mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 01:32:14 -05:00
2329 lines
110 KiB
C++
2329 lines
110 KiB
C++
/*
|
||
* Copyright (c) 2021-2024, Andreas Kling <andreas@ladybird.org>
|
||
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include "InlineFormattingContext.h"
|
||
#include <AK/QuickSort.h>
|
||
#include <AK/StdLibExtras.h>
|
||
#include <LibWeb/Layout/BlockContainer.h>
|
||
#include <LibWeb/Layout/BlockFormattingContext.h>
|
||
#include <LibWeb/Layout/Box.h>
|
||
#include <LibWeb/Layout/FlexFormattingContext.h>
|
||
#include <LibWeb/Layout/ReplacedBox.h>
|
||
#include <LibWeb/Layout/TextNode.h>
|
||
#include <LibWeb/Layout/Viewport.h>
|
||
|
||
namespace Web::Layout {
|
||
|
||
CSSPixels FlexFormattingContext::get_pixel_width(Box const& box, CSS::Size const& size) const
|
||
{
|
||
return calculate_inner_width(box, m_available_space->width, size);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::get_pixel_height(Box const& box, CSS::Size const& size) const
|
||
{
|
||
return calculate_inner_height(box, m_available_space.value(), size);
|
||
}
|
||
|
||
FlexFormattingContext::FlexFormattingContext(LayoutState& state, LayoutMode layout_mode, Box const& flex_container, FormattingContext* parent)
|
||
: FormattingContext(Type::Flex, layout_mode, state, flex_container, parent)
|
||
, m_flex_container_state(m_state.get_mutable(flex_container))
|
||
, m_flex_direction(flex_container.computed_values().flex_direction())
|
||
{
|
||
}
|
||
|
||
FlexFormattingContext::~FlexFormattingContext() = default;
|
||
|
||
CSSPixels FlexFormattingContext::automatic_content_width() const
|
||
{
|
||
return m_flex_container_state.content_width();
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::automatic_content_height() const
|
||
{
|
||
return m_flex_container_state.content_height();
|
||
}
|
||
|
||
void FlexFormattingContext::run(AvailableSpace const& available_space)
|
||
{
|
||
// This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm
|
||
|
||
m_available_space = available_space;
|
||
|
||
// 1. Generate anonymous flex items
|
||
generate_anonymous_flex_items();
|
||
|
||
// 2. Determine the available main and cross space for the flex items
|
||
determine_available_space_for_items(available_space);
|
||
|
||
{
|
||
// https://drafts.csswg.org/css-flexbox-1/#definite-sizes
|
||
// 3. If a single-line flex container has a definite cross size,
|
||
// the automatic preferred outer cross size of any stretched flex items is the flex container’s inner cross size
|
||
// (clamped to the flex item’s min and max cross size) and is considered definite.
|
||
if (is_single_line() && has_definite_cross_size(m_flex_container_state)) {
|
||
auto flex_container_inner_cross_size = inner_cross_size(m_flex_container_state);
|
||
for (auto& item : m_flex_items) {
|
||
if (!flex_item_is_stretched(item))
|
||
continue;
|
||
auto item_min_cross_size = has_cross_min_size(item.box) ? specified_cross_min_size(item.box) : 0;
|
||
auto item_max_cross_size = has_cross_max_size(item.box) ? specified_cross_max_size(item.box) : CSSPixels::max();
|
||
auto item_preferred_outer_cross_size = css_clamp(flex_container_inner_cross_size, item_min_cross_size, item_max_cross_size);
|
||
auto item_inner_cross_size = item_preferred_outer_cross_size - item.margins.cross_before - item.margins.cross_after - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after;
|
||
set_cross_size(item.box, item_inner_cross_size);
|
||
set_has_definite_cross_size(item);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 3. Determine the flex base size and hypothetical main size of each item
|
||
for (auto& item : m_flex_items) {
|
||
if (item.box->is_replaced_box()) {
|
||
// FIXME: Get rid of prepare_for_replaced_layout() and make replaced elements figure out their intrinsic size lazily.
|
||
static_cast<ReplacedBox&>(*item.box).prepare_for_replaced_layout();
|
||
}
|
||
determine_flex_base_size_and_hypothetical_main_size(item);
|
||
}
|
||
|
||
if (available_space.width.is_intrinsic_sizing_constraint() || available_space.height.is_intrinsic_sizing_constraint()) {
|
||
// We're computing intrinsic size for the flex container. This happens at the end of run().
|
||
} else {
|
||
// 4. Determine the main size of the flex container
|
||
// Determine the main size of the flex container using the rules of the formatting context in which it participates.
|
||
// NOTE: The automatic block size of a block-level flex container is its max-content size.
|
||
|
||
// NOTE: We've already handled this in the parent formatting context.
|
||
// Specifically, all formatting contexts will have assigned width & height to the flex container
|
||
// before this formatting context runs.
|
||
}
|
||
|
||
// 5. Collect flex items into flex lines:
|
||
// After this step no additional items are to be added to flex_lines or any of its items!
|
||
collect_flex_items_into_flex_lines();
|
||
|
||
// 6. Resolve the flexible lengths
|
||
resolve_flexible_lengths();
|
||
|
||
// Cross Size Determination
|
||
// 7. Determine the hypothetical cross size of each item
|
||
for (auto& item : m_flex_items) {
|
||
determine_hypothetical_cross_size_of_item(item, false);
|
||
}
|
||
|
||
// 8. Calculate the cross size of each flex line.
|
||
calculate_cross_size_of_each_flex_line();
|
||
|
||
// 9. Handle 'align-content: stretch'.
|
||
handle_align_content_stretch();
|
||
|
||
// 10. Collapse visibility:collapse items.
|
||
// FIXME: This
|
||
|
||
// 11. Determine the used cross size of each flex item.
|
||
determine_used_cross_size_of_each_flex_item();
|
||
|
||
// 12. Distribute any remaining free space.
|
||
distribute_any_remaining_free_space();
|
||
|
||
// 13. Resolve cross-axis auto margins.
|
||
resolve_cross_axis_auto_margins();
|
||
|
||
// 14. Align all flex items along the cross-axis
|
||
align_all_flex_items_along_the_cross_axis();
|
||
|
||
// 15. Determine the flex container’s used cross size
|
||
// NOTE: This is handled by the parent formatting context.
|
||
|
||
{
|
||
// https://drafts.csswg.org/css-flexbox-1/#definite-sizes
|
||
// 4. Once the cross size of a flex line has been determined,
|
||
// the cross sizes of items in auto-sized flex containers are also considered definite for the purpose of layout.
|
||
auto const& flex_container_computed_cross_size = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width();
|
||
if (flex_container_computed_cross_size.is_auto()) {
|
||
for (auto& item : m_flex_items) {
|
||
set_cross_size(item.box, item.cross_size.value());
|
||
set_has_definite_cross_size(item);
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
// NOTE: We re-resolve cross sizes here, now that we can resolve percentages.
|
||
|
||
// 7. Determine the hypothetical cross size of each item
|
||
for (auto& item : m_flex_items) {
|
||
determine_hypothetical_cross_size_of_item(item, true);
|
||
}
|
||
|
||
// 11. Determine the used cross size of each flex item.
|
||
determine_used_cross_size_of_each_flex_item();
|
||
}
|
||
|
||
// 16. Align all flex lines (per align-content)
|
||
align_all_flex_lines();
|
||
|
||
if (available_space.width.is_intrinsic_sizing_constraint() || available_space.height.is_intrinsic_sizing_constraint()) {
|
||
// We're computing intrinsic size for the flex container.
|
||
determine_intrinsic_size_of_flex_container();
|
||
} else {
|
||
// This is a normal layout (not intrinsic sizing).
|
||
// AD-HOC: Finally, layout the inside of all flex items.
|
||
copy_dimensions_from_flex_items_to_boxes();
|
||
for (auto& item : m_flex_items) {
|
||
if (auto independent_formatting_context = layout_inside(item.box, LayoutMode::Normal, item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space)))
|
||
independent_formatting_context->parent_context_did_dimension_child_root_box();
|
||
|
||
compute_inset(item.box, content_box_rect(m_flex_container_state).size());
|
||
}
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::parent_context_did_dimension_child_root_box()
|
||
{
|
||
if (m_layout_mode != LayoutMode::Normal)
|
||
return;
|
||
|
||
flex_container().for_each_child_of_type<Box>([&](Layout::Box& box) {
|
||
if (box.is_absolutely_positioned()) {
|
||
m_state.get_mutable(box).set_static_position_rect(calculate_static_position_rect(box));
|
||
}
|
||
return IterationDecision::Continue;
|
||
});
|
||
|
||
for (auto& child : flex_container().contained_abspos_children()) {
|
||
auto& box = verify_cast<Box>(*child);
|
||
auto& cb_state = m_state.get(*box.containing_block());
|
||
auto available_width = AvailableSize::make_definite(cb_state.content_width() + cb_state.padding_left + cb_state.padding_right);
|
||
auto available_height = AvailableSize::make_definite(cb_state.content_height() + cb_state.padding_top + cb_state.padding_bottom);
|
||
layout_absolutely_positioned_element(box, AvailableSpace(available_width, available_height));
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#flex-direction-property
|
||
bool FlexFormattingContext::is_direction_reverse() const
|
||
{
|
||
switch (flex_container().computed_values().direction()) {
|
||
case CSS::Direction::Ltr:
|
||
return m_flex_direction == CSS::FlexDirection::ColumnReverse || m_flex_direction == CSS::FlexDirection::RowReverse;
|
||
case CSS::Direction::Rtl:
|
||
return m_flex_direction == CSS::FlexDirection::ColumnReverse || m_flex_direction == CSS::FlexDirection::Row;
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::populate_specified_margins(FlexItem& item, CSS::FlexDirection flex_direction) const
|
||
{
|
||
auto width_of_containing_block = m_flex_container_state.content_width();
|
||
|
||
auto& state = m_state.get_mutable(*item.box);
|
||
state.padding_left = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block);
|
||
state.padding_right = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block);
|
||
state.padding_top = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block);
|
||
state.padding_bottom = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block);
|
||
|
||
// FIXME: This should also take reverse-ness into account
|
||
if (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse) {
|
||
item.borders.main_before = item.box->computed_values().border_left().width;
|
||
item.borders.main_after = item.box->computed_values().border_right().width;
|
||
item.borders.cross_before = item.box->computed_values().border_top().width;
|
||
item.borders.cross_after = item.box->computed_values().border_bottom().width;
|
||
|
||
item.padding.main_before = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block);
|
||
item.padding.main_after = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block);
|
||
item.padding.cross_before = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block);
|
||
item.padding.cross_after = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block);
|
||
|
||
item.margins.main_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block);
|
||
item.margins.main_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block);
|
||
item.margins.cross_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block);
|
||
item.margins.cross_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block);
|
||
|
||
item.margins.main_before_is_auto = item.box->computed_values().margin().left().is_auto();
|
||
item.margins.main_after_is_auto = item.box->computed_values().margin().right().is_auto();
|
||
item.margins.cross_before_is_auto = item.box->computed_values().margin().top().is_auto();
|
||
item.margins.cross_after_is_auto = item.box->computed_values().margin().bottom().is_auto();
|
||
} else {
|
||
item.borders.main_before = item.box->computed_values().border_top().width;
|
||
item.borders.main_after = item.box->computed_values().border_bottom().width;
|
||
item.borders.cross_before = item.box->computed_values().border_left().width;
|
||
item.borders.cross_after = item.box->computed_values().border_right().width;
|
||
|
||
item.padding.main_before = state.padding_top;
|
||
item.padding.main_after = state.padding_bottom;
|
||
item.padding.cross_before = state.padding_left;
|
||
item.padding.cross_after = state.padding_right;
|
||
|
||
item.margins.main_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block);
|
||
item.margins.main_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block);
|
||
item.margins.cross_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block);
|
||
item.margins.cross_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block);
|
||
|
||
item.margins.main_before_is_auto = item.box->computed_values().margin().top().is_auto();
|
||
item.margins.main_after_is_auto = item.box->computed_values().margin().bottom().is_auto();
|
||
item.margins.cross_before_is_auto = item.box->computed_values().margin().left().is_auto();
|
||
item.margins.cross_after_is_auto = item.box->computed_values().margin().right().is_auto();
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#flex-items
|
||
void FlexFormattingContext::generate_anonymous_flex_items()
|
||
{
|
||
// More like, sift through the already generated items.
|
||
// After this step no items are to be added or removed from flex_items!
|
||
// It holds every item we need to consider and there should be nothing in the following
|
||
// calculations that could change that.
|
||
// This is particularly important since we take references to the items stored in flex_items
|
||
// later, whose addresses won't be stable if we added or removed any items.
|
||
HashMap<int, Vector<FlexItem>> order_item_bucket;
|
||
|
||
flex_container().for_each_child_of_type<Box>([&](Box& child_box) {
|
||
if (can_skip_is_anonymous_text_run(child_box))
|
||
return IterationDecision::Continue;
|
||
|
||
// Skip any "out-of-flow" children
|
||
if (child_box.is_out_of_flow(*this))
|
||
return IterationDecision::Continue;
|
||
|
||
child_box.set_flex_item(true);
|
||
FlexItem item = { child_box, m_state.get_mutable(child_box) };
|
||
populate_specified_margins(item, m_flex_direction);
|
||
|
||
auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order());
|
||
order_bucket.append(move(item));
|
||
|
||
return IterationDecision::Continue;
|
||
});
|
||
|
||
auto keys = order_item_bucket.keys();
|
||
|
||
if (is_direction_reverse()) {
|
||
quick_sort(keys, [](auto& a, auto& b) { return a > b; });
|
||
} else {
|
||
quick_sort(keys, [](auto& a, auto& b) { return a < b; });
|
||
}
|
||
|
||
for (auto key : keys) {
|
||
auto order_bucket = order_item_bucket.get(key);
|
||
if (order_bucket.has_value()) {
|
||
auto& items = order_bucket.value();
|
||
for (auto item : items) {
|
||
m_flex_items.append(move(item));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bool FlexFormattingContext::has_definite_main_size(LayoutState::UsedValues const& used_values) const
|
||
{
|
||
return is_row_layout() ? used_values.has_definite_width() : used_values.has_definite_height();
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::inner_main_size(LayoutState::UsedValues const& used_values) const
|
||
{
|
||
return is_row_layout() ? used_values.content_width() : used_values.content_height();
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::inner_cross_size(LayoutState::UsedValues const& used_values) const
|
||
{
|
||
return is_row_layout() ? used_values.content_height() : used_values.content_width();
|
||
}
|
||
|
||
bool FlexFormattingContext::has_main_min_size(Box const& box) const
|
||
{
|
||
auto const& value = is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
|
||
return !value.is_auto();
|
||
}
|
||
|
||
bool FlexFormattingContext::has_cross_min_size(Box const& box) const
|
||
{
|
||
auto const& value = is_row_layout() ? box.computed_values().min_height() : box.computed_values().min_width();
|
||
return !value.is_auto();
|
||
}
|
||
|
||
bool FlexFormattingContext::has_definite_cross_size(LayoutState::UsedValues const& used_values) const
|
||
{
|
||
return is_row_layout() ? used_values.has_definite_height() : used_values.has_definite_width();
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::specified_main_min_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_width(box, box.computed_values().min_width())
|
||
: get_pixel_height(box, box.computed_values().min_height());
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::specified_cross_min_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_height(box, box.computed_values().min_height())
|
||
: get_pixel_width(box, box.computed_values().min_width());
|
||
}
|
||
|
||
bool FlexFormattingContext::has_main_max_size(Box const& box) const
|
||
{
|
||
return !should_treat_main_max_size_as_none(box);
|
||
}
|
||
|
||
bool FlexFormattingContext::has_cross_max_size(Box const& box) const
|
||
{
|
||
return !should_treat_cross_max_size_as_none(box);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::specified_main_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_width(box, box.computed_values().max_width())
|
||
: get_pixel_height(box, box.computed_values().max_height());
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::specified_cross_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_height(box, box.computed_values().max_height())
|
||
: get_pixel_width(box, box.computed_values().max_width());
|
||
}
|
||
|
||
bool FlexFormattingContext::is_cross_auto(Box const& box) const
|
||
{
|
||
auto& cross_length = is_row_layout() ? box.computed_values().height() : box.computed_values().width();
|
||
return cross_length.is_auto();
|
||
}
|
||
|
||
void FlexFormattingContext::set_has_definite_main_size(FlexItem& item)
|
||
{
|
||
if (is_row_layout())
|
||
item.used_values.set_has_definite_width(true);
|
||
else
|
||
item.used_values.set_has_definite_height(true);
|
||
}
|
||
|
||
void FlexFormattingContext::set_has_definite_cross_size(FlexItem& item)
|
||
{
|
||
if (is_row_layout())
|
||
item.used_values.set_has_definite_height(true);
|
||
else
|
||
item.used_values.set_has_definite_width(true);
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_size(Box const& box, CSSPixels size)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).set_content_width(size);
|
||
else
|
||
m_state.get_mutable(box).set_content_height(size);
|
||
}
|
||
|
||
void FlexFormattingContext::set_cross_size(Box const& box, CSSPixels size)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).set_content_height(size);
|
||
else
|
||
m_state.get_mutable(box).set_content_width(size);
|
||
}
|
||
|
||
void FlexFormattingContext::set_offset(Box const& box, CSSPixels main_offset, CSSPixels cross_offset)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).offset = CSSPixelPoint { main_offset, cross_offset };
|
||
else
|
||
m_state.get_mutable(box).offset = CSSPixelPoint { cross_offset, main_offset };
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_axis_first_margin(FlexItem& item, CSSPixels margin)
|
||
{
|
||
item.margins.main_before = margin;
|
||
if (is_row_layout())
|
||
m_state.get_mutable(item.box).margin_left = margin;
|
||
else
|
||
m_state.get_mutable(item.box).margin_top = margin;
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_axis_second_margin(FlexItem& item, CSSPixels margin)
|
||
{
|
||
item.margins.main_after = margin;
|
||
if (is_row_layout())
|
||
m_state.get_mutable(item.box).margin_right = margin;
|
||
else
|
||
m_state.get_mutable(item.box).margin_bottom = margin;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#algo-available
|
||
void FlexFormattingContext::determine_available_space_for_items(AvailableSpace const& available_space)
|
||
{
|
||
if (is_row_layout()) {
|
||
m_available_space_for_items = AxisAgnosticAvailableSpace {
|
||
.main = available_space.width,
|
||
.cross = available_space.height,
|
||
.space = { available_space.width, available_space.height },
|
||
};
|
||
} else {
|
||
m_available_space_for_items = AxisAgnosticAvailableSpace {
|
||
.main = available_space.height,
|
||
.cross = available_space.width,
|
||
.space = { available_space.width, available_space.height },
|
||
};
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#propdef-flex-basis
|
||
CSS::FlexBasis FlexFormattingContext::used_flex_basis_for_item(FlexItem const& item) const
|
||
{
|
||
auto flex_basis = item.box->computed_values().flex_basis();
|
||
|
||
if (flex_basis.has<CSS::Size>() && flex_basis.get<CSS::Size>().is_auto()) {
|
||
// https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
|
||
// When specified on a flex item, the auto keyword retrieves the value of the main size property as the used flex-basis.
|
||
// If that value is itself auto, then the used value is content.
|
||
auto const& main_size = is_row_layout() ? item.box->computed_values().width() : item.box->computed_values().height();
|
||
|
||
if (main_size.is_auto()) {
|
||
flex_basis = CSS::FlexBasisContent {};
|
||
} else {
|
||
flex_basis = main_size;
|
||
}
|
||
}
|
||
|
||
// For example, percentage values of flex-basis are resolved against the flex item’s containing block
|
||
// (i.e. its flex container); and if that containing block’s size is indefinite,
|
||
// the used value for flex-basis is content.
|
||
if (flex_basis.has<CSS::Size>()
|
||
&& flex_basis.get<CSS::Size>().is_percentage()
|
||
&& !has_definite_main_size(m_flex_container_state)) {
|
||
flex_basis = CSS::FlexBasisContent {};
|
||
}
|
||
|
||
return flex_basis;
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_main_size_from_cross_size_and_aspect_ratio(CSSPixels cross_size, CSSPixelFraction aspect_ratio) const
|
||
{
|
||
if (is_row_layout())
|
||
return cross_size * aspect_ratio;
|
||
return cross_size / aspect_ratio;
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_cross_size_from_main_size_and_aspect_ratio(CSSPixels main_size, CSSPixelFraction aspect_ratio) const
|
||
{
|
||
if (is_row_layout())
|
||
return main_size / aspect_ratio;
|
||
return main_size * aspect_ratio;
|
||
}
|
||
|
||
// This function takes a size in the main axis and adjusts it according to the aspect ratio of the box
|
||
// if the min/max constraints in the cross axis forces us to come up with a new main axis size.
|
||
CSSPixels FlexFormattingContext::adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(Box const& box, CSSPixels main_size, CSS::Size const& min_cross_size, CSS::Size const& max_cross_size) const
|
||
{
|
||
if (!should_treat_cross_max_size_as_none(box)) {
|
||
auto max_cross_size_px = max_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
|
||
main_size = min(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(max_cross_size_px, box.preferred_aspect_ratio().value()));
|
||
}
|
||
|
||
if (!min_cross_size.is_auto()) {
|
||
auto min_cross_size_px = min_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
|
||
main_size = max(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(min_cross_size_px, box.preferred_aspect_ratio().value()));
|
||
}
|
||
|
||
return main_size;
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::adjust_cross_size_through_aspect_ratio_for_main_size_min_max_constraints(Box const& box, CSSPixels cross_size, CSS::Size const& min_main_size, CSS::Size const& max_main_size) const
|
||
{
|
||
if (!should_treat_main_max_size_as_none(box)) {
|
||
auto max_main_size_px = max_main_size.to_px(box, is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
|
||
cross_size = min(cross_size, calculate_cross_size_from_main_size_and_aspect_ratio(max_main_size_px, box.preferred_aspect_ratio().value()));
|
||
}
|
||
|
||
if (!min_main_size.is_auto()) {
|
||
auto min_main_size_px = min_main_size.to_px(box, is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
|
||
cross_size = max(cross_size, calculate_cross_size_from_main_size_and_aspect_ratio(min_main_size_px, box.preferred_aspect_ratio().value()));
|
||
}
|
||
|
||
return cross_size;
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-main-item
|
||
void FlexFormattingContext::determine_flex_base_size_and_hypothetical_main_size(FlexItem& item)
|
||
{
|
||
auto& child_box = item.box;
|
||
|
||
item.flex_base_size = [&] {
|
||
item.used_flex_basis = used_flex_basis_for_item(item);
|
||
|
||
item.used_flex_basis_is_definite = [&](CSS::FlexBasis const& flex_basis) -> bool {
|
||
if (!flex_basis.has<CSS::Size>())
|
||
return false;
|
||
auto const& size = flex_basis.get<CSS::Size>();
|
||
if (size.is_auto() || size.is_min_content() || size.is_max_content() || size.is_fit_content())
|
||
return false;
|
||
if (size.is_length())
|
||
return true;
|
||
|
||
bool can_resolve_percentages = is_row_layout()
|
||
? m_flex_container_state.has_definite_width()
|
||
: m_flex_container_state.has_definite_height();
|
||
|
||
if (size.is_calculated()) {
|
||
auto const& calc_value = size.calculated();
|
||
if (calc_value.resolves_to_percentage())
|
||
return can_resolve_percentages;
|
||
if (calc_value.resolves_to_length()) {
|
||
if (calc_value.contains_percentage())
|
||
return can_resolve_percentages;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
VERIFY(size.is_percentage());
|
||
return can_resolve_percentages;
|
||
}(*item.used_flex_basis);
|
||
|
||
// A. If the item has a definite used flex basis, that’s the flex base size.
|
||
if (item.used_flex_basis_is_definite) {
|
||
auto const& size = item.used_flex_basis->get<CSS::Size>();
|
||
if (is_row_layout())
|
||
return get_pixel_width(child_box, size);
|
||
return get_pixel_height(child_box, size);
|
||
}
|
||
|
||
// AD-HOC: If we're sizing the flex container under a min-content constraint in the main axis,
|
||
// flex items resolve percentages in the main axis to 0.
|
||
if (m_available_space_for_items->main.is_min_content()
|
||
&& computed_main_size(item.box).contains_percentage()) {
|
||
return CSSPixels(0);
|
||
}
|
||
|
||
// B. If the flex item has ...
|
||
// - an intrinsic aspect ratio,
|
||
// - a used flex basis of content, and
|
||
// - a definite cross size,
|
||
if (item.box->has_preferred_aspect_ratio()
|
||
&& item.used_flex_basis->has<CSS::FlexBasisContent>()
|
||
&& has_definite_cross_size(item)) {
|
||
// flex_base_size is calculated from definite cross size and intrinsic aspect ratio
|
||
return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(
|
||
item.box,
|
||
calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item), item.box->preferred_aspect_ratio().value()),
|
||
computed_cross_min_size(item.box),
|
||
computed_cross_max_size(item.box));
|
||
}
|
||
|
||
// C. If the used flex basis is content or depends on its available space,
|
||
// and the flex container is being sized under a min-content or max-content constraint
|
||
// (e.g. when performing automatic table layout [CSS21]), size the item under that constraint.
|
||
// The flex base size is the item’s resulting main size.
|
||
if (item.used_flex_basis->has<CSS::FlexBasisContent>() && m_available_space_for_items->main.is_intrinsic_sizing_constraint()) {
|
||
if (m_available_space_for_items->main.is_min_content())
|
||
return calculate_min_content_main_size(item);
|
||
return calculate_max_content_main_size(item);
|
||
}
|
||
|
||
// D. Otherwise, if the used flex basis is content or depends on its available space,
|
||
// the available main size is infinite, and the flex item’s inline axis is parallel to the main axis,
|
||
// lay the item out using the rules for a box in an orthogonal flow [CSS3-WRITING-MODES].
|
||
// The flex base size is the item’s max-content main size.
|
||
if (item.used_flex_basis->has<CSS::FlexBasisContent>()
|
||
// FIXME: && main_size is infinite && inline axis is parallel to the main axis
|
||
&& false && false) {
|
||
TODO();
|
||
// Use rules for a flex_container in orthogonal flow
|
||
}
|
||
|
||
// E. Otherwise, size the item into the available space using its used flex basis in place of its main size,
|
||
// treating a value of content as max-content. If a cross size is needed to determine the main size
|
||
// (e.g. when the flex item’s main size is in its block axis) and the flex item’s cross size is auto and not definite,
|
||
// in this calculation use fit-content as the flex item’s cross size.
|
||
// The flex base size is the item’s resulting main size.
|
||
|
||
if (auto* size = item.used_flex_basis->get_pointer<CSS::Size>()) {
|
||
if (size->is_fit_content())
|
||
return calculate_fit_content_main_size(item);
|
||
if (size->is_max_content())
|
||
return calculate_max_content_main_size(item);
|
||
if (size->is_min_content())
|
||
return calculate_min_content_main_size(item);
|
||
}
|
||
|
||
// NOTE: If the flex item has a definite main size, just use that as the flex base size.
|
||
if (has_definite_main_size(item))
|
||
return inner_main_size(item);
|
||
|
||
// NOTE: There's a fundamental problem with many CSS specifications in that they neglect to mention
|
||
// which width to provide when calculating the intrinsic height of a box in various situations.
|
||
// Spec bug: https://github.com/w3c/csswg-drafts/issues/2890
|
||
|
||
// NOTE: This is one of many situations where that causes trouble: if this is a flex column layout,
|
||
// we may need to calculate the intrinsic height of a flex item. This requires a width, but a
|
||
// width won't be determined until later on in the flex layout algorithm.
|
||
// In the specific case above (E), the spec mentions using `fit-content` in place of `auto`
|
||
// if "a cross size is needed to determine the main size", so that's exactly what we do.
|
||
|
||
// NOTE: Finding a suitable width for intrinsic height determination actually happens elsewhere,
|
||
// in the various helpers that calculate the intrinsic sizes of a flex item,
|
||
// e.g. calculate_min_content_main_size().
|
||
|
||
if (item.used_flex_basis->has<CSS::FlexBasisContent>())
|
||
return calculate_max_content_main_size(item);
|
||
|
||
return calculate_fit_content_main_size(item);
|
||
}();
|
||
|
||
// AD-HOC: This is not mentioned in the spec, but if the item has an aspect ratio, we may need
|
||
// to adjust the main size in these ways:
|
||
// - using stretch-fit main size if the flex basis is indefinite, there is no
|
||
// intrinsic size and no cross size to resolve the ratio against.
|
||
// - in response to cross size min/max constraints.
|
||
if (item.box->has_natural_aspect_ratio()) {
|
||
if (!item.used_flex_basis_is_definite && !item.box->has_natural_width() && !item.box->has_natural_height() && !has_definite_cross_size(item)) {
|
||
item.flex_base_size = inner_main_size(m_flex_container_state);
|
||
}
|
||
item.flex_base_size = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(child_box, item.flex_base_size, computed_cross_min_size(child_box), computed_cross_max_size(child_box));
|
||
}
|
||
|
||
// The hypothetical main size is the item’s flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero).
|
||
auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : automatic_minimum_size(item);
|
||
auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : CSSPixels::max();
|
||
item.hypothetical_main_size = max(CSSPixels(0), css_clamp(item.flex_base_size, clamp_min, clamp_max));
|
||
|
||
// NOTE: At this point, we set the hypothetical main size as the flex item's *temporary* main size.
|
||
// The size may change again when we resolve flexible lengths, but this is necessary in order for
|
||
// descendants of this flex item to resolve percentage sizes against something.
|
||
//
|
||
// The spec just barely hand-waves about this, but it seems to *roughly* match what other engines do.
|
||
// See "Note" section here: https://drafts.csswg.org/css-flexbox-1/#definite-sizes
|
||
if (is_row_layout())
|
||
item.used_values.set_temporary_content_width(item.hypothetical_main_size);
|
||
else
|
||
item.used_values.set_temporary_content_height(item.hypothetical_main_size);
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#min-size-auto
|
||
CSSPixels FlexFormattingContext::automatic_minimum_size(FlexItem const& item) const
|
||
{
|
||
// To provide a more reasonable default minimum size for flex items,
|
||
// the used value of a main axis automatic minimum size on a flex item that is not a scroll container is its content-based minimum size;
|
||
// for scroll containers the automatic minimum size is zero, as usual.
|
||
if (!item.box->is_scroll_container())
|
||
return content_based_minimum_size(item);
|
||
return 0;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#specified-size-suggestion
|
||
Optional<CSSPixels> FlexFormattingContext::specified_size_suggestion(FlexItem const& item) const
|
||
{
|
||
// If the item’s preferred main size is definite and not automatic,
|
||
// then the specified size suggestion is that size. It is otherwise undefined.
|
||
if (has_definite_main_size(item) && !should_treat_main_size_as_auto(item.box)) {
|
||
// NOTE: We use get_pixel_{width,height} to ensure that CSS box-sizing is respected.
|
||
return is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
|
||
}
|
||
return {};
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
|
||
CSSPixels FlexFormattingContext::content_size_suggestion(FlexItem const& item) const
|
||
{
|
||
auto suggestion = calculate_min_content_main_size(item);
|
||
|
||
if (item.box->has_preferred_aspect_ratio()) {
|
||
suggestion = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(item.box, suggestion, computed_cross_min_size(item.box), computed_cross_max_size(item.box));
|
||
}
|
||
|
||
return suggestion;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#transferred-size-suggestion
|
||
Optional<CSSPixels> FlexFormattingContext::transferred_size_suggestion(FlexItem const& item) const
|
||
{
|
||
// If the item has a preferred aspect ratio and its preferred cross size is definite,
|
||
// then the transferred size suggestion is that size
|
||
// (clamped by its minimum and maximum cross sizes if they are definite), converted through the aspect ratio.
|
||
if (item.box->has_preferred_aspect_ratio() && has_definite_cross_size(item)) {
|
||
auto aspect_ratio = item.box->preferred_aspect_ratio().value();
|
||
return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(
|
||
item.box,
|
||
calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item), aspect_ratio),
|
||
computed_cross_min_size(item.box),
|
||
computed_cross_max_size(item.box));
|
||
}
|
||
|
||
// It is otherwise undefined.
|
||
return {};
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#content-based-minimum-size
|
||
CSSPixels FlexFormattingContext::content_based_minimum_size(FlexItem const& item) const
|
||
{
|
||
auto unclamped_size = [&] {
|
||
// The content-based minimum size of a flex item is the smaller of its specified size suggestion
|
||
// and its content size suggestion if its specified size suggestion exists;
|
||
if (auto specified_size_suggestion = this->specified_size_suggestion(item); specified_size_suggestion.has_value()) {
|
||
return min(specified_size_suggestion.value(), content_size_suggestion(item));
|
||
}
|
||
|
||
// otherwise, the smaller of its transferred size suggestion and its content size suggestion
|
||
// if the element is replaced and its transferred size suggestion exists;
|
||
if (item.box->is_replaced_box()) {
|
||
if (auto transferred_size_suggestion = this->transferred_size_suggestion(item); transferred_size_suggestion.has_value()) {
|
||
return min(transferred_size_suggestion.value(), content_size_suggestion(item));
|
||
}
|
||
}
|
||
|
||
// otherwise its content size suggestion.
|
||
return content_size_suggestion(item);
|
||
}();
|
||
|
||
// In all cases, the size is clamped by the maximum main size if it’s definite.
|
||
if (has_main_max_size(item.box)) {
|
||
return min(unclamped_size, specified_main_max_size(item.box));
|
||
}
|
||
return unclamped_size;
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-line-break
|
||
void FlexFormattingContext::collect_flex_items_into_flex_lines()
|
||
{
|
||
// If the flex container is single-line, collect all the flex items into a single flex line.
|
||
if (is_single_line()) {
|
||
FlexLine line;
|
||
for (auto& item : m_flex_items) {
|
||
if (is_direction_reverse()) {
|
||
line.items.prepend(item);
|
||
} else {
|
||
line.items.append(item);
|
||
}
|
||
}
|
||
m_flex_lines.append(move(line));
|
||
return;
|
||
}
|
||
|
||
// Otherwise, starting from the first uncollected item, collect consecutive items one by one
|
||
// until the first time that the next collected item would not fit into the flex container’s inner main size
|
||
// (or until a forced break is encountered, see §10 Fragmenting Flex Layout).
|
||
// If the very first uncollected item wouldn't fit, collect just it into the line.
|
||
|
||
// For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.)
|
||
|
||
// Repeat until all flex items have been collected into flex lines.
|
||
|
||
FlexLine line;
|
||
CSSPixels line_main_size = 0;
|
||
for (auto& item : m_flex_items) {
|
||
auto const outer_hypothetical_main_size = item.outer_hypothetical_main_size();
|
||
if (!line.items.is_empty() && (line_main_size + outer_hypothetical_main_size) > m_available_space_for_items->main) {
|
||
m_flex_lines.append(move(line));
|
||
line = {};
|
||
line_main_size = 0;
|
||
}
|
||
|
||
if (is_direction_reverse()) {
|
||
line.items.prepend(item);
|
||
} else {
|
||
line.items.append(item);
|
||
}
|
||
|
||
line_main_size += outer_hypothetical_main_size;
|
||
// CSS-FLEXBOX-2: Account for gap between flex items.
|
||
line_main_size += main_gap();
|
||
}
|
||
m_flex_lines.append(move(line));
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
|
||
void FlexFormattingContext::resolve_flexible_lengths_for_line(FlexLine& line)
|
||
{
|
||
// AD-HOC: The spec tells us to use the "flex container’s inner main size" in this algorithm,
|
||
// but that doesn't work when we're sizing under a max-content constraint.
|
||
// In that case, there is effectively infinite size available in the main axis,
|
||
// but the inner main size has not been assigned yet.
|
||
// We solve this by calculating our own "available main size" here, which is essentially
|
||
// infinity under max-content, 0 under min-content, and the inner main size otherwise.
|
||
AvailableSize available_main_size { AvailableSize::make_indefinite() };
|
||
if (m_available_space_for_items->main.is_intrinsic_sizing_constraint())
|
||
available_main_size = m_available_space_for_items->main;
|
||
else
|
||
available_main_size = AvailableSize::make_definite(inner_main_size(m_flex_container_state));
|
||
|
||
// 1. Determine the used flex factor.
|
||
|
||
// Sum the outer hypothetical main sizes of all items on the line.
|
||
// If the sum is less than the flex container’s inner main size,
|
||
// use the flex grow factor for the rest of this algorithm; otherwise, use the flex shrink factor
|
||
enum FlexFactor {
|
||
FlexGrowFactor,
|
||
FlexShrinkFactor
|
||
};
|
||
auto used_flex_factor = [&]() -> FlexFactor {
|
||
CSSPixels sum = 0;
|
||
for (auto const& item : line.items) {
|
||
sum += item.outer_hypothetical_main_size();
|
||
}
|
||
// CSS-FLEXBOX-2: Account for gap between flex items.
|
||
sum += main_gap() * (line.items.size() - 1);
|
||
// AD-HOC: Note that we're using our own "available main size" explained above
|
||
// instead of the flex container’s inner main size.
|
||
if (sum < available_main_size)
|
||
return FlexFactor::FlexGrowFactor;
|
||
return FlexFactor::FlexShrinkFactor;
|
||
}();
|
||
|
||
// 2. Each item in the flex line has a target main size, initially set to its flex base size.
|
||
// Each item is initially unfrozen and may become frozen.
|
||
for (auto& item : line.items) {
|
||
item.target_main_size = item.flex_base_size;
|
||
item.frozen = false;
|
||
}
|
||
|
||
// 3. Size inflexible items.
|
||
|
||
for (FlexItem& item : line.items) {
|
||
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
|
||
item.flex_factor = item.box->computed_values().flex_grow();
|
||
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
|
||
item.flex_factor = item.box->computed_values().flex_shrink();
|
||
}
|
||
// Freeze, setting its target main size to its hypothetical main size…
|
||
// - any item that has a flex factor of zero
|
||
// - if using the flex grow factor: any item that has a flex base size greater than its hypothetical main size
|
||
// - if using the flex shrink factor: any item that has a flex base size smaller than its hypothetical main size
|
||
if (item.flex_factor.value() == 0
|
||
|| (used_flex_factor == FlexFactor::FlexGrowFactor && item.flex_base_size > item.hypothetical_main_size)
|
||
|| (used_flex_factor == FlexFactor::FlexShrinkFactor && item.flex_base_size < item.hypothetical_main_size)) {
|
||
item.frozen = true;
|
||
item.target_main_size = item.hypothetical_main_size;
|
||
}
|
||
}
|
||
|
||
// 4. Calculate initial free space
|
||
|
||
// Sum the outer sizes of all items on the line, and subtract this from the flex container’s inner main size.
|
||
// For frozen items, use their outer target main size; for other items, use their outer flex base size.
|
||
auto calculate_remaining_free_space = [&]() -> Optional<CSSPixels> {
|
||
// AD-HOC: If the container is sized under max-content constraints, then remaining_free_space won't have
|
||
// a value to avoid leaking an infinite value into layout calculations.
|
||
if (available_main_size.is_intrinsic_sizing_constraint())
|
||
return {};
|
||
CSSPixels sum = 0;
|
||
for (auto const& item : line.items) {
|
||
if (item.frozen)
|
||
sum += item.outer_target_main_size();
|
||
else
|
||
sum += item.outer_flex_base_size();
|
||
}
|
||
// CSS-FLEXBOX-2: Account for gap between flex items.
|
||
sum += main_gap() * (line.items.size() - 1);
|
||
|
||
// AD-HOC: Note that we're using our own "available main size" explained above
|
||
// instead of the flex container’s inner main size.
|
||
return available_main_size.to_px_or_zero() - sum;
|
||
};
|
||
auto const initial_free_space = calculate_remaining_free_space();
|
||
|
||
// 5. Loop
|
||
while (true) {
|
||
// a. Check for flexible items.
|
||
// If all the flex items on the line are frozen, free space has been distributed; exit this loop.
|
||
if (all_of(line.items, [](auto const& item) { return item.frozen; })) {
|
||
break;
|
||
}
|
||
|
||
// b. Calculate the remaining free space as for initial free space, above.
|
||
line.remaining_free_space = calculate_remaining_free_space();
|
||
|
||
// If the sum of the unfrozen flex items’ flex factors is less than one, multiply the initial free space by this sum.
|
||
if (auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items(); sum_of_flex_factor_of_unfrozen_items < 1 && initial_free_space.has_value()) {
|
||
auto value = CSSPixels::nearest_value_for(initial_free_space.value() * sum_of_flex_factor_of_unfrozen_items);
|
||
// If the magnitude of this value is less than the magnitude of the remaining free space, use this as the remaining free space.
|
||
if (abs(value) < abs(line.remaining_free_space.value()))
|
||
line.remaining_free_space = value;
|
||
}
|
||
|
||
// AD-HOC: We allow the remaining free space to be infinite, but we can't let infinity
|
||
// leak into the layout geometry, so we treat infinity as zero when used in arithmetic.
|
||
auto remaining_free_space_or_zero_if_infinite = line.remaining_free_space.has_value() ? line.remaining_free_space.value() : 0;
|
||
|
||
// c. If the remaining free space is non-zero, distribute it proportional to the flex factors:
|
||
if (line.remaining_free_space != 0) {
|
||
// If using the flex grow factor
|
||
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
|
||
// For every unfrozen item on the line,
|
||
// find the ratio of the item’s flex grow factor to the sum of the flex grow factors of all unfrozen items on the line.
|
||
auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items();
|
||
for (auto& item : line.items) {
|
||
if (item.frozen)
|
||
continue;
|
||
double ratio = item.flex_factor.value() / sum_of_flex_factor_of_unfrozen_items;
|
||
// Set the item’s target main size to its flex base size plus a fraction of the remaining free space proportional to the ratio.
|
||
item.target_main_size = item.flex_base_size + remaining_free_space_or_zero_if_infinite.scaled(ratio);
|
||
}
|
||
}
|
||
// If using the flex shrink factor
|
||
else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
|
||
// For every unfrozen item on the line, multiply its flex shrink factor by its inner flex base size, and note this as its scaled flex shrink factor.
|
||
for (auto& item : line.items) {
|
||
if (item.frozen)
|
||
continue;
|
||
item.scaled_flex_shrink_factor = item.flex_factor.value() * item.flex_base_size.to_double();
|
||
}
|
||
auto sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line = line.sum_of_scaled_flex_shrink_factor_of_unfrozen_items();
|
||
for (auto& item : line.items) {
|
||
if (item.frozen)
|
||
continue;
|
||
// Find the ratio of the item’s scaled flex shrink factor to the sum of the scaled flex shrink factors of all unfrozen items on the line.
|
||
double ratio = 1.0;
|
||
if (sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line != 0)
|
||
ratio = item.scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line;
|
||
|
||
// Set the item’s target main size to its flex base size minus a fraction of the absolute value of the remaining free space proportional to the ratio.
|
||
// (Note this may result in a negative inner main size; it will be corrected in the next step.)
|
||
item.target_main_size = item.flex_base_size - abs(remaining_free_space_or_zero_if_infinite).scaled(ratio);
|
||
}
|
||
}
|
||
}
|
||
|
||
// d. Fix min/max violations.
|
||
CSSPixels total_violation = 0;
|
||
|
||
// Clamp each non-frozen item’s target main size by its used min and max main sizes and floor its content-box size at zero.
|
||
for (auto& item : line.items) {
|
||
if (item.frozen)
|
||
continue;
|
||
auto used_min_main_size = has_main_min_size(item.box)
|
||
? specified_main_min_size(item.box)
|
||
: automatic_minimum_size(item);
|
||
|
||
auto used_max_main_size = has_main_max_size(item.box)
|
||
? specified_main_max_size(item.box)
|
||
: CSSPixels::max();
|
||
|
||
auto original_target_main_size = item.target_main_size;
|
||
item.target_main_size = css_clamp(item.target_main_size, used_min_main_size, used_max_main_size);
|
||
item.target_main_size = max(item.target_main_size, CSSPixels(0));
|
||
|
||
// If the item’s target main size was made smaller by this, it’s a max violation.
|
||
if (item.target_main_size < original_target_main_size)
|
||
item.is_max_violation = true;
|
||
|
||
// If the item’s target main size was made larger by this, it’s a min violation.
|
||
if (item.target_main_size > original_target_main_size)
|
||
item.is_min_violation = true;
|
||
|
||
total_violation += item.target_main_size - original_target_main_size;
|
||
}
|
||
|
||
// e. Freeze over-flexed items.
|
||
// The total violation is the sum of the adjustments from the previous step ∑(clamped size - unclamped size).
|
||
|
||
// If the total violation is:
|
||
// Zero
|
||
// Freeze all items.
|
||
if (total_violation == 0) {
|
||
for (auto& item : line.items) {
|
||
if (!item.frozen)
|
||
item.frozen = true;
|
||
}
|
||
}
|
||
// Positive
|
||
// Freeze all the items with min violations.
|
||
else if (total_violation > 0) {
|
||
for (auto& item : line.items) {
|
||
if (!item.frozen && item.is_min_violation)
|
||
item.frozen = true;
|
||
}
|
||
}
|
||
// Negative
|
||
// Freeze all the items with max violations.
|
||
else {
|
||
for (auto& item : line.items) {
|
||
if (!item.frozen && item.is_max_violation)
|
||
item.frozen = true;
|
||
}
|
||
}
|
||
// NOTE: This freezes at least one item, ensuring that the loop makes progress and eventually terminates.
|
||
|
||
// f. Return to the start of this loop.
|
||
}
|
||
|
||
// NOTE: Calculate the remaining free space once again here, since it's needed later when aligning items.
|
||
line.remaining_free_space = calculate_remaining_free_space();
|
||
|
||
// 6. Set each item’s used main size to its target main size.
|
||
for (auto& item : line.items) {
|
||
item.main_size = item.target_main_size;
|
||
set_main_size(item.box, item.target_main_size);
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#definite-sizes
|
||
// 1. If the flex container has a definite main size, then the post-flexing main sizes of its flex items are treated as definite.
|
||
// 2. If a flex item’s flex basis is definite, then its post-flexing main size is also definite.
|
||
if (has_definite_main_size(m_flex_container_state) || item.used_flex_basis_is_definite)
|
||
set_has_definite_main_size(item);
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
|
||
void FlexFormattingContext::resolve_flexible_lengths()
|
||
{
|
||
for (auto& line : m_flex_lines) {
|
||
resolve_flexible_lengths_for_line(line);
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#hypothetical-cross-size
|
||
void FlexFormattingContext::determine_hypothetical_cross_size_of_item(FlexItem& item, bool resolve_percentage_min_max_sizes)
|
||
{
|
||
// Determine the hypothetical cross size of each item by performing layout
|
||
// as if it were an in-flow block-level box with the used main size
|
||
// and the given available space, treating auto as fit-content.
|
||
|
||
auto const& computed_min_size = this->computed_cross_min_size(item.box);
|
||
auto const& computed_max_size = this->computed_cross_max_size(item.box);
|
||
|
||
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
|
||
auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max();
|
||
|
||
// If we have a definite cross size, this is easy! No need to perform layout, we can just use it as-is.
|
||
if (has_definite_cross_size(item)) {
|
||
// To avoid subtracting padding and border twice for `box-sizing: border-box` only min and max clamp should happen on a second pass
|
||
if (resolve_percentage_min_max_sizes) {
|
||
item.hypothetical_cross_size = css_clamp(item.hypothetical_cross_size, clamp_min, clamp_max);
|
||
return;
|
||
}
|
||
|
||
item.hypothetical_cross_size = css_clamp(inner_cross_size(item), clamp_min, clamp_max);
|
||
return;
|
||
}
|
||
|
||
if (item.box->has_preferred_aspect_ratio()) {
|
||
if (item.used_flex_basis_is_definite) {
|
||
item.hypothetical_cross_size = calculate_cross_size_from_main_size_and_aspect_ratio(item.main_size.value(), item.box->preferred_aspect_ratio().value());
|
||
return;
|
||
}
|
||
item.hypothetical_cross_size = inner_cross_size(m_flex_container_state);
|
||
return;
|
||
}
|
||
|
||
auto computed_cross_size = [&]() -> CSS::Size {
|
||
// "... treating auto as fit-content"
|
||
if (should_treat_cross_size_as_auto(item.box))
|
||
return CSS::Size::make_fit_content();
|
||
return this->computed_cross_size(item.box);
|
||
}();
|
||
|
||
if (computed_cross_size.is_min_content()) {
|
||
item.hypothetical_cross_size = css_clamp(calculate_min_content_cross_size(item), clamp_min, clamp_max);
|
||
return;
|
||
}
|
||
|
||
if (computed_cross_size.is_max_content()) {
|
||
item.hypothetical_cross_size = css_clamp(calculate_max_content_cross_size(item), clamp_min, clamp_max);
|
||
return;
|
||
}
|
||
|
||
if (computed_cross_size.is_fit_content()) {
|
||
CSSPixels fit_content_cross_size = 0;
|
||
if (is_row_layout()) {
|
||
auto available_width = item.main_size.has_value() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite();
|
||
auto available_height = AvailableSize::make_indefinite();
|
||
fit_content_cross_size = calculate_fit_content_height(item.box, AvailableSpace(available_width, available_height));
|
||
} else {
|
||
fit_content_cross_size = calculate_fit_content_width(item.box, m_available_space_for_items->space);
|
||
}
|
||
|
||
item.hypothetical_cross_size = css_clamp(fit_content_cross_size, clamp_min, clamp_max);
|
||
return;
|
||
}
|
||
|
||
// For indefinite cross sizes, we perform a throwaway layout and then measure it.
|
||
LayoutState throwaway_state(&m_state);
|
||
|
||
auto& box_state = throwaway_state.get_mutable(item.box);
|
||
if (is_row_layout()) {
|
||
box_state.set_content_width(item.main_size.value());
|
||
} else {
|
||
box_state.set_content_height(item.main_size.value());
|
||
}
|
||
|
||
// Item has definite main size, layout with that as the used main size.
|
||
auto independent_formatting_context = create_independent_formatting_context_if_needed(throwaway_state, LayoutMode::Normal, item.box);
|
||
// NOTE: Flex items should always create an independent formatting context!
|
||
VERIFY(independent_formatting_context);
|
||
|
||
auto available_width = is_row_layout() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite();
|
||
auto available_height = is_row_layout() ? AvailableSize::make_indefinite() : AvailableSize::make_definite(item.main_size.value());
|
||
|
||
independent_formatting_context->run(AvailableSpace(available_width, available_height));
|
||
|
||
auto automatic_cross_size = is_row_layout() ? independent_formatting_context->automatic_content_height()
|
||
: independent_formatting_context->automatic_content_width();
|
||
|
||
item.hypothetical_cross_size = css_clamp(automatic_cross_size, clamp_min, clamp_max);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-line
|
||
void FlexFormattingContext::calculate_cross_size_of_each_flex_line()
|
||
{
|
||
// If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size.
|
||
if (is_single_line() && has_definite_cross_size(m_flex_container_state)) {
|
||
m_flex_lines[0].cross_size = inner_cross_size(m_flex_container_state);
|
||
return;
|
||
}
|
||
|
||
// Otherwise, for each flex line:
|
||
for (auto& flex_line : m_flex_lines) {
|
||
// FIXME: 1. Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline,
|
||
// and whose cross-axis margins are both non-auto. Find the largest of the distances between each item’s baseline
|
||
// and its hypothetical outer cross-start edge, and the largest of the distances between each item’s baseline
|
||
// and its hypothetical outer cross-end edge, and sum these two values.
|
||
|
||
// 2. Among all the items not collected by the previous step, find the largest outer hypothetical cross size.
|
||
CSSPixels largest_hypothetical_cross_size = 0;
|
||
for (auto& item : flex_line.items) {
|
||
if (largest_hypothetical_cross_size < item.hypothetical_cross_size_with_margins())
|
||
largest_hypothetical_cross_size = item.hypothetical_cross_size_with_margins();
|
||
}
|
||
|
||
// 3. The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero.
|
||
flex_line.cross_size = max(CSSPixels(0), largest_hypothetical_cross_size);
|
||
}
|
||
|
||
// If the flex container is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross sizes.
|
||
// Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically.
|
||
// AD-HOC: We don't do this when the flex container is being sized under a min-content or max-content constraint.
|
||
if (is_single_line() && !m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) {
|
||
auto const& computed_min_size = this->computed_cross_min_size(flex_container());
|
||
auto const& computed_max_size = this->computed_cross_max_size(flex_container());
|
||
auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0;
|
||
auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : CSSPixels::max();
|
||
m_flex_lines[0].cross_size = css_clamp(m_flex_lines[0].cross_size, cross_min_size, cross_max_size);
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-stretch
|
||
void FlexFormattingContext::determine_used_cross_size_of_each_flex_item()
|
||
{
|
||
for (auto& flex_line : m_flex_lines) {
|
||
for (auto& item : flex_line.items) {
|
||
// If a flex item has align-self: stretch, its computed cross size property is auto,
|
||
// and neither of its cross-axis margins are auto, the used outer cross size is the used cross size of its flex line,
|
||
// clamped according to the item’s used min and max cross sizes.
|
||
auto flex_item_alignment = alignment_for_item(item.box);
|
||
if ((flex_item_alignment == CSS::AlignItems::Stretch || flex_item_alignment == CSS::AlignItems::Normal)
|
||
&& is_cross_auto(item.box)
|
||
&& !item.margins.cross_before_is_auto
|
||
&& !item.margins.cross_after_is_auto) {
|
||
auto unclamped_cross_size = flex_line.cross_size
|
||
- item.margins.cross_before - item.margins.cross_after
|
||
- item.padding.cross_before - item.padding.cross_after
|
||
- item.borders.cross_before - item.borders.cross_after;
|
||
|
||
auto const& computed_min_size = computed_cross_min_size(item.box);
|
||
auto const& computed_max_size = computed_cross_max_size(item.box);
|
||
auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(item.box) : 0;
|
||
auto cross_max_size = (!should_treat_cross_max_size_as_none(item.box) && !computed_max_size.contains_percentage()) ? specified_cross_max_size(item.box) : CSSPixels::max();
|
||
|
||
item.cross_size = css_clamp(unclamped_cross_size, cross_min_size, cross_max_size);
|
||
} else {
|
||
// Otherwise, the used cross size is the item’s hypothetical cross size.
|
||
item.cross_size = item.hypothetical_cross_size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-main-align
|
||
void FlexFormattingContext::distribute_any_remaining_free_space()
|
||
{
|
||
for (auto& flex_line : m_flex_lines) {
|
||
// 12.1.
|
||
CSSPixels used_main_space = 0;
|
||
size_t auto_margins = 0;
|
||
for (auto& item : flex_line.items) {
|
||
used_main_space += item.main_size.value();
|
||
if (item.margins.main_before_is_auto)
|
||
++auto_margins;
|
||
|
||
if (item.margins.main_after_is_auto)
|
||
++auto_margins;
|
||
|
||
used_main_space += item.margins.main_before + item.margins.main_after
|
||
+ item.borders.main_before + item.borders.main_after
|
||
+ item.padding.main_before + item.padding.main_after;
|
||
}
|
||
|
||
// CSS-FLEXBOX-2: Account for gap between flex items.
|
||
used_main_space += main_gap() * (flex_line.items.size() - 1);
|
||
|
||
if (flex_line.remaining_free_space.has_value() && flex_line.remaining_free_space.value() > 0 && auto_margins > 0) {
|
||
CSSPixels size_per_auto_margin = flex_line.remaining_free_space.value() / auto_margins;
|
||
for (auto& item : flex_line.items) {
|
||
if (item.margins.main_before_is_auto)
|
||
set_main_axis_first_margin(item, size_per_auto_margin);
|
||
if (item.margins.main_after_is_auto)
|
||
set_main_axis_second_margin(item, size_per_auto_margin);
|
||
}
|
||
} else {
|
||
for (auto& item : flex_line.items) {
|
||
if (item.margins.main_before_is_auto)
|
||
set_main_axis_first_margin(item, 0);
|
||
if (item.margins.main_after_is_auto)
|
||
set_main_axis_second_margin(item, 0);
|
||
}
|
||
}
|
||
|
||
// 12.2.
|
||
CSSPixels space_between_items = 0;
|
||
CSSPixels initial_offset = 0;
|
||
auto number_of_items = flex_line.items.size();
|
||
|
||
if (auto_margins == 0 && number_of_items > 0) {
|
||
switch (flex_container().computed_values().justify_content()) {
|
||
case CSS::JustifyContent::Start:
|
||
case CSS::JustifyContent::Left:
|
||
initial_offset = 0;
|
||
break;
|
||
case CSS::JustifyContent::Stretch:
|
||
case CSS::JustifyContent::Normal:
|
||
case CSS::JustifyContent::FlexStart:
|
||
if (is_direction_reverse()) {
|
||
initial_offset = inner_main_size(m_flex_container_state);
|
||
} else {
|
||
initial_offset = 0;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::End:
|
||
initial_offset = inner_main_size(m_flex_container_state);
|
||
break;
|
||
case CSS::JustifyContent::Right:
|
||
if (is_row_layout()) {
|
||
initial_offset = inner_main_size(m_flex_container_state);
|
||
} else {
|
||
initial_offset = 0;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::FlexEnd:
|
||
if (is_direction_reverse()) {
|
||
initial_offset = 0;
|
||
} else {
|
||
initial_offset = inner_main_size(m_flex_container_state);
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::Center:
|
||
initial_offset = (inner_main_size(m_flex_container_state) - used_main_space) / 2;
|
||
if (is_direction_reverse()) {
|
||
initial_offset = inner_main_size(m_flex_container_state) - initial_offset;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::SpaceBetween:
|
||
if (is_direction_reverse()) {
|
||
initial_offset = inner_main_size(m_flex_container_state);
|
||
} else {
|
||
initial_offset = 0;
|
||
}
|
||
if (flex_line.remaining_free_space.has_value() && number_of_items > 1)
|
||
space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / (number_of_items - 1));
|
||
break;
|
||
case CSS::JustifyContent::SpaceAround:
|
||
if (flex_line.remaining_free_space.has_value())
|
||
space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / number_of_items);
|
||
if (is_direction_reverse()) {
|
||
initial_offset = inner_main_size(m_flex_container_state) - space_between_items / 2;
|
||
} else {
|
||
initial_offset = space_between_items / 2;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::SpaceEvenly:
|
||
if (flex_line.remaining_free_space.has_value())
|
||
space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / (number_of_items + 1));
|
||
if (is_direction_reverse()) {
|
||
initial_offset = inner_main_size(m_flex_container_state) - space_between_items;
|
||
} else {
|
||
initial_offset = space_between_items;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
// For reverse, we use FlexRegionRenderCursor::Right
|
||
// to indicate the cursor offset is the end and render backwards
|
||
// Otherwise the cursor offset is the 'start' of the region or initial offset
|
||
enum class FlexRegionRenderCursor {
|
||
Left,
|
||
Right
|
||
};
|
||
auto flex_region_render_cursor = FlexRegionRenderCursor::Left;
|
||
|
||
if (auto_margins == 0) {
|
||
switch (flex_container().computed_values().justify_content()) {
|
||
case CSS::JustifyContent::Start:
|
||
case CSS::JustifyContent::Left:
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Left;
|
||
break;
|
||
case CSS::JustifyContent::Normal:
|
||
case CSS::JustifyContent::FlexStart:
|
||
case CSS::JustifyContent::Center:
|
||
case CSS::JustifyContent::SpaceAround:
|
||
case CSS::JustifyContent::SpaceBetween:
|
||
case CSS::JustifyContent::SpaceEvenly:
|
||
case CSS::JustifyContent::Stretch:
|
||
if (is_direction_reverse()) {
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Right;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::End:
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Right;
|
||
break;
|
||
case CSS::JustifyContent::Right:
|
||
if (is_row_layout()) {
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Right;
|
||
} else {
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Left;
|
||
}
|
||
break;
|
||
case CSS::JustifyContent::FlexEnd:
|
||
if (!is_direction_reverse()) {
|
||
flex_region_render_cursor = FlexRegionRenderCursor::Right;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
CSSPixels cursor_offset = initial_offset;
|
||
|
||
auto place_item = [&](FlexItem& item, size_t index) {
|
||
// CSS-FLEXBOX-2: Account for gap between items.
|
||
auto amount_of_main_size_used = item.main_size.value()
|
||
+ item.margins.main_before
|
||
+ item.borders.main_before
|
||
+ item.padding.main_before
|
||
+ item.margins.main_after
|
||
+ item.borders.main_after
|
||
+ item.padding.main_after
|
||
+ space_between_items;
|
||
|
||
if (!is_direction_reverse() && flex_region_render_cursor == FlexRegionRenderCursor::Right) {
|
||
if (index < flex_line.items.size() - 1) {
|
||
amount_of_main_size_used += main_gap();
|
||
}
|
||
} else {
|
||
amount_of_main_size_used += main_gap();
|
||
}
|
||
|
||
if (is_direction_reverse() && flex_region_render_cursor == FlexRegionRenderCursor::Right) {
|
||
item.main_offset = cursor_offset - item.main_size.value() - item.margins.main_after - item.borders.main_after - item.padding.main_after;
|
||
cursor_offset -= amount_of_main_size_used;
|
||
} else if (flex_region_render_cursor == FlexRegionRenderCursor::Right) {
|
||
cursor_offset -= amount_of_main_size_used;
|
||
item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before;
|
||
} else {
|
||
item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before;
|
||
cursor_offset += amount_of_main_size_used;
|
||
}
|
||
};
|
||
|
||
if (flex_region_render_cursor == FlexRegionRenderCursor::Right) {
|
||
for (ssize_t i = flex_line.items.size() - 1; i >= 0; --i) {
|
||
auto& item = flex_line.items[i];
|
||
place_item(item, i);
|
||
}
|
||
} else {
|
||
for (size_t i = 0; i < flex_line.items.size(); ++i) {
|
||
auto& item = flex_line.items[i];
|
||
place_item(item, i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::dump_items() const
|
||
{
|
||
dbgln("\033[34;1mflex-container\033[0m {}, direction: {}, current-size: {}x{}", flex_container().debug_description(), is_row_layout() ? "row" : "column", m_flex_container_state.content_width(), m_flex_container_state.content_height());
|
||
for (size_t i = 0; i < m_flex_lines.size(); ++i) {
|
||
dbgln("{} flex-line #{}:", flex_container().debug_description(), i);
|
||
for (size_t j = 0; j < m_flex_lines[i].items.size(); ++j) {
|
||
auto& item = m_flex_lines[i].items[j];
|
||
dbgln("{} flex-item #{}: {} (main:{}, cross:{})", flex_container().debug_description(), j, item.box->debug_description(), item.main_size.value_or(-1), item.cross_size.value_or(-1));
|
||
}
|
||
}
|
||
}
|
||
|
||
CSS::AlignItems FlexFormattingContext::alignment_for_item(Box const& box) const
|
||
{
|
||
switch (box.computed_values().align_self()) {
|
||
case CSS::AlignSelf::Auto:
|
||
return flex_container().computed_values().align_items();
|
||
case CSS::AlignSelf::End:
|
||
return CSS::AlignItems::End;
|
||
case CSS::AlignSelf::Normal:
|
||
return CSS::AlignItems::Normal;
|
||
case CSS::AlignSelf::SelfStart:
|
||
return CSS::AlignItems::SelfStart;
|
||
case CSS::AlignSelf::SelfEnd:
|
||
return CSS::AlignItems::SelfEnd;
|
||
case CSS::AlignSelf::FlexStart:
|
||
return CSS::AlignItems::FlexStart;
|
||
case CSS::AlignSelf::FlexEnd:
|
||
return CSS::AlignItems::FlexEnd;
|
||
case CSS::AlignSelf::Center:
|
||
return CSS::AlignItems::Center;
|
||
case CSS::AlignSelf::Baseline:
|
||
return CSS::AlignItems::Baseline;
|
||
case CSS::AlignSelf::Start:
|
||
return CSS::AlignItems::Start;
|
||
case CSS::AlignSelf::Stretch:
|
||
return CSS::AlignItems::Stretch;
|
||
case CSS::AlignSelf::Safe:
|
||
return CSS::AlignItems::Safe;
|
||
case CSS::AlignSelf::Unsafe:
|
||
return CSS::AlignItems::Unsafe;
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::align_all_flex_items_along_the_cross_axis()
|
||
{
|
||
// FIXME: Take better care of margins
|
||
for (auto& flex_line : m_flex_lines) {
|
||
for (auto& item : flex_line.items) {
|
||
CSSPixels half_line_size = flex_line.cross_size / 2;
|
||
switch (alignment_for_item(item.box)) {
|
||
case CSS::AlignItems::Normal:
|
||
// https://drafts.csswg.org/css-flexbox/#flex-wrap-property
|
||
// When flex-wrap is wrap-reverse, the cross-start and cross-end directions are swapped.
|
||
if (flex_container().computed_values().flex_wrap() == CSS::FlexWrap::WrapReverse) {
|
||
item.cross_offset = half_line_size - item.cross_size.value() - item.margins.cross_after - item.borders.cross_after - item.padding.cross_after;
|
||
} else {
|
||
item.cross_offset = -half_line_size + item.margins.cross_before + item.borders.cross_before + item.padding.cross_before;
|
||
}
|
||
break;
|
||
case CSS::AlignItems::Baseline:
|
||
// FIXME: Implement this
|
||
// Fallthrough
|
||
case CSS::AlignItems::Start:
|
||
case CSS::AlignItems::FlexStart:
|
||
case CSS::AlignItems::SelfStart:
|
||
case CSS::AlignItems::Stretch:
|
||
// FIXME: 'start', 'flex-start' and 'self-start' have subtly different behavior.
|
||
// The same goes for the end values.
|
||
item.cross_offset = -half_line_size + item.margins.cross_before + item.borders.cross_before + item.padding.cross_before;
|
||
break;
|
||
case CSS::AlignItems::End:
|
||
case CSS::AlignItems::FlexEnd:
|
||
case CSS::AlignItems::SelfEnd:
|
||
item.cross_offset = half_line_size - item.cross_size.value() - item.margins.cross_after - item.borders.cross_after - item.padding.cross_after;
|
||
break;
|
||
case CSS::AlignItems::Center:
|
||
item.cross_offset = -(item.cross_size.value() / 2);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#algo-line-align
|
||
void FlexFormattingContext::align_all_flex_lines()
|
||
{
|
||
// Align all flex lines per align-content.
|
||
|
||
if (m_flex_lines.is_empty())
|
||
return;
|
||
|
||
bool wrap_reverse = flex_container().computed_values().flex_wrap() == CSS::FlexWrap::WrapReverse;
|
||
bool place_items_backwards = false;
|
||
bool iterate_lines_backwards = false;
|
||
|
||
CSSPixels cross_size_of_flex_container = inner_cross_size(m_flex_container_state);
|
||
|
||
if (is_single_line()) {
|
||
// For single-line flex containers, we only need to center the line along the cross axis.
|
||
auto& flex_line = m_flex_lines[0];
|
||
CSSPixels center_of_line = cross_size_of_flex_container / 2;
|
||
for (auto& item : flex_line.items) {
|
||
item.cross_offset += center_of_line;
|
||
}
|
||
return;
|
||
}
|
||
|
||
CSSPixels sum_of_flex_line_cross_sizes = 0;
|
||
for (auto& line : m_flex_lines)
|
||
sum_of_flex_line_cross_sizes += line.cross_size;
|
||
|
||
// CSS-FLEXBOX-2: Account for gap between flex lines.
|
||
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
|
||
|
||
CSSPixels start_of_current_line = 0;
|
||
CSSPixels gap_size = 0;
|
||
switch (flex_container().computed_values().align_content()) {
|
||
case CSS::AlignContent::Start:
|
||
start_of_current_line = 0;
|
||
iterate_lines_backwards = wrap_reverse;
|
||
break;
|
||
case CSS::AlignContent::End:
|
||
start_of_current_line = cross_size_of_flex_container;
|
||
place_items_backwards = true;
|
||
iterate_lines_backwards = !wrap_reverse;
|
||
break;
|
||
case CSS::AlignContent::FlexStart:
|
||
if (wrap_reverse) {
|
||
start_of_current_line = cross_size_of_flex_container;
|
||
place_items_backwards = true;
|
||
} else {
|
||
start_of_current_line = 0;
|
||
}
|
||
break;
|
||
case CSS::AlignContent::FlexEnd:
|
||
iterate_lines_backwards = true;
|
||
if (wrap_reverse) {
|
||
start_of_current_line = 0;
|
||
} else {
|
||
start_of_current_line = cross_size_of_flex_container;
|
||
place_items_backwards = true;
|
||
}
|
||
break;
|
||
case CSS::AlignContent::Center:
|
||
iterate_lines_backwards = wrap_reverse;
|
||
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
|
||
break;
|
||
case CSS::AlignContent::SpaceBetween: {
|
||
if (wrap_reverse) {
|
||
start_of_current_line = cross_size_of_flex_container;
|
||
place_items_backwards = true;
|
||
} else {
|
||
start_of_current_line = 0;
|
||
}
|
||
|
||
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
|
||
auto leftover_flex_lines_size = m_flex_lines.size();
|
||
if (leftover_free_space >= 0 && leftover_flex_lines_size > 1) {
|
||
int gap_count = leftover_flex_lines_size - 1;
|
||
gap_size = leftover_free_space / gap_count;
|
||
}
|
||
break;
|
||
}
|
||
case CSS::AlignContent::SpaceAround: {
|
||
iterate_lines_backwards = wrap_reverse;
|
||
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
|
||
if (leftover_free_space < 0) {
|
||
// If the leftover free-space is negative this value is identical to center.
|
||
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
|
||
break;
|
||
}
|
||
|
||
gap_size = leftover_free_space / m_flex_lines.size();
|
||
|
||
// The spacing between the first/last lines and the flex container edges is half the size of the spacing between flex lines.
|
||
start_of_current_line = gap_size / 2;
|
||
break;
|
||
}
|
||
case CSS::AlignContent::SpaceEvenly: {
|
||
iterate_lines_backwards = wrap_reverse;
|
||
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
|
||
if (leftover_free_space < 0) {
|
||
// If the leftover free-space is negative this value is identical to center.
|
||
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
|
||
break;
|
||
}
|
||
|
||
gap_size = leftover_free_space / (m_flex_lines.size() + 1);
|
||
|
||
// The spacing between the first/last lines and the flex container edges is the size of the spacing between flex lines.
|
||
start_of_current_line = gap_size;
|
||
break;
|
||
}
|
||
|
||
case CSS::AlignContent::Normal:
|
||
case CSS::AlignContent::Stretch:
|
||
if (wrap_reverse) {
|
||
start_of_current_line = cross_size_of_flex_container;
|
||
place_items_backwards = true;
|
||
} else {
|
||
start_of_current_line = 0;
|
||
}
|
||
break;
|
||
}
|
||
|
||
auto place_items = [&](FlexLine& flex_line) {
|
||
if (place_items_backwards) {
|
||
CSSPixels center_of_current_line = start_of_current_line - (flex_line.cross_size / 2);
|
||
for (auto& item : flex_line.items) {
|
||
item.cross_offset += center_of_current_line;
|
||
}
|
||
start_of_current_line -= flex_line.cross_size + gap_size;
|
||
// CSS-FLEXBOX-2: Account for gap between flex lines.
|
||
start_of_current_line -= cross_gap();
|
||
} else {
|
||
CSSPixels center_of_current_line = start_of_current_line + (flex_line.cross_size / 2);
|
||
for (auto& item : flex_line.items) {
|
||
item.cross_offset += center_of_current_line;
|
||
}
|
||
start_of_current_line += flex_line.cross_size + gap_size;
|
||
// CSS-FLEXBOX-2: Account for gap between flex lines.
|
||
start_of_current_line += cross_gap();
|
||
}
|
||
};
|
||
|
||
if (iterate_lines_backwards) {
|
||
for (auto& flex_line : m_flex_lines.in_reverse()) {
|
||
place_items(flex_line);
|
||
}
|
||
} else {
|
||
for (auto& flex_line : m_flex_lines) {
|
||
place_items(flex_line);
|
||
}
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::copy_dimensions_from_flex_items_to_boxes()
|
||
{
|
||
for (auto& item : m_flex_items) {
|
||
auto const& box = item.box;
|
||
|
||
item.used_values.margin_left = box->computed_values().margin().left().to_px(box, m_flex_container_state.content_width());
|
||
item.used_values.margin_right = box->computed_values().margin().right().to_px(box, m_flex_container_state.content_width());
|
||
item.used_values.margin_top = box->computed_values().margin().top().to_px(box, m_flex_container_state.content_width());
|
||
item.used_values.margin_bottom = box->computed_values().margin().bottom().to_px(box, m_flex_container_state.content_width());
|
||
|
||
item.used_values.border_left = box->computed_values().border_left().width;
|
||
item.used_values.border_right = box->computed_values().border_right().width;
|
||
item.used_values.border_top = box->computed_values().border_top().width;
|
||
item.used_values.border_bottom = box->computed_values().border_bottom().width;
|
||
|
||
set_main_size(box, item.main_size.value());
|
||
set_cross_size(box, item.cross_size.value());
|
||
set_offset(box, item.main_offset, item.cross_offset);
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-sizes
|
||
void FlexFormattingContext::determine_intrinsic_size_of_flex_container()
|
||
{
|
||
if (m_available_space_for_items->main.is_intrinsic_sizing_constraint()) {
|
||
CSSPixels main_size = calculate_intrinsic_main_size_of_flex_container();
|
||
set_main_size(flex_container(), main_size);
|
||
}
|
||
if (m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) {
|
||
CSSPixels cross_size = calculate_intrinsic_cross_size_of_flex_container();
|
||
set_cross_size(flex_container(), cross_size);
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-main-sizes
|
||
CSSPixels FlexFormattingContext::calculate_intrinsic_main_size_of_flex_container()
|
||
{
|
||
// The min-content main size of a single-line flex container is calculated identically to the max-content main size,
|
||
// except that the flex items’ min-content contributions are used instead of their max-content contributions.
|
||
// However, for a multi-line container, it is simply the largest min-content contribution of all the non-collapsed flex items in the flex container.
|
||
if (!is_single_line() && m_available_space_for_items->main.is_min_content()) {
|
||
CSSPixels largest_contribution = 0;
|
||
for (auto const& item : m_flex_items) {
|
||
// FIXME: Skip collapsed flex items.
|
||
largest_contribution = max(largest_contribution, calculate_main_min_content_contribution(item));
|
||
}
|
||
return largest_contribution;
|
||
}
|
||
|
||
// The max-content main size of a flex container is, fundamentally, the smallest size the flex container
|
||
// can take such that when flex layout is run with that container size, each flex item ends up at least
|
||
// as large as its max-content contribution, to the extent allowed by the items’ flexibility.
|
||
// It is calculated, considering only non-collapsed flex items, by:
|
||
|
||
// 1. For each flex item, subtract its outer flex base size from its max-content contribution size.
|
||
// If that result is positive, divide it by the item’s flex grow factor if the flex grow factor is ≥ 1,
|
||
// or multiply it by the flex grow factor if the flex grow factor is < 1; if the result is negative,
|
||
// divide it by the item’s scaled flex shrink factor (if dividing by zero, treat the result as negative infinity).
|
||
// This is the item’s desired flex fraction.
|
||
|
||
for (auto& item : m_flex_items) {
|
||
CSSPixels contribution = 0;
|
||
if (m_available_space_for_items->main.is_min_content())
|
||
contribution = calculate_main_min_content_contribution(item);
|
||
else if (m_available_space_for_items->main.is_max_content())
|
||
contribution = calculate_main_max_content_contribution(item);
|
||
|
||
CSSPixels outer_flex_base_size = item.flex_base_size + item.margins.main_before + item.margins.main_after + item.borders.main_before + item.borders.main_after + item.padding.main_before + item.padding.main_after;
|
||
|
||
CSSPixels result = contribution - outer_flex_base_size;
|
||
if (result > 0) {
|
||
if (item.box->computed_values().flex_grow() >= 1) {
|
||
result.scale_by(1 / item.box->computed_values().flex_grow());
|
||
} else {
|
||
result.scale_by(item.box->computed_values().flex_grow());
|
||
}
|
||
} else if (result < 0) {
|
||
if (item.scaled_flex_shrink_factor == 0)
|
||
result = CSSPixels::min();
|
||
else
|
||
result.scale_by(1 / item.scaled_flex_shrink_factor);
|
||
}
|
||
|
||
item.desired_flex_fraction = result.to_double();
|
||
}
|
||
|
||
// 2. Place all flex items into lines of infinite length.
|
||
m_flex_lines.clear();
|
||
if (!m_flex_items.is_empty())
|
||
m_flex_lines.append(FlexLine {});
|
||
for (auto& item : m_flex_items) {
|
||
// FIXME: Honor breaking requests.
|
||
m_flex_lines.last().items.append(item);
|
||
}
|
||
|
||
// Within each line, find the greatest (most positive) desired flex fraction among all the flex items.
|
||
// This is the line’s chosen flex fraction.
|
||
for (auto& flex_line : m_flex_lines) {
|
||
float greatest_desired_flex_fraction = 0;
|
||
float sum_of_flex_grow_factors = 0;
|
||
float sum_of_flex_shrink_factors = 0;
|
||
for (auto& item : flex_line.items) {
|
||
greatest_desired_flex_fraction = max(greatest_desired_flex_fraction, item.desired_flex_fraction);
|
||
sum_of_flex_grow_factors += item.box->computed_values().flex_grow();
|
||
sum_of_flex_shrink_factors += item.box->computed_values().flex_shrink();
|
||
}
|
||
float chosen_flex_fraction = greatest_desired_flex_fraction;
|
||
|
||
// 3. If the chosen flex fraction is positive, and the sum of the line’s flex grow factors is less than 1,
|
||
// divide the chosen flex fraction by that sum.
|
||
if (chosen_flex_fraction > 0 && sum_of_flex_grow_factors < 1)
|
||
chosen_flex_fraction /= sum_of_flex_grow_factors;
|
||
|
||
// If the chosen flex fraction is negative, and the sum of the line’s flex shrink factors is less than 1,
|
||
// multiply the chosen flex fraction by that sum.
|
||
if (chosen_flex_fraction < 0 && sum_of_flex_shrink_factors < 1)
|
||
chosen_flex_fraction *= sum_of_flex_shrink_factors;
|
||
|
||
flex_line.chosen_flex_fraction = chosen_flex_fraction;
|
||
}
|
||
|
||
auto determine_main_size = [&]() -> CSSPixels {
|
||
CSSPixels largest_sum = 0;
|
||
for (auto& flex_line : m_flex_lines) {
|
||
// 4. Add each item’s flex base size to the product of its flex grow factor (scaled flex shrink factor, if shrinking)
|
||
// and the chosen flex fraction, then clamp that result by the max main size floored by the min main size.
|
||
CSSPixels sum = 0;
|
||
for (auto& item : flex_line.items) {
|
||
double product = 0;
|
||
if (item.desired_flex_fraction > 0)
|
||
product = flex_line.chosen_flex_fraction * static_cast<double>(item.box->computed_values().flex_grow());
|
||
else if (item.desired_flex_fraction < 0)
|
||
product = flex_line.chosen_flex_fraction * item.scaled_flex_shrink_factor;
|
||
auto result = item.flex_base_size + CSSPixels::nearest_value_for(product);
|
||
|
||
auto const& computed_min_size = this->computed_main_min_size(item.box);
|
||
auto const& computed_max_size = this->computed_main_max_size(item.box);
|
||
|
||
auto clamp_min = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
|
||
auto clamp_max = (!should_treat_main_max_size_as_none(item.box) && !computed_max_size.contains_percentage()) ? specified_main_max_size(item.box) : CSSPixels::max();
|
||
|
||
result = css_clamp(result, clamp_min, clamp_max);
|
||
|
||
// NOTE: The spec doesn't mention anything about the *outer* size here, but if we don't add the margin box,
|
||
// flex items with non-zero padding/border/margin in the main axis end up overflowing the container.
|
||
result = item.add_main_margin_box_sizes(result);
|
||
|
||
sum += result;
|
||
}
|
||
// CSS-FLEXBOX-2: Account for gap between flex items.
|
||
sum += main_gap() * (flex_line.items.size() - 1);
|
||
largest_sum = max(largest_sum, sum);
|
||
}
|
||
// 5. The flex container’s max-content size is the largest sum (among all the lines) of the afore-calculated sizes of all items within a single line.
|
||
return largest_sum;
|
||
};
|
||
|
||
auto main_size = determine_main_size();
|
||
set_main_size(flex_container(), main_size);
|
||
return main_size;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-cross-sizes
|
||
CSSPixels FlexFormattingContext::calculate_intrinsic_cross_size_of_flex_container()
|
||
{
|
||
// The min-content/max-content cross size of a single-line flex container
|
||
// is the largest min-content contribution/max-content contribution (respectively) of its flex items.
|
||
if (is_single_line()) {
|
||
auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) {
|
||
CSSPixels largest_contribution = 0;
|
||
for (auto& item : m_flex_items) {
|
||
CSSPixels contribution = 0;
|
||
if (m_available_space_for_items->cross.is_min_content())
|
||
contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes);
|
||
else if (m_available_space_for_items->cross.is_max_content())
|
||
contribution = calculate_cross_max_content_contribution(item, resolve_percentage_min_max_sizes);
|
||
largest_contribution = max(largest_contribution, contribution);
|
||
}
|
||
return largest_contribution;
|
||
};
|
||
|
||
auto first_pass_largest_contribution = calculate_largest_contribution(false);
|
||
set_cross_size(flex_container(), first_pass_largest_contribution);
|
||
auto second_pass_largest_contribution = calculate_largest_contribution(true);
|
||
return second_pass_largest_contribution;
|
||
}
|
||
|
||
if (is_row_layout()) {
|
||
// row multi-line flex container cross-size
|
||
|
||
// The min-content/max-content cross size is the sum of the flex line cross sizes resulting from
|
||
// sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively).
|
||
|
||
// NOTE: We fall through to the ad-hoc section below.
|
||
} else {
|
||
// column multi-line flex container cross-size
|
||
|
||
// The min-content cross size is the largest min-content contribution among all of its flex items.
|
||
if (m_available_space_for_items->cross.is_min_content()) {
|
||
auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) {
|
||
CSSPixels largest_contribution = 0;
|
||
for (auto& item : m_flex_items) {
|
||
CSSPixels contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes);
|
||
largest_contribution = max(largest_contribution, contribution);
|
||
}
|
||
return largest_contribution;
|
||
};
|
||
|
||
auto first_pass_largest_contribution = calculate_largest_contribution(false);
|
||
set_cross_size(flex_container(), first_pass_largest_contribution);
|
||
auto second_pass_largest_contribution = calculate_largest_contribution(true);
|
||
return second_pass_largest_contribution;
|
||
}
|
||
|
||
// The max-content cross size is the sum of the flex line cross sizes resulting from
|
||
// sizing the flex container under a cross-axis max-content constraint,
|
||
// using the largest max-content cross-size contribution among the flex items
|
||
// as the available space in the cross axis for each of the flex items during layout.
|
||
|
||
// NOTE: We fall through to the ad-hoc section below.
|
||
}
|
||
|
||
CSSPixels sum_of_flex_line_cross_sizes = 0;
|
||
for (auto& flex_line : m_flex_lines) {
|
||
sum_of_flex_line_cross_sizes += flex_line.cross_size;
|
||
}
|
||
// CSS-FLEXBOX-2: Account for gap between flex lines.
|
||
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
|
||
return sum_of_flex_line_cross_sizes;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions
|
||
CSSPixels FlexFormattingContext::calculate_main_min_content_contribution(FlexItem const& item) const
|
||
{
|
||
// The main-size min-content contribution of a flex item is
|
||
// the larger of its outer min-content size and outer preferred size if that is not auto,
|
||
// clamped by its min/max main size.
|
||
auto larger_size = [&] {
|
||
auto inner_min_content_size = calculate_min_content_main_size(item);
|
||
if (computed_main_size(item.box).is_auto())
|
||
return inner_min_content_size;
|
||
auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
|
||
return max(inner_min_content_size, inner_preferred_size);
|
||
}();
|
||
|
||
auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
|
||
auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : CSSPixels::max();
|
||
auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max);
|
||
|
||
return item.add_main_margin_box_sizes(clamped_inner_size);
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions
|
||
CSSPixels FlexFormattingContext::calculate_main_max_content_contribution(FlexItem const& item) const
|
||
{
|
||
// The main-size max-content contribution of a flex item is
|
||
// the larger of its outer max-content size and outer preferred size if that is not auto,
|
||
// clamped by its min/max main size.
|
||
auto larger_size = [&] {
|
||
auto inner_max_content_size = calculate_max_content_main_size(item);
|
||
if (computed_main_size(item.box).is_auto())
|
||
return inner_max_content_size;
|
||
auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
|
||
return max(inner_max_content_size, inner_preferred_size);
|
||
}();
|
||
|
||
auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
|
||
auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : CSSPixels::max();
|
||
auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max);
|
||
|
||
return item.add_main_margin_box_sizes(clamped_inner_size);
|
||
}
|
||
|
||
bool FlexFormattingContext::should_treat_main_size_as_auto(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return should_treat_width_as_auto(box, m_available_space_for_items->space);
|
||
return should_treat_height_as_auto(box, m_available_space_for_items->space);
|
||
}
|
||
|
||
bool FlexFormattingContext::should_treat_cross_size_as_auto(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return should_treat_height_as_auto(box, m_available_space_for_items->space);
|
||
return should_treat_width_as_auto(box, m_available_space_for_items->space);
|
||
}
|
||
|
||
bool FlexFormattingContext::should_treat_main_max_size_as_none(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return should_treat_max_width_as_none(box, m_available_space_for_items->space.width);
|
||
return should_treat_max_height_as_none(box, m_available_space_for_items->space.height);
|
||
}
|
||
|
||
bool FlexFormattingContext::should_treat_cross_max_size_as_none(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return should_treat_max_height_as_none(box, m_available_space_for_items->space.height);
|
||
return should_treat_max_width_as_none(box, m_available_space_for_items->space.width);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_cross_min_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const
|
||
{
|
||
auto size = [&] {
|
||
if (should_treat_cross_size_as_auto(item.box))
|
||
return calculate_min_content_cross_size(item);
|
||
return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box));
|
||
}();
|
||
|
||
if (item.box->has_preferred_aspect_ratio())
|
||
size = adjust_cross_size_through_aspect_ratio_for_main_size_min_max_constraints(item.box, size, computed_main_min_size(item.box), computed_main_max_size(item.box));
|
||
|
||
auto const& computed_min_size = this->computed_cross_min_size(item.box);
|
||
auto const& computed_max_size = this->computed_cross_max_size(item.box);
|
||
|
||
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
|
||
auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max();
|
||
|
||
auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max);
|
||
|
||
return item.add_cross_margin_box_sizes(clamped_inner_size);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_cross_max_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const
|
||
{
|
||
auto size = [&] {
|
||
if (should_treat_cross_size_as_auto(item.box))
|
||
return calculate_max_content_cross_size(item);
|
||
return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box));
|
||
}();
|
||
|
||
if (item.box->has_preferred_aspect_ratio())
|
||
size = adjust_cross_size_through_aspect_ratio_for_main_size_min_max_constraints(item.box, size, computed_main_min_size(item.box), computed_main_max_size(item.box));
|
||
|
||
auto const& computed_min_size = this->computed_cross_min_size(item.box);
|
||
auto const& computed_max_size = this->computed_cross_max_size(item.box);
|
||
|
||
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
|
||
auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max();
|
||
|
||
auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max);
|
||
|
||
return item.add_cross_margin_box_sizes(clamped_inner_size);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_width_to_use_when_determining_intrinsic_height_of_item(FlexItem const& item) const
|
||
{
|
||
auto const& box = *item.box;
|
||
auto computed_width = box.computed_values().width();
|
||
auto const& computed_min_width = box.computed_values().min_width();
|
||
auto const& computed_max_width = box.computed_values().max_width();
|
||
auto clamp_min = (!computed_min_width.is_auto() && (!computed_min_width.contains_percentage())) ? get_pixel_width(box, computed_min_width) : 0;
|
||
auto clamp_max = (!should_treat_max_width_as_none(box, m_available_space_for_items->space.width) && (!computed_max_width.contains_percentage())) ? get_pixel_width(box, computed_max_width) : CSSPixels::max();
|
||
|
||
CSSPixels width;
|
||
if (should_treat_width_as_auto(box, m_available_space_for_items->space) || computed_width.is_fit_content())
|
||
width = calculate_fit_content_width(box, m_available_space_for_items->space);
|
||
else if (computed_width.is_min_content())
|
||
width = calculate_min_content_width(box);
|
||
else if (computed_width.is_max_content())
|
||
width = calculate_max_content_width(box);
|
||
|
||
return css_clamp(width, clamp_min, clamp_max);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_min_content_main_size(FlexItem const& item) const
|
||
{
|
||
if (is_row_layout()) {
|
||
return calculate_min_content_width(item.box);
|
||
}
|
||
auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space);
|
||
if (available_space.width.is_indefinite()) {
|
||
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
|
||
}
|
||
return calculate_min_content_height(item.box, available_space.width.to_px_or_zero());
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_max_content_main_size(FlexItem const& item) const
|
||
{
|
||
if (is_row_layout()) {
|
||
return calculate_max_content_width(item.box);
|
||
}
|
||
auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space);
|
||
if (available_space.width.is_indefinite()) {
|
||
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
|
||
}
|
||
return calculate_max_content_height(item.box, available_space.width.to_px_or_zero());
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_fit_content_main_size(FlexItem const& item) const
|
||
{
|
||
if (is_row_layout())
|
||
return calculate_fit_content_width(item.box, m_available_space_for_items->space);
|
||
return calculate_fit_content_height(item.box, m_available_space_for_items->space);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_fit_content_cross_size(FlexItem const& item) const
|
||
{
|
||
if (!is_row_layout())
|
||
return calculate_fit_content_width(item.box, m_available_space_for_items->space);
|
||
return calculate_fit_content_height(item.box, m_available_space_for_items->space);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_min_content_cross_size(FlexItem const& item) const
|
||
{
|
||
if (is_row_layout()) {
|
||
auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space);
|
||
if (available_space.width.is_indefinite()) {
|
||
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
|
||
}
|
||
return calculate_min_content_height(item.box, available_space.width.to_px_or_zero());
|
||
}
|
||
return calculate_min_content_width(item.box);
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::calculate_max_content_cross_size(FlexItem const& item) const
|
||
{
|
||
if (is_row_layout()) {
|
||
auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space);
|
||
if (available_space.width.is_indefinite()) {
|
||
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
|
||
}
|
||
return calculate_max_content_height(item.box, available_space.width.to_px_or_zero());
|
||
}
|
||
return calculate_max_content_width(item.box);
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#stretched
|
||
bool FlexFormattingContext::flex_item_is_stretched(FlexItem const& item) const
|
||
{
|
||
auto alignment = alignment_for_item(item.box);
|
||
if (alignment != CSS::AlignItems::Stretch && alignment != CSS::AlignItems::Normal)
|
||
return false;
|
||
// If the cross size property of the flex item computes to auto, and neither of the cross-axis margins are auto, the flex item is stretched.
|
||
auto const& computed_cross_size = is_row_layout() ? item.box->computed_values().height() : item.box->computed_values().width();
|
||
return computed_cross_size.is_auto() && !item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto;
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_main_size(Box const& box) const
|
||
{
|
||
return is_row_layout() ? box.computed_values().width() : box.computed_values().height();
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_main_min_size(Box const& box) const
|
||
{
|
||
return is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_main_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_cross_size(Box const& box) const
|
||
{
|
||
return !is_row_layout() ? box.computed_values().width() : box.computed_values().height();
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_cross_min_size(Box const& box) const
|
||
{
|
||
return !is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
|
||
}
|
||
|
||
CSS::Size const& FlexFormattingContext::computed_cross_max_size(Box const& box) const
|
||
{
|
||
return !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#algo-cross-margins
|
||
void FlexFormattingContext::resolve_cross_axis_auto_margins()
|
||
{
|
||
for (auto& line : m_flex_lines) {
|
||
for (auto& item : line.items) {
|
||
// If a flex item has auto cross-axis margins:
|
||
if (!item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto)
|
||
continue;
|
||
|
||
// If its outer cross size (treating those auto margins as zero) is less than the cross size of its flex line,
|
||
// distribute the difference in those sizes equally to the auto margins.
|
||
auto outer_cross_size = item.cross_size.value() + item.padding.cross_before + item.padding.cross_after + item.borders.cross_before + item.borders.cross_after;
|
||
if (outer_cross_size < line.cross_size) {
|
||
CSSPixels remainder = line.cross_size - outer_cross_size;
|
||
if (item.margins.cross_before_is_auto && item.margins.cross_after_is_auto) {
|
||
item.margins.cross_before = remainder / 2;
|
||
item.margins.cross_after = remainder / 2;
|
||
} else if (item.margins.cross_before_is_auto) {
|
||
item.margins.cross_before = remainder;
|
||
} else {
|
||
item.margins.cross_after = remainder;
|
||
}
|
||
} else {
|
||
// FIXME: Otherwise, if the block-start or inline-start margin (whichever is in the cross axis) is auto, set it to zero.
|
||
// Set the opposite margin so that the outer cross size of the item equals the cross size of its flex line.
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#algo-line-stretch
|
||
void FlexFormattingContext::handle_align_content_stretch()
|
||
{
|
||
// If the flex container has a definite cross size,
|
||
if (!has_definite_cross_size(m_flex_container_state))
|
||
return;
|
||
|
||
// align-content is stretch,
|
||
if (flex_container().computed_values().align_content() != CSS::AlignContent::Stretch && flex_container().computed_values().align_content() != CSS::AlignContent::Normal)
|
||
return;
|
||
|
||
// and the sum of the flex lines' cross sizes is less than the flex container’s inner cross size,
|
||
CSSPixels sum_of_flex_line_cross_sizes = 0;
|
||
for (auto& line : m_flex_lines)
|
||
sum_of_flex_line_cross_sizes += line.cross_size;
|
||
|
||
// CSS-FLEXBOX-2: Account for gap between flex lines.
|
||
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
|
||
|
||
if (sum_of_flex_line_cross_sizes >= inner_cross_size(m_flex_container_state))
|
||
return;
|
||
|
||
// increase the cross size of each flex line by equal amounts
|
||
// such that the sum of their cross sizes exactly equals the flex container’s inner cross size.
|
||
CSSPixels remainder = inner_cross_size(m_flex_container_state) - sum_of_flex_line_cross_sizes;
|
||
CSSPixels extra_per_line = remainder / m_flex_lines.size();
|
||
|
||
for (auto& line : m_flex_lines)
|
||
line.cross_size += extra_per_line;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-flexbox-1/#abspos-items
|
||
StaticPositionRect FlexFormattingContext::calculate_static_position_rect(Box const& box) const
|
||
{
|
||
// The cross-axis edges of the static-position rectangle of an absolutely-positioned child
|
||
// of a flex container are the content edges of the flex container.
|
||
|
||
StaticPositionRect::Alignment cross_axis_alignment = StaticPositionRect::Alignment::Start;
|
||
switch (alignment_for_item(box)) {
|
||
case CSS::AlignItems::Baseline:
|
||
// FIXME: Implement this
|
||
// Fallthrough
|
||
case CSS::AlignItems::Start:
|
||
case CSS::AlignItems::FlexStart:
|
||
case CSS::AlignItems::SelfStart:
|
||
case CSS::AlignItems::Stretch:
|
||
case CSS::AlignItems::Normal:
|
||
cross_axis_alignment = StaticPositionRect::Alignment::Start;
|
||
break;
|
||
case CSS::AlignItems::End:
|
||
case CSS::AlignItems::SelfEnd:
|
||
case CSS::AlignItems::FlexEnd:
|
||
cross_axis_alignment = StaticPositionRect::Alignment::End;
|
||
break;
|
||
case CSS::AlignItems::Center:
|
||
cross_axis_alignment = StaticPositionRect::Alignment::Center;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// The main-axis edges of the static-position rectangle are where the margin edges of the child
|
||
// would be positioned if it were the sole flex item in the flex container,
|
||
// assuming both the child and the flex container were fixed-size boxes of their used size.
|
||
// (For this purpose, auto margins are treated as zero.
|
||
|
||
StaticPositionRect::Alignment main_axis_alignment = StaticPositionRect::Alignment::Start;
|
||
switch (flex_container().computed_values().justify_content()) {
|
||
case CSS::JustifyContent::Start:
|
||
case CSS::JustifyContent::Left:
|
||
main_axis_alignment = StaticPositionRect::Alignment::Start;
|
||
break;
|
||
case CSS::JustifyContent::Stretch:
|
||
case CSS::JustifyContent::Normal:
|
||
case CSS::JustifyContent::FlexStart:
|
||
case CSS::JustifyContent::SpaceBetween:
|
||
main_axis_alignment = is_direction_reverse() ? StaticPositionRect::Alignment::End : StaticPositionRect::Alignment::Start;
|
||
break;
|
||
case CSS::JustifyContent::End:
|
||
main_axis_alignment = StaticPositionRect::Alignment::End;
|
||
break;
|
||
case CSS::JustifyContent::Right:
|
||
main_axis_alignment = StaticPositionRect::Alignment::End;
|
||
break;
|
||
case CSS::JustifyContent::FlexEnd:
|
||
main_axis_alignment = !is_direction_reverse() ? StaticPositionRect::Alignment::End : StaticPositionRect::Alignment::Start;
|
||
break;
|
||
case CSS::JustifyContent::Center:
|
||
case CSS::JustifyContent::SpaceAround:
|
||
case CSS::JustifyContent::SpaceEvenly:
|
||
main_axis_alignment = StaticPositionRect::Alignment::Center;
|
||
break;
|
||
}
|
||
|
||
auto absolute_position_of_flex_container = absolute_content_rect(flex_container()).location();
|
||
auto absolute_position_of_abspos_containing_block = absolute_content_rect(*box.containing_block()).location();
|
||
|
||
auto flex_container_width = is_row_layout() ? inner_main_size(m_flex_container_state) : inner_cross_size(m_flex_container_state);
|
||
auto flex_container_height = is_row_layout() ? inner_cross_size(m_flex_container_state) : inner_main_size(m_flex_container_state);
|
||
|
||
StaticPositionRect static_position_rect;
|
||
static_position_rect.rect = { absolute_position_of_flex_container - absolute_position_of_abspos_containing_block, { flex_container_width, flex_container_height } };
|
||
static_position_rect.horizontal_alignment = is_row_layout() ? main_axis_alignment : cross_axis_alignment;
|
||
static_position_rect.vertical_alignment = is_row_layout() ? cross_axis_alignment : main_axis_alignment;
|
||
return static_position_rect;
|
||
}
|
||
|
||
double FlexFormattingContext::FlexLine::sum_of_flex_factor_of_unfrozen_items() const
|
||
{
|
||
double sum = 0;
|
||
for (auto const& item : items) {
|
||
if (!item.frozen)
|
||
sum += item.flex_factor.value();
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
double FlexFormattingContext::FlexLine::sum_of_scaled_flex_shrink_factor_of_unfrozen_items() const
|
||
{
|
||
double sum = 0;
|
||
for (auto const& item : items) {
|
||
if (!item.frozen)
|
||
sum += item.scaled_flex_shrink_factor;
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
static CSSPixels gap_to_px(Variant<CSS::LengthPercentage, CSS::NormalGap> const& gap, Layout::Node const& grid_container, CSSPixels reference_value)
|
||
{
|
||
return gap.visit(
|
||
[](CSS::NormalGap) { return CSSPixels(0); },
|
||
[&](auto const& gap) { return gap.to_px(grid_container, reference_value); });
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::main_gap() const
|
||
{
|
||
auto const& computed_values = flex_container().computed_values();
|
||
auto const& gap = is_row_layout() ? computed_values.column_gap() : computed_values.row_gap();
|
||
return gap_to_px(gap, flex_container(), inner_main_size(m_flex_container_state));
|
||
}
|
||
|
||
CSSPixels FlexFormattingContext::cross_gap() const
|
||
{
|
||
auto const& computed_values = flex_container().computed_values();
|
||
auto gap = is_row_layout() ? computed_values.row_gap() : computed_values.column_gap();
|
||
return gap_to_px(gap, flex_container(), inner_cross_size(m_flex_container_state));
|
||
}
|
||
|
||
}
|