mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 17:52:26 -05:00
1022 lines
23 KiB
C++
1022 lines
23 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2021, Mițca Dumitru <dumitru0mitca@gmail.com>
|
|
* Copyright (c) 2022, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/BuiltinWrappers.h>
|
|
#include <AK/ExtraMathConstants.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/Platform.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <LibC/assert.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#ifdef __clang__
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wdouble-promotion"
|
|
#endif
|
|
|
|
template<size_t>
|
|
constexpr double e_to_power();
|
|
template<>
|
|
constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent>
|
|
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t factorial();
|
|
template<>
|
|
constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_even();
|
|
template<>
|
|
constexpr size_t product_even<2>() { return 2; }
|
|
template<size_t value>
|
|
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_odd();
|
|
template<>
|
|
constexpr size_t product_odd<1>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
|
|
|
enum class RoundingMode {
|
|
ToZero = FE_TOWARDZERO,
|
|
Up = FE_UPWARD,
|
|
Down = FE_DOWNWARD,
|
|
ToEven = FE_TONEAREST
|
|
};
|
|
|
|
template<typename T>
|
|
union FloatExtractor;
|
|
|
|
#if ARCH(I386) || ARCH(X86_64)
|
|
// This assumes long double is 80 bits, which is true with GCC on Intel platforms
|
|
template<>
|
|
union FloatExtractor<long double> {
|
|
static constexpr int mantissa_bits = 64;
|
|
static constexpr unsigned long long mantissa_max = ~0u;
|
|
static constexpr int exponent_bias = 16383;
|
|
static constexpr int exponent_bits = 15;
|
|
static constexpr unsigned exponent_max = 32767;
|
|
struct {
|
|
unsigned long long mantissa;
|
|
unsigned exponent : 15;
|
|
unsigned sign : 1;
|
|
};
|
|
long double d;
|
|
};
|
|
#endif
|
|
|
|
template<>
|
|
union FloatExtractor<double> {
|
|
static constexpr int mantissa_bits = 52;
|
|
static constexpr unsigned long long mantissa_max = (1ull << 52) - 1;
|
|
static constexpr int exponent_bias = 1023;
|
|
static constexpr int exponent_bits = 11;
|
|
static constexpr unsigned exponent_max = 2047;
|
|
struct {
|
|
unsigned long long mantissa : 52;
|
|
unsigned exponent : 11;
|
|
unsigned sign : 1;
|
|
};
|
|
double d;
|
|
};
|
|
|
|
template<>
|
|
union FloatExtractor<float> {
|
|
static constexpr int mantissa_bits = 23;
|
|
static constexpr unsigned mantissa_max = (1 << 23) - 1;
|
|
static constexpr int exponent_bias = 127;
|
|
static constexpr int exponent_bits = 8;
|
|
static constexpr unsigned exponent_max = 255;
|
|
struct {
|
|
unsigned long long mantissa : 23;
|
|
unsigned exponent : 8;
|
|
unsigned sign : 1;
|
|
};
|
|
float d;
|
|
};
|
|
|
|
// This is much branchier than it really needs to be
|
|
template<typename FloatType>
|
|
static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
|
|
{
|
|
if (!isfinite(x))
|
|
return x;
|
|
|
|
using Extractor = FloatExtractor<decltype(x)>;
|
|
Extractor extractor;
|
|
extractor.d = x;
|
|
|
|
auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
|
|
|
|
bool has_half_fraction = false;
|
|
bool has_nonhalf_fraction = false;
|
|
if (unbiased_exponent < 0) {
|
|
// it was easier to special case [0..1) as it saves us from
|
|
// handling subnormals, underflows, etc
|
|
if (unbiased_exponent == -1) {
|
|
has_half_fraction = true;
|
|
}
|
|
|
|
has_nonhalf_fraction = unbiased_exponent < -1 || extractor.mantissa != 0;
|
|
extractor.mantissa = 0;
|
|
extractor.exponent = 0;
|
|
} else {
|
|
if (unbiased_exponent >= Extractor::mantissa_bits)
|
|
return x;
|
|
|
|
auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
|
|
auto dead_mask = (1ull << dead_bitcount) - 1;
|
|
auto dead_bits = extractor.mantissa & dead_mask;
|
|
extractor.mantissa &= ~dead_mask;
|
|
|
|
auto nonhalf_fraction_mask = dead_mask >> 1;
|
|
has_nonhalf_fraction = (dead_bits & nonhalf_fraction_mask) != 0;
|
|
has_half_fraction = (dead_bits & ~nonhalf_fraction_mask) != 0;
|
|
}
|
|
|
|
bool should_round = false;
|
|
switch (rounding_mode) {
|
|
case RoundingMode::ToEven:
|
|
should_round = has_half_fraction;
|
|
break;
|
|
case RoundingMode::Up:
|
|
if (!extractor.sign)
|
|
should_round = has_nonhalf_fraction || has_half_fraction;
|
|
break;
|
|
case RoundingMode::Down:
|
|
if (extractor.sign)
|
|
should_round = has_nonhalf_fraction || has_half_fraction;
|
|
break;
|
|
case RoundingMode::ToZero:
|
|
break;
|
|
}
|
|
|
|
if (should_round) {
|
|
// We could do this ourselves, but this saves us from manually
|
|
// handling overflow.
|
|
if (extractor.sign)
|
|
extractor.d -= static_cast<FloatType>(1.0);
|
|
else
|
|
extractor.d += static_cast<FloatType>(1.0);
|
|
}
|
|
|
|
return extractor.d;
|
|
}
|
|
|
|
// This is much branchier than it really needs to be
|
|
template<typename FloatType>
|
|
static FloatType internal_nextafter(FloatType x, bool up)
|
|
{
|
|
if (!isfinite(x))
|
|
return x;
|
|
using Extractor = FloatExtractor<decltype(x)>;
|
|
Extractor extractor;
|
|
extractor.d = x;
|
|
if (x == 0) {
|
|
if (!extractor.sign) {
|
|
extractor.mantissa = 1;
|
|
extractor.sign = !up;
|
|
return extractor.d;
|
|
}
|
|
if (up) {
|
|
extractor.sign = false;
|
|
extractor.mantissa = 1;
|
|
return extractor.d;
|
|
}
|
|
extractor.mantissa = 1;
|
|
extractor.sign = up != extractor.sign;
|
|
return extractor.d;
|
|
}
|
|
if (up != extractor.sign) {
|
|
extractor.mantissa++;
|
|
if (!extractor.mantissa) {
|
|
// no need to normalize the mantissa as we just hit a power
|
|
// of two.
|
|
extractor.exponent++;
|
|
if (extractor.exponent == Extractor::exponent_max) {
|
|
extractor.exponent = Extractor::exponent_max - 1;
|
|
extractor.mantissa = Extractor::mantissa_max;
|
|
}
|
|
}
|
|
return extractor.d;
|
|
}
|
|
|
|
if (!extractor.mantissa) {
|
|
if (extractor.exponent) {
|
|
extractor.exponent--;
|
|
extractor.mantissa = Extractor::mantissa_max;
|
|
} else {
|
|
extractor.d = 0;
|
|
}
|
|
return extractor.d;
|
|
}
|
|
|
|
extractor.mantissa--;
|
|
if (extractor.mantissa != Extractor::mantissa_max)
|
|
return extractor.d;
|
|
if (extractor.exponent) {
|
|
extractor.exponent--;
|
|
// normalize
|
|
extractor.mantissa <<= 1;
|
|
} else {
|
|
if (extractor.sign) {
|
|
// Negative infinity
|
|
extractor.mantissa = 0;
|
|
extractor.exponent = Extractor::exponent_max;
|
|
}
|
|
}
|
|
return extractor.d;
|
|
}
|
|
|
|
template<typename FloatT>
|
|
static int internal_ilogb(FloatT x) NOEXCEPT
|
|
{
|
|
if (x == 0)
|
|
return FP_ILOGB0;
|
|
|
|
if (isnan(x))
|
|
return FP_ILOGNAN;
|
|
|
|
if (!isfinite(x))
|
|
return INT_MAX;
|
|
|
|
using Extractor = FloatExtractor<FloatT>;
|
|
|
|
Extractor extractor;
|
|
extractor.d = x;
|
|
|
|
return (int)extractor.exponent - Extractor::exponent_bias;
|
|
}
|
|
|
|
template<typename FloatT>
|
|
static FloatT internal_modf(FloatT x, FloatT* intpart) NOEXCEPT
|
|
{
|
|
FloatT integer_part = internal_to_integer(x, RoundingMode::ToZero);
|
|
*intpart = integer_part;
|
|
auto fraction = x - integer_part;
|
|
if (signbit(fraction) != signbit(x))
|
|
fraction = -fraction;
|
|
return fraction;
|
|
}
|
|
|
|
template<typename FloatT>
|
|
static FloatT internal_scalbn(FloatT x, int exponent) NOEXCEPT
|
|
{
|
|
if (x == 0 || !isfinite(x) || isnan(x) || exponent == 0)
|
|
return x;
|
|
|
|
using Extractor = FloatExtractor<FloatT>;
|
|
Extractor extractor;
|
|
extractor.d = x;
|
|
|
|
if (extractor.exponent != 0) {
|
|
extractor.exponent = clamp((int)extractor.exponent + exponent, 0, (int)Extractor::exponent_max);
|
|
return extractor.d;
|
|
}
|
|
|
|
unsigned leading_mantissa_zeroes = extractor.mantissa == 0 ? 32 : count_leading_zeroes(extractor.mantissa);
|
|
int shift = min((int)leading_mantissa_zeroes, exponent);
|
|
exponent = max(exponent - shift, 0);
|
|
|
|
extractor.exponent <<= shift;
|
|
extractor.exponent = exponent + 1;
|
|
|
|
return extractor.d;
|
|
}
|
|
|
|
template<typename FloatT>
|
|
static FloatT internal_copysign(FloatT x, FloatT y) NOEXCEPT
|
|
{
|
|
using Extractor = FloatExtractor<FloatT>;
|
|
Extractor ex, ey;
|
|
ex.d = x;
|
|
ey.d = y;
|
|
ex.sign = ey.sign;
|
|
return ex.d;
|
|
}
|
|
|
|
template<typename FloatT>
|
|
static FloatT internal_gamma(FloatT x) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return (FloatT)NAN;
|
|
|
|
if (x == (FloatT)0.0)
|
|
return signbit(x) ? (FloatT)-INFINITY : (FloatT)INFINITY;
|
|
|
|
if (x < (FloatT)0 && (rintl(x) == x || isinf(x)))
|
|
return (FloatT)NAN;
|
|
|
|
if (isinf(x))
|
|
return (FloatT)INFINITY;
|
|
|
|
using Extractor = FloatExtractor<FloatT>;
|
|
// These constants were obtained through use of WolframAlpha
|
|
constexpr long long max_integer_whose_factorial_fits = (Extractor::mantissa_bits == FloatExtractor<long double>::mantissa_bits ? 20 : (Extractor::mantissa_bits == FloatExtractor<double>::mantissa_bits ? 18 : (Extractor::mantissa_bits == FloatExtractor<float>::mantissa_bits ? 10 : 0)));
|
|
static_assert(max_integer_whose_factorial_fits != 0, "internal_gamma needs to be aware of the integer factorial that fits in this floating point type.");
|
|
if ((int)x == x && x <= max_integer_whose_factorial_fits + 1) {
|
|
long long result = 1;
|
|
for (long long cursor = 2; cursor < (long long)x; cursor++)
|
|
result *= cursor;
|
|
return (FloatT)result;
|
|
}
|
|
|
|
// Stirling approximation
|
|
return sqrtl(2.0 * M_PIl / static_cast<long double>(x)) * powl(static_cast<long double>(x) / M_El, static_cast<long double>(x));
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
float nanf(char const* s) NOEXCEPT
|
|
{
|
|
return __builtin_nanf(s);
|
|
}
|
|
|
|
double nan(char const* s) NOEXCEPT
|
|
{
|
|
return __builtin_nan(s);
|
|
}
|
|
|
|
long double nanl(char const* s) NOEXCEPT
|
|
{
|
|
return __builtin_nanl(s);
|
|
}
|
|
|
|
#define MAKE_AK_BACKED1(name) \
|
|
long double name##l(long double arg) NOEXCEPT \
|
|
{ \
|
|
return AK::name<long double>(arg); \
|
|
} \
|
|
double name(double arg) NOEXCEPT \
|
|
{ \
|
|
return AK::name<double>(arg); \
|
|
} \
|
|
float name##f(float arg) NOEXCEPT \
|
|
{ \
|
|
return AK::name<float>(arg); \
|
|
}
|
|
#define MAKE_AK_BACKED2(name) \
|
|
long double name##l(long double arg1, long double arg2) NOEXCEPT \
|
|
{ \
|
|
return AK::name<long double>(arg1, arg2); \
|
|
} \
|
|
double name(double arg1, double arg2) NOEXCEPT \
|
|
{ \
|
|
return AK::name<double>(arg1, arg2); \
|
|
} \
|
|
float name##f(float arg1, float arg2) NOEXCEPT \
|
|
{ \
|
|
return AK::name<float>(arg1, arg2); \
|
|
}
|
|
|
|
MAKE_AK_BACKED1(sin);
|
|
MAKE_AK_BACKED1(cos);
|
|
MAKE_AK_BACKED1(tan);
|
|
MAKE_AK_BACKED1(asin);
|
|
MAKE_AK_BACKED1(acos);
|
|
MAKE_AK_BACKED1(atan);
|
|
MAKE_AK_BACKED1(sinh);
|
|
MAKE_AK_BACKED1(cosh);
|
|
MAKE_AK_BACKED1(tanh);
|
|
MAKE_AK_BACKED1(asinh);
|
|
MAKE_AK_BACKED1(acosh);
|
|
MAKE_AK_BACKED1(atanh);
|
|
MAKE_AK_BACKED1(sqrt);
|
|
MAKE_AK_BACKED1(cbrt);
|
|
MAKE_AK_BACKED1(log);
|
|
MAKE_AK_BACKED1(log2);
|
|
MAKE_AK_BACKED1(log10);
|
|
MAKE_AK_BACKED1(exp);
|
|
MAKE_AK_BACKED1(exp2);
|
|
MAKE_AK_BACKED1(fabs);
|
|
|
|
MAKE_AK_BACKED2(atan2);
|
|
MAKE_AK_BACKED2(hypot);
|
|
MAKE_AK_BACKED2(fmod);
|
|
MAKE_AK_BACKED2(pow);
|
|
MAKE_AK_BACKED2(remainder);
|
|
|
|
long double truncl(long double x) NOEXCEPT
|
|
{
|
|
if (fabsl(x) < LONG_LONG_MAX) {
|
|
// This is 1.6 times faster than the implementation using the "internal_to_integer"
|
|
// helper (on x86_64)
|
|
// https://quick-bench.com/q/xBmxuY8am9qibSYVna90Y6PIvqA
|
|
u64 temp;
|
|
asm(
|
|
"fisttpq %[temp]\n"
|
|
"fildq %[temp]"
|
|
: "+t"(x)
|
|
: [temp] "m"(temp));
|
|
return x;
|
|
}
|
|
|
|
return internal_to_integer(x, RoundingMode::ToZero);
|
|
}
|
|
|
|
double trunc(double x) NOEXCEPT
|
|
{
|
|
if (fabs(x) < LONG_LONG_MAX) {
|
|
u64 temp;
|
|
asm(
|
|
"fisttpq %[temp]\n"
|
|
"fildq %[temp]"
|
|
: "+t"(x)
|
|
: [temp] "m"(temp));
|
|
return x;
|
|
}
|
|
|
|
return internal_to_integer(x, RoundingMode::ToZero);
|
|
}
|
|
|
|
float truncf(float x) NOEXCEPT
|
|
{
|
|
if (fabsf(x) < LONG_LONG_MAX) {
|
|
u64 temp;
|
|
asm(
|
|
"fisttpq %[temp]\n"
|
|
"fildq %[temp]"
|
|
: "+t"(x)
|
|
: [temp] "m"(temp));
|
|
return x;
|
|
}
|
|
|
|
return internal_to_integer(x, RoundingMode::ToZero);
|
|
}
|
|
|
|
long double rintl(long double value)
|
|
{
|
|
double res;
|
|
asm(
|
|
"frndint\n"
|
|
: "=t"(res)
|
|
: "0"(value));
|
|
return res;
|
|
}
|
|
double rint(double value)
|
|
{
|
|
double res;
|
|
asm(
|
|
"frndint\n"
|
|
: "=t"(res)
|
|
: "0"(value));
|
|
return res;
|
|
}
|
|
float rintf(float value)
|
|
{
|
|
double res;
|
|
asm(
|
|
"frndint\n"
|
|
: "=t"(res)
|
|
: "0"(value));
|
|
return res;
|
|
}
|
|
|
|
long lrintl(long double value)
|
|
{
|
|
long res;
|
|
asm(
|
|
"fistpl %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
long lrint(double value)
|
|
{
|
|
long res;
|
|
asm(
|
|
"fistpl %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
long lrintf(float value)
|
|
{
|
|
long res;
|
|
asm(
|
|
"fistpl %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
|
|
long long llrintl(long double value)
|
|
{
|
|
long long res;
|
|
asm(
|
|
"fistpq %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
long long llrint(double value)
|
|
{
|
|
long long res;
|
|
asm(
|
|
"fistpq %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
long long llrintf(float value)
|
|
{
|
|
long long res;
|
|
asm(
|
|
"fistpq %0\n"
|
|
: "+m"(res)
|
|
: "t"(value)
|
|
: "st");
|
|
return res;
|
|
}
|
|
|
|
// On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn
|
|
long double ldexpl(long double x, int exp) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exp);
|
|
}
|
|
|
|
double ldexp(double x, int exp) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exp);
|
|
}
|
|
|
|
float ldexpf(float x, int exp) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exp);
|
|
}
|
|
|
|
[[maybe_unused]] static long double ampsin(long double angle) NOEXCEPT
|
|
{
|
|
long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI;
|
|
long double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
long double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
long double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
int ilogbl(long double x) NOEXCEPT
|
|
{
|
|
return internal_ilogb(x);
|
|
}
|
|
|
|
int ilogb(double x) NOEXCEPT
|
|
{
|
|
return internal_ilogb(x);
|
|
}
|
|
|
|
int ilogbf(float x) NOEXCEPT
|
|
{
|
|
return internal_ilogb(x);
|
|
}
|
|
|
|
long double logbl(long double x) NOEXCEPT
|
|
{
|
|
return ilogbl(x);
|
|
}
|
|
|
|
double logb(double x) NOEXCEPT
|
|
{
|
|
return ilogb(x);
|
|
}
|
|
|
|
float logbf(float x) NOEXCEPT
|
|
{
|
|
return ilogbf(x);
|
|
}
|
|
|
|
double frexp(double x, int* exp) NOEXCEPT
|
|
{
|
|
*exp = (x == 0) ? 0 : (1 + ilogb(x));
|
|
return scalbn(x, -(*exp));
|
|
}
|
|
|
|
float frexpf(float x, int* exp) NOEXCEPT
|
|
{
|
|
*exp = (x == 0) ? 0 : (1 + ilogbf(x));
|
|
return scalbnf(x, -(*exp));
|
|
}
|
|
|
|
long double frexpl(long double x, int* exp) NOEXCEPT
|
|
{
|
|
*exp = (x == 0) ? 0 : (1 + ilogbl(x));
|
|
return scalbnl(x, -(*exp));
|
|
}
|
|
|
|
double round(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
float roundf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long double roundl(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long lroundf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long lround(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long lroundl(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long long llroundf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long long llround(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
long long llroundd(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
float floorf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Down);
|
|
}
|
|
|
|
double floor(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Down);
|
|
}
|
|
|
|
long double floorl(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Down);
|
|
}
|
|
|
|
float ceilf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Up);
|
|
}
|
|
|
|
double ceil(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Up);
|
|
}
|
|
|
|
long double ceill(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Up);
|
|
}
|
|
|
|
long double modfl(long double x, long double* intpart) NOEXCEPT
|
|
{
|
|
return internal_modf(x, intpart);
|
|
}
|
|
|
|
double modf(double x, double* intpart) NOEXCEPT
|
|
{
|
|
return internal_modf(x, intpart);
|
|
}
|
|
|
|
float modff(float x, float* intpart) NOEXCEPT
|
|
{
|
|
return internal_modf(x, intpart);
|
|
}
|
|
|
|
double gamma(double x) NOEXCEPT
|
|
{
|
|
// Stirling approximation
|
|
return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
|
|
}
|
|
|
|
long double tgammal(long double value) NOEXCEPT
|
|
{
|
|
return internal_gamma(value);
|
|
}
|
|
|
|
double tgamma(double value) NOEXCEPT
|
|
{
|
|
return internal_gamma(value);
|
|
}
|
|
|
|
float tgammaf(float value) NOEXCEPT
|
|
{
|
|
return internal_gamma(value);
|
|
}
|
|
|
|
int signgam = 0;
|
|
|
|
long double lgammal(long double value) NOEXCEPT
|
|
{
|
|
return lgammal_r(value, &signgam);
|
|
}
|
|
|
|
double lgamma(double value) NOEXCEPT
|
|
{
|
|
return lgamma_r(value, &signgam);
|
|
}
|
|
|
|
float lgammaf(float value) NOEXCEPT
|
|
{
|
|
return lgammaf_r(value, &signgam);
|
|
}
|
|
|
|
long double lgammal_r(long double value, int* sign) NOEXCEPT
|
|
{
|
|
if (value == 1.0 || value == 2.0)
|
|
return 0.0;
|
|
if (isinf(value) || value == 0.0)
|
|
return INFINITY;
|
|
long double result = logl(internal_gamma(value));
|
|
*sign = signbit(result) ? -1 : 1;
|
|
return result;
|
|
}
|
|
|
|
double lgamma_r(double value, int* sign) NOEXCEPT
|
|
{
|
|
if (value == 1.0 || value == 2.0)
|
|
return 0.0;
|
|
if (isinf(value) || value == 0.0)
|
|
return INFINITY;
|
|
double result = log(internal_gamma(value));
|
|
*sign = signbit(result) ? -1 : 1;
|
|
return result;
|
|
}
|
|
|
|
float lgammaf_r(float value, int* sign) NOEXCEPT
|
|
{
|
|
if (value == 1.0f || value == 2.0f)
|
|
return 0.0;
|
|
if (isinf(value) || value == 0.0f)
|
|
return INFINITY;
|
|
float result = logf(internal_gamma(value));
|
|
*sign = signbit(result) ? -1 : 1;
|
|
return result;
|
|
}
|
|
|
|
long double expm1l(long double x) NOEXCEPT
|
|
{
|
|
return expl(x) - 1;
|
|
}
|
|
|
|
double expm1(double x) NOEXCEPT
|
|
{
|
|
return exp(x) - 1;
|
|
}
|
|
|
|
float expm1f(float x) NOEXCEPT
|
|
{
|
|
return expf(x) - 1;
|
|
}
|
|
|
|
long double log1pl(long double x) NOEXCEPT
|
|
{
|
|
return logl(1 + x);
|
|
}
|
|
|
|
double log1p(double x) NOEXCEPT
|
|
{
|
|
return log(1 + x);
|
|
}
|
|
|
|
float log1pf(float x) NOEXCEPT
|
|
{
|
|
return logf(1 + x);
|
|
}
|
|
|
|
long double erfl(long double x) NOEXCEPT
|
|
{
|
|
// algorithm taken from Abramowitz and Stegun (no. 26.2.17)
|
|
long double t = 1 / (1 + 0.47047l * fabsl(x));
|
|
long double poly = t * (0.3480242l + t * (-0.958798l + t * 0.7478556l));
|
|
long double answer = 1 - poly * expl(-x * x);
|
|
if (x < 0)
|
|
return -answer;
|
|
|
|
return answer;
|
|
}
|
|
|
|
double erf(double x) NOEXCEPT
|
|
{
|
|
return (double)erfl(x);
|
|
}
|
|
|
|
float erff(float x) NOEXCEPT
|
|
{
|
|
return (float)erf(x);
|
|
}
|
|
|
|
long double erfcl(long double x) NOEXCEPT
|
|
{
|
|
return 1 - erfl(x);
|
|
}
|
|
|
|
double erfc(double x) NOEXCEPT
|
|
{
|
|
return 1 - erf(x);
|
|
}
|
|
|
|
float erfcf(float x) NOEXCEPT
|
|
{
|
|
return 1 - erff(x);
|
|
}
|
|
|
|
double nextafter(double x, double target) NOEXCEPT
|
|
{
|
|
if (x == target)
|
|
return target;
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
float nextafterf(float x, float target) NOEXCEPT
|
|
{
|
|
if (x == target)
|
|
return target;
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
long double nextafterl(long double x, long double target) NOEXCEPT
|
|
{
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
double nexttoward(double x, long double target) NOEXCEPT
|
|
{
|
|
if (x == target)
|
|
return target;
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
float nexttowardf(float x, long double target) NOEXCEPT
|
|
{
|
|
if (x == target)
|
|
return target;
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
long double nexttowardl(long double x, long double target) NOEXCEPT
|
|
{
|
|
if (x == target)
|
|
return target;
|
|
return internal_nextafter(x, target >= x);
|
|
}
|
|
|
|
float copysignf(float x, float y) NOEXCEPT
|
|
{
|
|
return internal_copysign(x, y);
|
|
}
|
|
|
|
double copysign(double x, double y) NOEXCEPT
|
|
{
|
|
return internal_copysign(x, y);
|
|
}
|
|
|
|
long double copysignl(long double x, long double y) NOEXCEPT
|
|
{
|
|
return internal_copysign(x, y);
|
|
}
|
|
|
|
float scalbnf(float x, int exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
double scalbn(double x, int exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
long double scalbnl(long double x, int exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
float scalbnlf(float x, long exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
double scalbln(double x, long exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
long double scalblnl(long double x, long exponent) NOEXCEPT
|
|
{
|
|
return internal_scalbn(x, exponent);
|
|
}
|
|
|
|
long double fmaxl(long double x, long double y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x > y ? x : y;
|
|
}
|
|
|
|
double fmax(double x, double y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x > y ? x : y;
|
|
}
|
|
|
|
float fmaxf(float x, float y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x > y ? x : y;
|
|
}
|
|
|
|
long double fminl(long double x, long double y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x < y ? x : y;
|
|
}
|
|
|
|
double fmin(double x, double y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x < y ? x : y;
|
|
}
|
|
|
|
float fminf(float x, float y) NOEXCEPT
|
|
{
|
|
if (isnan(x))
|
|
return y;
|
|
if (isnan(y))
|
|
return x;
|
|
|
|
return x < y ? x : y;
|
|
}
|
|
|
|
long double nearbyintl(long double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode { fegetround() });
|
|
}
|
|
|
|
double nearbyint(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode { fegetround() });
|
|
}
|
|
|
|
float nearbyintf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode { fegetround() });
|
|
}
|
|
}
|
|
|
|
#ifdef __clang__
|
|
# pragma clang diagnostic pop
|
|
#endif
|