into ProcFS at a non-zero offset seems like something we should maybe support..
VERIFY(offset == 0);
ssize_t nwritten = write_callback(identifier(), buffer, (size_t)size);
if (nwritten < 0)
dbgln("ProcFS: Writing {} bytes failed: {}", size, nwritten);
return nwritten;
}
KResultOr<NonnullRefPtr<Custody>> ProcFSInode::resolve_as_link(Custody& base, RefPtr<Custody>* out_parent, int options, int symlink_recursion_level) const
{
if (FI_Root_self == to_proc_file_type(identifier())) {
return VFS::the().resolve_path(String::number(Process::current()->pid().value()), base, out_parent, options, symlink_recursion_level);
}
// The only other links are in pid directories, so it's safe to ignore
// unrelated files and the thread-specific stacks/ directory.
if (!is_process_related_file(identifier()))
return Inode::resolve_as_link(base, out_parent, options, symlink_recursion_level);
// FIXME: We should return a custody for FI_PID or FI_PID_fd here
// for correctness. It's impossible to create files in ProcFS,
// so returning null shouldn't break much.
if (out_parent)
*out_parent = nullptr;
auto pid = to_pid(identifier());
auto proc_file_type = to_proc_file_type(identifier());
auto process = Process::from_pid(pid);
if (!process)
return ENOENT;
if (to_proc_parent_directory(identifier()) == PDI_PID_fd) {
if (out_parent)
*out_parent = base;
int fd = to_fd(identifier());
auto description = process->file_description(fd);
if (!description)
return ENOENT;
auto proxy_inode = ProcFSProxyInode::create(const_cast<ProcFS&>(fs()), *description);
return Custody::create(&base, "", proxy_inode, base.mount_flags());
}
Custody* res = nullptr;
switch (proc_file_type) {
case FI_PID_cwd:
res = &process->current_directory();
break;
case FI_PID_exe:
res = process->executable();
break;
case FI_PID_root:
// Note: we open root_directory() here, not
// root_directory_relative_to_global_root().
// This seems more useful.
res = &process->root_directory();
break;
default:
VERIFY_NOT_REACHED();
}
if (!res)
return ENOENT;
return *res;
}
ProcFSProxyInode::ProcFSProxyInode(ProcFS& fs, FileDescription& fd)
: Inode(fs, 0)
, m_fd(fd)
{
}
ProcFSProxyInode::~ProcFSProxyInode()
{
}
KResult ProcFSProxyInode::attach(FileDescription& fd)
{
return m_fd->inode()->attach(fd);
}
void ProcFSProxyInode::did_seek(FileDescription& fd, off_t new_offset)
{
return m_fd->inode()->did_seek(fd, new_offset);
}
InodeMetadata ProcFSProxyInode::metadata() const
{
InodeMetadata metadata = m_fd->metadata();
if (m_fd->is_readable())
metadata.mode |= 0444;
else
metadata.mode &= ~0444;
if (m_fd->is_writable())
metadata.mode |= 0222;
else
metadata.mode &= ~0222;
if (!metadata.is_directory())
metadata.mode &= ~0111;
return metadata;
}
KResultOr<NonnullRefPtr<Inode>> ProcFSProxyInode::create_child(const String& name, mode_t mode, dev_t dev, uid_t uid, gid_t gid)
{
if (!m_fd->inode())
return EINVAL;
return m_fd->inode()->create_child(name, mode, dev, uid, gid);
}
KResult ProcFSProxyInode::add_child(Inode& child, const StringView& name, mode_t mode)
{
if (!m_fd->inode())
return EINVAL;
return m_fd->inode()->add_child(child, name, mode);
}
KResult ProcFSProxyInode::remove_child(const StringView& name)
{
if (!m_fd->inode())
return EINVAL;
return m_fd->inode()->remove_child(name);
}
RefPtr<Inode> ProcFSProxyInode::lookup(StringView name)
{
if (!m_fd->inode())
return {};
return m_fd->inode()->lookup(name);
}
KResultOr<size_t> ProcFSProxyInode::directory_entry_count() const
{
if (!m_fd->inode())
return EINVAL;
return m_fd->inode()->directory_entry_count();
}
KResultOr<NonnullRefPtr<Inode>> ProcFSInode::create_child(const String&, mode_t, dev_t, uid_t, gid_t)
{
return EPERM;
}
KResult ProcFSInode::add_child(Inode&, const StringView&, mode_t)
{
return EPERM;
}
KResult ProcFSInode::remove_child([[maybe_unused]] const StringView& name)
{
return EPERM;
}
KResultOr<size_t> ProcFSInode::directory_entry_count() const
{
VERIFY(is_directory());
size_t count = 0;
KResult result = traverse_as_directory([&count](auto&) {
++count;
return true;
});
if (result.is_error())
return result;
return count;
}
KResult ProcFSInode::chmod(mode_t)
{
return EPERM;
}
ProcFS::ProcFS()
{
m_root_inode = adopt(*new ProcFSInode(*this, 1));
m_entries.resize(FI_MaxStaticFileIndex);
m_entries[FI_Root_df] = { "df", FI_Root_df, false, procfs$df };
m_entries[FI_Root_all] = { "all", FI_Root_all, false, procfs$all };
m_entries[FI_Root_memstat] = { "memstat", FI_Root_memstat, false, procfs$memstat };
m_entries[FI_Root_cpuinfo] = { "cpuinfo", FI_Root_cpuinfo, false, procfs$cpuinfo };
m_entries[FI_Root_dmesg] = { "dmesg", FI_Root_dmesg, true, procfs$dmesg };
m_entries[FI_Root_self] = { "self", FI_Root_self, false, procfs$self };
m_entries[FI_Root_pci] = { "pci", FI_Root_pci, false, procfs$pci };
m_entries[FI_Root_interrupts] = { "interrupts", FI_Root_interrupts, false, procfs$interrupts };
m_entries[FI_Root_dmi] = { "DMI", FI_Root_dmi, false, procfs$dmi };
m_entries[FI_Root_smbios_entry_point] = { "smbios_entry_point", FI_Root_smbios_entry_point, false, procfs$smbios_entry_point };
m_entries[FI_Root_keymap] = { "keymap", FI_Root_keymap, false, procfs$keymap };
m_entries[FI_Root_devices] = { "devices", FI_Root_devices, false, procfs$devices };
m_entries[FI_Root_uptime] = { "uptime", FI_Root_uptime, false, procfs$uptime };
m_entries[FI_Root_cmdline] = { "cmdline", FI_Root_cmdline, true, procfs$cmdline };
m_entries[FI_Root_modules] = { "modules", FI_Root_modules, true, procfs$modules };
m_entries[FI_Root_profile] = { "profile", FI_Root_profile, true, procfs$profile };
m_entries[FI_Root_sys] = { "sys", FI_Root_sys, true };
m_entries[FI_Root_net] = { "net", FI_Root_net, false };
m_entries[FI_Root_net_adapters] = { "adapters", FI_Root_net_adapters, false, procfs$net_adapters };
m_entries[FI_Root_net_arp] = { "arp", FI_Root_net_arp, true, procfs$net_arp };
m_entries[FI_Root_net_tcp] = { "tcp", FI_Root_net_tcp, false, procfs$net_tcp };
m_entries[FI_Root_net_udp] = { "udp", FI_Root_net_udp, false, procfs$net_udp };
m_entries[FI_Root_net_local] = { "local", FI_Root_net_local, false, procfs$net_local };
m_entries[FI_PID_vm] = { "vm", FI_PID_vm, false, procfs$pid_vm };
m_entries[FI_PID_stacks] = { "stacks", FI_PID_stacks, false };
m_entries[FI_PID_fds] = { "fds", FI_PID_fds, false, procfs$pid_fds };
m_entries[FI_PID_exe] = { "exe", FI_PID_exe, false, procfs$pid_exe };
m_entries[FI_PID_cwd] = { "cwd", FI_PID_cwd, false, procfs$pid_cwd };
m_entries[FI_PID_unveil] = { "unveil", FI_PID_unveil, false, procfs$pid_unveil };
m_entries[FI_PID_root] = { "root", FI_PID_root, false, procfs$pid_root };
m_entries[FI_PID_perf_events] = { "perf_events", FI_PID_perf_events, false, procfs$pid_perf_events };
m_entries[FI_PID_fd] = { "fd", FI_PID_fd, false };
}
ProcFS::ProcFSDirectoryEntry* ProcFS::get_directory_entry(InodeIdentifier identifier) const
{
auto proc_file_type = to_proc_file_type(identifier);
if (proc_file_type != FI_Invalid && proc_file_type != FI_Root_sys_variable && proc_file_type < FI_MaxStaticFileIndex)
return const_cast<ProcFSDirectoryEntry*>(&m_entries[proc_file_type]);
return nullptr;
}
KResult ProcFSInode::chown(uid_t, gid_t)
{
return EPERM;
}
}