ladybird/Userland/Libraries/LibEDID/EDID.cpp
Nico Weber 2af028132a AK+Everywhere: Add AK_COMPILER_{GCC,CLANG} and use them most places
Doesn't use them in libc headers so that those don't have to pull in
AK/Platform.h.

AK_COMPILER_GCC is set _only_ for gcc, not for clang too. (__GNUC__ is
defined in clang builds as well.) Using AK_COMPILER_GCC simplifies
things some.

AK_COMPILER_CLANG isn't as much of a win, other than that it's
consistent with AK_COMPILER_GCC.
2022-10-04 23:35:07 +01:00

1133 lines
44 KiB
C++

/*
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include <AK/QuickSort.h>
#include <LibEDID/EDID.h>
#ifndef KERNEL
# include <AK/ScopeGuard.h>
# include <Kernel/API/Graphics.h>
# include <fcntl.h>
# include <unistd.h>
# ifdef ENABLE_PNP_IDS_DATA
# include <LibEDID/PnpIDs.h>
# endif
#endif
namespace EDID {
// clang doesn't like passing around pointers to members in packed structures,
// even though we're only using them for arithmetic purposes
#if defined(AK_COMPILER_CLANG)
# pragma clang diagnostic ignored "-Waddress-of-packed-member"
#endif
static_assert(sizeof(Definitions::EDID) == Parser::BufferSize);
class CEA861ExtensionBlock final {
friend class Parser;
public:
enum class DataBlockTag : u8 {
Reserved = 0,
Audio,
Video,
VendorSpecific,
SpeakerAllocation,
VesaDTC,
Reserved2,
Extended
};
ErrorOr<IterationDecision> for_each_short_video_descriptor(Function<IterationDecision(bool, VIC::Details const&)> callback) const
{
return for_each_data_block([&](DataBlockTag tag, ReadonlyBytes bytes) -> ErrorOr<IterationDecision> {
if (tag != DataBlockTag::Video)
return IterationDecision::Continue;
// Short video descriptors are one byte values
for (size_t i = 0; i < bytes.size(); i++) {
u8 byte = m_edid.read_host(&bytes[i]);
bool is_native = (byte & 0x80) != 0;
u8 vic_id = byte & 0x7f;
auto* vic_details = VIC::find_details_by_vic_id(vic_id);
if (!vic_details)
return Error::from_string_literal("CEA 861 extension block has invalid short video descriptor");
IterationDecision decision = callback(is_native, *vic_details);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
ErrorOr<IterationDecision> for_each_dtd(Function<IterationDecision(Parser::DetailedTiming const&)> callback) const
{
u8 dtd_start = m_edid.read_host(&m_block->cea861extension.dtd_start_offset);
if (dtd_start < 4) {
// dtd_start == 4 means there are no data blocks, but there are still DTDs
return IterationDecision::Continue;
}
if (dtd_start > offsetof(Definitions::ExtensionBlock, checksum) - sizeof(Definitions::DetailedTiming))
return Error::from_string_literal("CEA 861 extension block has invalid DTD list");
for (size_t offset = dtd_start; offset <= offsetof(Definitions::ExtensionBlock, checksum) - sizeof(Definitions::DetailedTiming); offset += sizeof(Definitions::DetailedTiming)) {
auto& dtd = *(Definitions::DetailedTiming const*)((u8 const*)m_block + offset);
if (m_edid.read_host(&dtd.pixel_clock) == 0)
break;
IterationDecision decision = callback(Parser::DetailedTiming(m_edid, &dtd));
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
private:
CEA861ExtensionBlock(Parser const& edid, Definitions::ExtensionBlock const* block)
: m_edid(edid)
, m_block(block)
{
}
ErrorOr<IterationDecision> for_each_data_block(Function<ErrorOr<IterationDecision>(DataBlockTag, ReadonlyBytes)> callback) const
{
u8 dtd_start = m_edid.read_host(&m_block->cea861extension.dtd_start_offset);
if (dtd_start <= 4)
return IterationDecision::Continue;
if (dtd_start > offsetof(Definitions::ExtensionBlock, checksum))
return Error::from_string_literal("CEA 861 extension block has invalid DTD start offset");
auto* data_block_header = &m_block->cea861extension.bytes[0];
auto* data_block_end = (u8 const*)m_block + dtd_start;
while (data_block_header < data_block_end) {
auto header_byte = m_edid.read_host(data_block_header);
size_t payload_size = header_byte & 0x1f;
auto tag = (DataBlockTag)((header_byte >> 5) & 0x7);
if (tag == DataBlockTag::Extended && payload_size == 0)
return Error::from_string_literal("CEA 861 extension block has invalid extended data block size");
auto decision = TRY(callback(tag, m_edid.m_bytes.slice(data_block_header - m_edid.m_bytes.data() + 1, payload_size)));
if (decision != IterationDecision::Continue)
return decision;
data_block_header += 1 + payload_size;
}
return IterationDecision::Continue;
}
ErrorOr<IterationDecision> for_each_display_descriptor(Function<IterationDecision(u8, Definitions::DisplayDescriptor const&)> callback) const
{
u8 dtd_start = m_edid.read_host(&m_block->cea861extension.dtd_start_offset);
if (dtd_start <= 4)
return IterationDecision::Continue;
if (dtd_start > offsetof(Definitions::ExtensionBlock, checksum) - sizeof(Definitions::DetailedTiming))
return Error::from_string_literal("CEA 861 extension block has invalid DTD list");
for (size_t offset = dtd_start; offset <= offsetof(Definitions::ExtensionBlock, checksum) - sizeof(Definitions::DisplayDescriptor); offset += sizeof(Definitions::DisplayDescriptor)) {
auto& dd = *(Definitions::DisplayDescriptor const*)((u8 const*)m_block + offset);
if (m_edid.read_host(&dd.zero) != 0 || m_edid.read_host(&dd.reserved1) != 0)
continue;
u8 tag = m_edid.read_host(&dd.tag);
IterationDecision decision = callback(tag, dd);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
Parser const& m_edid;
Definitions::ExtensionBlock const* m_block;
};
template<typename T>
T Parser::read_host(T const* field) const
{
VERIFY((u8 const*)field >= m_bytes.data() && (u8 const*)field + sizeof(T) <= m_bytes.data() + m_bytes.size());
size_t offset = (u8 const*)field - m_bytes.data();
T value;
if constexpr (sizeof(T) > 1)
ByteReader::load(m_bytes.offset(offset), value);
else
value = m_bytes.at(offset);
return value;
}
template<typename T>
requires(IsIntegral<T> && sizeof(T) > 1) T Parser::read_le(T const* field)
const
{
static_assert(sizeof(T) > 1);
return AK::convert_between_host_and_little_endian(read_host(field));
}
template<typename T>
requires(IsIntegral<T> && sizeof(T) > 1) T Parser::read_be(T const* field)
const
{
static_assert(sizeof(T) > 1);
return AK::convert_between_host_and_big_endian(read_host(field));
}
ErrorOr<Parser> Parser::from_bytes(ReadonlyBytes bytes)
{
Parser edid(bytes);
if (auto parse_result = edid.parse(); parse_result.is_error())
return parse_result.error();
return edid;
}
ErrorOr<Parser> Parser::from_bytes(ByteBuffer&& bytes)
{
Parser edid(move(bytes));
if (auto parse_result = edid.parse(); parse_result.is_error())
return parse_result.error();
return edid;
}
#ifndef KERNEL
ErrorOr<Parser> Parser::from_display_connector_device(int display_connector_fd)
{
RawBytes edid_bytes;
GraphicsHeadEDID edid_info {};
edid_info.bytes = &edid_bytes[0];
edid_info.bytes_size = sizeof(edid_bytes);
if (graphics_connector_get_head_edid(display_connector_fd, &edid_info) < 0) {
int err = errno;
if (err == EOVERFLOW) {
// We need a bigger buffer with at least bytes_size bytes
auto edid_byte_buffer = TRY(ByteBuffer::create_zeroed(edid_info.bytes_size));
edid_info.bytes = edid_byte_buffer.data();
if (graphics_connector_get_head_edid(display_connector_fd, &edid_info) < 0) {
err = errno;
return Error::from_errno(err);
}
return from_bytes(move(edid_byte_buffer));
}
return Error::from_errno(err);
}
auto edid_byte_buffer = TRY(ByteBuffer::copy((void const*)edid_bytes, sizeof(edid_bytes)));
return from_bytes(move(edid_byte_buffer));
}
ErrorOr<Parser> Parser::from_display_connector_device(String const& display_connector_device)
{
int display_connector_fd = open(display_connector_device.characters(), O_RDWR | O_CLOEXEC);
if (display_connector_fd < 0) {
int err = errno;
return Error::from_errno(err);
}
ScopeGuard fd_guard([&] {
close(display_connector_fd);
});
return from_display_connector_device(display_connector_fd);
}
#endif
Parser::Parser(ReadonlyBytes bytes)
: m_bytes(move(bytes))
{
}
Parser::Parser(ByteBuffer&& bytes)
: m_bytes_buffer(move(bytes))
, m_bytes(m_bytes_buffer)
{
}
Parser::Parser(Parser const& other)
: m_bytes_buffer(other.m_bytes_buffer)
, m_revision(other.m_revision)
{
if (m_bytes_buffer.is_empty())
m_bytes = other.m_bytes_buffer; // We don't own the buffer
else
m_bytes = m_bytes_buffer; // We own the buffer
}
Parser& Parser::operator=(Parser&& from)
{
m_bytes_buffer = move(from.m_bytes_buffer);
m_bytes = move(from.m_bytes);
m_revision = from.m_revision;
return *this;
}
Parser& Parser::operator=(Parser const& other)
{
if (this == &other)
return *this;
m_bytes_buffer = other.m_bytes_buffer;
if (m_bytes_buffer.is_empty())
m_bytes = other.m_bytes_buffer; // We don't own the buffer
else
m_bytes = m_bytes_buffer; // We own the buffer
m_revision = other.m_revision;
return *this;
}
bool Parser::operator==(Parser const& other) const
{
if (this == &other)
return true;
return m_bytes == other.m_bytes;
}
Definitions::EDID const& Parser::raw_edid() const
{
return *(Definitions::EDID const*)m_bytes.data();
}
ErrorOr<void> Parser::parse()
{
if (m_bytes.size() < sizeof(Definitions::EDID))
return Error::from_string_literal("Incomplete Parser structure");
auto const& edid = raw_edid();
u64 header = read_le(&edid.header);
if (header != 0x00ffffffffffff00ull)
return Error::from_string_literal("No Parser header");
u8 major_version = read_host(&edid.version.version);
m_revision = read_host(&edid.version.revision);
if (major_version != 1 || m_revision > 4)
return Error::from_string_literal("Unsupported Parser version");
#ifdef KERNEL
m_version = TRY(Kernel::KString::formatted("1.{}", (int)m_revision));
#else
m_version = String::formatted("1.{}", (int)m_revision);
#endif
u8 checksum = 0x0;
for (size_t i = 0; i < sizeof(Definitions::EDID); i++)
checksum += m_bytes[i];
if (checksum != 0) {
if (m_revision >= 4) {
return Error::from_string_literal("Parser checksum mismatch");
} else {
dbgln("EDID checksum mismatch, data may be corrupted!");
}
}
u16 packed_id = read_be(&raw_edid().vendor.manufacturer_id);
if (packed_id == 0x0)
return {};
m_legacy_manufacturer_id[0] = (char)((u16)'A' + ((packed_id >> 10) & 0x1f) - 1);
m_legacy_manufacturer_id[1] = (char)((u16)'A' + ((packed_id >> 5) & 0x1f) - 1);
m_legacy_manufacturer_id[2] = (char)((u16)'A' + (packed_id & 0x1f) - 1);
m_legacy_manufacturer_id[3] = '\0';
m_legacy_manufacturer_id_valid = true;
return {};
}
ErrorOr<IterationDecision> Parser::for_each_extension_block(Function<IterationDecision(unsigned, u8, u8, ReadonlyBytes)> callback) const
{
auto& edid = raw_edid();
u8 raw_extension_block_count = read_host(&edid.extension_block_count);
if (raw_extension_block_count == 0)
return IterationDecision::Continue;
if (sizeof(Definitions::EDID) + (size_t)raw_extension_block_count * sizeof(Definitions::ExtensionBlock) > m_bytes.size())
return Error::from_string_literal("Truncated EDID");
auto validate_block_checksum = [&](Definitions::ExtensionBlock const& block) {
u8 checksum = 0x0;
auto* bytes = (u8 const*)&block;
for (size_t i = 0; i < sizeof(block); i++)
checksum += bytes[i];
return checksum == 0;
};
auto* raw_extension_blocks = (Definitions::ExtensionBlock const*)(m_bytes.data() + sizeof(Definitions::EDID));
Definitions::ExtensionBlock const* current_extension_map = nullptr;
unsigned raw_index = 0;
if (m_revision <= 3) {
if (raw_extension_block_count > 1) {
current_extension_map = &raw_extension_blocks[0];
raw_index++;
if (read_host(&current_extension_map->tag) != (u8)Definitions::ExtensionBlockTag::ExtensionBlockMap)
return Error::from_string_literal("Did not find extension map at block 1");
if (!validate_block_checksum(*current_extension_map))
return Error::from_string_literal("Extension block map checksum mismatch");
}
} else if (read_host(&raw_extension_blocks[0].tag) == (u8)Definitions::ExtensionBlockTag::ExtensionBlockMap) {
current_extension_map = &raw_extension_blocks[0];
raw_index++;
}
for (; raw_index < raw_extension_block_count; raw_index++) {
auto& raw_block = raw_extension_blocks[raw_index];
u8 tag = read_host(&raw_block.tag);
if (current_extension_map && raw_index == 127) {
if (tag != (u8)Definitions::ExtensionBlockTag::ExtensionBlockMap)
return Error::from_string_literal("Did not find extension map at block 128");
current_extension_map = &raw_extension_blocks[127];
if (!validate_block_checksum(*current_extension_map))
return Error::from_string_literal("Extension block map checksum mismatch");
continue;
}
if (tag == (u8)Definitions::ExtensionBlockTag::ExtensionBlockMap)
return Error::from_string_literal("Unexpected extension map encountered");
if (!validate_block_checksum(raw_block))
return Error::from_string_literal("Extension block checksum mismatch");
size_t offset = (u8 const*)&raw_block - m_bytes.data();
IterationDecision decision = callback(raw_index + 1, tag, raw_block.block.revision, m_bytes.slice(offset, sizeof(Definitions::ExtensionBlock)));
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
StringView Parser::version() const
{
#ifdef KERNEL
return m_version->view();
#else
return m_version;
#endif
}
StringView Parser::legacy_manufacturer_id() const
{
return { m_legacy_manufacturer_id, strlen(m_legacy_manufacturer_id) };
}
#ifndef KERNEL
String Parser::manufacturer_name() const
{
if (!m_legacy_manufacturer_id_valid)
return "Unknown";
auto manufacturer_id = legacy_manufacturer_id();
# ifdef ENABLE_PNP_IDS_DATA
if (auto pnp_id_data = PnpIDs::find_by_manufacturer_id(manufacturer_id); pnp_id_data.has_value())
return pnp_id_data.value().manufacturer_name;
# endif
return manufacturer_id;
}
#endif
u16 Parser::product_code() const
{
return read_le(&raw_edid().vendor.product_code);
}
u32 Parser::serial_number() const
{
return read_le(&raw_edid().vendor.serial_number);
}
auto Parser::digital_display() const -> Optional<DigitalDisplay>
{
auto& edid = raw_edid();
u8 video_input_definition = read_host(&edid.basic_display_parameters.video_input_definition);
if (!(video_input_definition & 0x80))
return {}; // This is an analog display
u8 feature_support = read_host(&edid.basic_display_parameters.feature_support);
return DigitalDisplay(video_input_definition, feature_support, m_revision);
}
auto Parser::analog_display() const -> Optional<AnalogDisplay>
{
auto& edid = raw_edid();
u8 video_input_definition = read_host(&edid.basic_display_parameters.video_input_definition);
if ((video_input_definition & 0x80) != 0)
return {}; // This is a digital display
u8 feature_support = read_host(&edid.basic_display_parameters.feature_support);
return AnalogDisplay(video_input_definition, feature_support, m_revision);
}
auto Parser::screen_size() const -> Optional<ScreenSize>
{
auto& edid = raw_edid();
u8 horizontal_size_or_aspect_ratio = read_host(&edid.basic_display_parameters.horizontal_size_or_aspect_ratio);
u8 vertical_size_or_aspect_ratio = read_host(&edid.basic_display_parameters.vertical_size_or_aspect_ratio);
if (horizontal_size_or_aspect_ratio == 0 || vertical_size_or_aspect_ratio == 0) {
// EDID < 1.4: Unknown or undefined
// EDID >= 1.4: If both are 0 it is unknown or undefined
// If one of them is 0 then we're dealing with aspect ratios
return {};
}
return ScreenSize(horizontal_size_or_aspect_ratio, vertical_size_or_aspect_ratio);
}
auto Parser::aspect_ratio() const -> Optional<ScreenAspectRatio>
{
if (m_revision < 4)
return {};
auto& edid = raw_edid();
u8 value_1 = read_host(&edid.basic_display_parameters.horizontal_size_or_aspect_ratio);
u8 value_2 = read_host(&edid.basic_display_parameters.vertical_size_or_aspect_ratio);
if (value_1 == 0 && value_2 == 0)
return {}; // Unknown or undefined
if (value_1 != 0 && value_2 != 0)
return {}; // Dimensions are in cm
if (value_1 == 0)
return ScreenAspectRatio(ScreenAspectRatio::Orientation::Portrait, FixedPoint<16>(100) / FixedPoint<16>((i32)value_2 + 99));
VERIFY(value_2 == 0);
return ScreenAspectRatio(ScreenAspectRatio::Orientation::Landscape, FixedPoint<16>((i32)value_1 + 99) / 100);
}
Optional<FixedPoint<16>> Parser::gamma() const
{
u8 display_transfer_characteristics = read_host(&raw_edid().basic_display_parameters.display_transfer_characteristics);
if (display_transfer_characteristics == 0xff) {
if (m_revision < 4)
return {};
// TODO: EDID >= 1.4 stores more gamma details in an extension block (e.g. DI-EXT)
return {};
}
FixedPoint<16> gamma { (i32)display_transfer_characteristics + 100 };
gamma /= 100;
return gamma;
}
u32 Parser::DetailedTiming::pixel_clock_khz() const
{
// Note: The stored value is in units of 10 kHz, which means that to get the
// value in kHz, we need to multiply it by 10.
return (u32)m_edid.read_le(&m_detailed_timings.pixel_clock) * 10;
}
u16 Parser::DetailedTiming::horizontal_addressable_pixels() const
{
u8 low = m_edid.read_host(&m_detailed_timings.horizontal_addressable_pixels_low);
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_addressable_and_blanking_pixels_high) >> 4;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::horizontal_blanking_pixels() const
{
u8 low = m_edid.read_host(&m_detailed_timings.horizontal_blanking_pixels_low);
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_addressable_and_blanking_pixels_high) & 0xf;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::vertical_addressable_lines_raw() const
{
u8 low = m_edid.read_host(&m_detailed_timings.vertical_addressable_lines_low);
u8 high = m_edid.read_host(&m_detailed_timings.vertical_addressable_and_blanking_lines_high) >> 4;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::vertical_addressable_lines() const
{
auto lines = vertical_addressable_lines_raw();
return is_interlaced() ? lines * 2 : lines;
}
u16 Parser::DetailedTiming::vertical_blanking_lines() const
{
u8 low = m_edid.read_host(&m_detailed_timings.vertical_blanking_lines_low);
u8 high = m_edid.read_host(&m_detailed_timings.vertical_addressable_and_blanking_lines_high) & 0xf;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::horizontal_front_porch_pixels() const
{
u8 low = m_edid.read_host(&m_detailed_timings.horizontal_front_porch_pixels_low);
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_and_vertical_front_porch_sync_pulse_width_high) >> 6;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::horizontal_sync_pulse_width_pixels() const
{
u8 low = m_edid.read_host(&m_detailed_timings.horizontal_sync_pulse_width_pixels_low);
u8 high = (m_edid.read_host(&m_detailed_timings.horizontal_and_vertical_front_porch_sync_pulse_width_high) >> 4) & 3;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::vertical_front_porch_lines() const
{
u8 low = m_edid.read_host(&m_detailed_timings.vertical_front_porch_and_sync_pulse_width_lines_low) >> 4;
u8 high = (m_edid.read_host(&m_detailed_timings.horizontal_and_vertical_front_porch_sync_pulse_width_high) >> 2) & 3;
return ((u16)high << 4) | (u16)low;
}
u16 Parser::DetailedTiming::vertical_sync_pulse_width_lines() const
{
u8 low = m_edid.read_host(&m_detailed_timings.vertical_front_porch_and_sync_pulse_width_lines_low) & 0xf;
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_and_vertical_front_porch_sync_pulse_width_high) & 3;
return ((u16)high << 4) | (u16)low;
}
u16 Parser::DetailedTiming::horizontal_image_size_mm() const
{
u8 low = m_edid.read_host(&m_detailed_timings.horizontal_addressable_image_size_mm_low);
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_vertical_addressable_image_size_mm_high) >> 4;
return ((u16)high << 8) | (u16)low;
}
u16 Parser::DetailedTiming::vertical_image_size_mm() const
{
u8 low = m_edid.read_host(&m_detailed_timings.vertical_addressable_image_size_mm_low);
u8 high = m_edid.read_host(&m_detailed_timings.horizontal_vertical_addressable_image_size_mm_high) & 0xf;
return ((u16)high << 8) | (u16)low;
}
u8 Parser::DetailedTiming::horizontal_right_or_left_border_pixels() const
{
return m_edid.read_host(&m_detailed_timings.right_or_left_horizontal_border_pixels);
}
u8 Parser::DetailedTiming::vertical_top_or_bottom_border_lines() const
{
return m_edid.read_host(&m_detailed_timings.top_or_bottom_vertical_border_lines);
}
bool Parser::DetailedTiming::is_interlaced() const
{
return (m_edid.read_host(&m_detailed_timings.features) & (1 << 7)) != 0;
}
FixedPoint<16, u32> Parser::DetailedTiming::refresh_rate() const
{
// Blanking = front porch + sync pulse width + back porch
u32 total_horizontal_pixels = (u32)horizontal_addressable_pixels() + (u32)horizontal_blanking_pixels();
u32 total_vertical_lines = (u32)vertical_addressable_lines_raw() + (u32)vertical_blanking_lines();
u32 total_pixels = total_horizontal_pixels * total_vertical_lines;
if (total_pixels == 0)
return {};
// Use a bigger fixed point representation due to the large numbers involved and then downcast
// Note: We need to convert the pixel clock from kHz to Hertz to actually calculate this correctly.
return FixedPoint<32, u64>(pixel_clock_khz() * 1000) / total_pixels;
}
ErrorOr<IterationDecision> Parser::for_each_established_timing(Function<IterationDecision(EstablishedTiming const&)> callback) const
{
static constexpr EstablishedTiming established_timing_byte1[8] = {
{ EstablishedTiming::Source::VESA, 800, 600, 60, 0x9 },
{ EstablishedTiming::Source::VESA, 800, 600, 56, 0x8 },
{ EstablishedTiming::Source::VESA, 640, 480, 75, 0x6 },
{ EstablishedTiming::Source::VESA, 640, 480, 73, 0x5 },
{ EstablishedTiming::Source::Apple, 640, 480, 67 },
{ EstablishedTiming::Source::IBM, 640, 480, 60, 0x4 },
{ EstablishedTiming::Source::IBM, 720, 400, 88 },
{ EstablishedTiming::Source::IBM, 720, 400, 70 }
};
static constexpr EstablishedTiming established_timing_byte2[8] = {
{ EstablishedTiming::Source::VESA, 1280, 1024, 75, 0x24 },
{ EstablishedTiming::Source::VESA, 1024, 768, 75, 0x12 },
{ EstablishedTiming::Source::VESA, 1024, 768, 70, 0x11 },
{ EstablishedTiming::Source::VESA, 1024, 768, 60, 0x10 },
{ EstablishedTiming::Source::IBM, 1024, 768, 87, 0xf },
{ EstablishedTiming::Source::Apple, 832, 624, 75 },
{ EstablishedTiming::Source::VESA, 800, 600, 75, 0xb },
{ EstablishedTiming::Source::VESA, 800, 600, 72, 0xa }
};
static constexpr EstablishedTiming established_timing_byte3[1] = {
{ EstablishedTiming::Source::Apple, 1152, 870, 75 }
};
auto& established_timings = raw_edid().established_timings;
for (int i = 7; i >= 0; i--) {
if (!(established_timings.timings_1 & (1 << i)))
continue;
IterationDecision decision = callback(established_timing_byte1[i]);
if (decision != IterationDecision::Continue)
return decision;
}
for (int i = 7; i >= 0; i--) {
if (!(established_timings.timings_2 & (1 << i)))
continue;
IterationDecision decision = callback(established_timing_byte2[i]);
if (decision != IterationDecision::Continue)
return decision;
}
if ((established_timings.manufacturer_reserved & (1 << 7)) != 0) {
IterationDecision decision = callback(established_timing_byte3[0]);
if (decision != IterationDecision::Continue)
return decision;
}
u8 manufacturer_specific = established_timings.manufacturer_reserved & 0x7f;
if (manufacturer_specific != 0) {
IterationDecision decision = callback(EstablishedTiming(EstablishedTiming::Source::Manufacturer, 0, 0, manufacturer_specific));
if (decision != IterationDecision::Continue)
return decision;
}
auto callback_decision = IterationDecision::Continue;
auto result = for_each_display_descriptor([&](u8 descriptor_tag, auto& display_descriptor) {
if (descriptor_tag != (u8)Definitions::DisplayDescriptorTag::EstablishedTimings3)
return IterationDecision::Continue;
static constexpr EstablishedTiming established_timings3_bytes[] = {
// Byte 1
{ EstablishedTiming::Source::VESA, 640, 350, 85, 0x1 },
{ EstablishedTiming::Source::VESA, 640, 400, 85, 0x2 },
{ EstablishedTiming::Source::VESA, 720, 400, 85, 0x3 },
{ EstablishedTiming::Source::VESA, 640, 480, 85, 0x7 },
{ EstablishedTiming::Source::VESA, 848, 480, 60, 0xe },
{ EstablishedTiming::Source::VESA, 800, 600, 85, 0xc },
{ EstablishedTiming::Source::VESA, 1024, 768, 85, 0x13 },
{ EstablishedTiming::Source::VESA, 1152, 864, 75, 0x15 },
// Byte 2
{ EstablishedTiming::Source::VESA, 1280, 768, 60, 0x16 },
{ EstablishedTiming::Source::VESA, 1280, 768, 60, 0x17 },
{ EstablishedTiming::Source::VESA, 1280, 768, 75, 0x18 },
{ EstablishedTiming::Source::VESA, 1280, 768, 85, 0x19 },
{ EstablishedTiming::Source::VESA, 1280, 960, 60, 0x20 },
{ EstablishedTiming::Source::VESA, 1280, 960, 85, 0x21 },
{ EstablishedTiming::Source::VESA, 1280, 1024, 60, 0x23 },
{ EstablishedTiming::Source::VESA, 1280, 1024, 85, 0x25 },
// Byte 3
{ EstablishedTiming::Source::VESA, 1360, 768, 60, 0x27 },
{ EstablishedTiming::Source::VESA, 1440, 900, 60, 0x2e },
{ EstablishedTiming::Source::VESA, 1440, 900, 60, 0x2f },
{ EstablishedTiming::Source::VESA, 1440, 900, 75, 0x30 },
{ EstablishedTiming::Source::VESA, 1440, 900, 85, 0x31 },
{ EstablishedTiming::Source::VESA, 1400, 1050, 60, 0x29 },
{ EstablishedTiming::Source::VESA, 1400, 1050, 60, 0x2a },
{ EstablishedTiming::Source::VESA, 1400, 1050, 75, 0x2b },
// Byte 4
{ EstablishedTiming::Source::VESA, 1400, 1050, 85, 0x2c },
{ EstablishedTiming::Source::VESA, 1680, 1050, 60, 0x39 },
{ EstablishedTiming::Source::VESA, 1680, 1050, 60, 0x3a },
{ EstablishedTiming::Source::VESA, 1680, 1050, 75, 0x3b },
{ EstablishedTiming::Source::VESA, 1680, 1050, 85, 0x3c },
{ EstablishedTiming::Source::VESA, 1600, 1200, 60, 0x33 },
{ EstablishedTiming::Source::VESA, 1600, 1200, 65, 0x34 },
{ EstablishedTiming::Source::VESA, 1600, 1200, 70, 0x35 },
// Byte 5
{ EstablishedTiming::Source::VESA, 1600, 1200, 75, 0x36 },
{ EstablishedTiming::Source::VESA, 1600, 1200, 85, 0x37 },
{ EstablishedTiming::Source::VESA, 1792, 1344, 60, 0x3e },
{ EstablishedTiming::Source::VESA, 1792, 1344, 75, 0x3f },
{ EstablishedTiming::Source::VESA, 1856, 1392, 60, 0x41 },
{ EstablishedTiming::Source::VESA, 1856, 1392, 75, 0x42 },
{ EstablishedTiming::Source::VESA, 1920, 1200, 60, 0x44 },
{ EstablishedTiming::Source::VESA, 1920, 1200, 60, 0x45 },
// Byte 6
{ EstablishedTiming::Source::VESA, 1920, 1200, 75, 0x46 },
{ EstablishedTiming::Source::VESA, 1920, 1200, 85, 0x47 },
{ EstablishedTiming::Source::VESA, 1920, 1440, 60, 0x49 },
{ EstablishedTiming::Source::VESA, 1920, 1440, 75, 0x4a }
// Reserved
};
size_t byte_index = 0;
for (u8 dmt_bits : display_descriptor.established_timings3.dmt_bits) {
for (int i = 7; i >= 0; i--) {
if ((dmt_bits & (1 << i)) == 0)
continue;
size_t table_index = byte_index * 8 + (size_t)(7 - i);
if (table_index >= (sizeof(established_timings3_bytes) + 7) / sizeof(established_timings3_bytes[0]))
break; // Sometimes reserved bits are set
callback_decision = callback(established_timings3_bytes[table_index]);
if (callback_decision != IterationDecision::Continue)
return IterationDecision::Break;
}
byte_index++;
}
return IterationDecision::Break; // Only process one descriptor
});
if (result.is_error())
return result.error();
return callback_decision;
}
ErrorOr<IterationDecision> Parser::for_each_standard_timing(Function<IterationDecision(StandardTiming const&)> callback) const
{
for (size_t index = 0; index < 8; index++) {
auto& standard_timings = raw_edid().standard_timings[index];
if (standard_timings.horizontal_8_pixels == 0x1 && standard_timings.ratio_and_refresh_rate == 0x1)
continue; // Skip unused records
u16 width = 8 * ((u16)read_host(&standard_timings.horizontal_8_pixels) + 31);
u8 aspect_ratio_and_refresh_rate = read_host(&standard_timings.ratio_and_refresh_rate);
u8 refresh_rate = (aspect_ratio_and_refresh_rate & 0x3f) + 60;
u16 height;
StandardTiming::AspectRatio aspect_ratio;
switch ((aspect_ratio_and_refresh_rate >> 6) & 3) {
case 0:
height = (width * 10) / 16;
aspect_ratio = StandardTiming::AspectRatio::AR_16_10;
break;
case 1:
height = (width * 3) / 4;
aspect_ratio = StandardTiming::AspectRatio::AR_4_3;
break;
case 2:
height = (width * 4) / 5;
aspect_ratio = StandardTiming::AspectRatio::AR_5_4;
break;
case 3:
height = (width * 9) / 16;
aspect_ratio = StandardTiming::AspectRatio::AR_16_9;
break;
default:
VERIFY_NOT_REACHED();
}
auto* dmt = DMT::find_timing_by_std_id(standard_timings.horizontal_8_pixels, standard_timings.ratio_and_refresh_rate);
IterationDecision decision = callback(StandardTiming(width, height, refresh_rate, aspect_ratio, dmt ? dmt->dmt_id : 0));
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
u16 Parser::CoordinatedVideoTiming::horizontal_addressable_pixels() const
{
u32 aspect_h, aspect_v;
switch (aspect_ratio()) {
case AspectRatio::AR_4_3:
aspect_h = 4;
aspect_v = 3;
break;
case AspectRatio::AR_16_9:
aspect_h = 16;
aspect_v = 9;
break;
case AspectRatio::AR_16_10:
aspect_h = 16;
aspect_v = 10;
break;
case AspectRatio::AR_15_9:
aspect_h = 15;
aspect_v = 9;
break;
}
// Round down to nearest cell as per 3.10.3.8
return (u16)(8 * ((((u32)vertical_addressable_lines() * aspect_h) / aspect_v) / 8));
}
u16 Parser::CoordinatedVideoTiming::vertical_addressable_lines() const
{
return ((u16)(m_cvt.bytes[1] >> 4) << 8) | (u16)m_cvt.bytes[0];
}
auto Parser::CoordinatedVideoTiming::aspect_ratio() const -> AspectRatio
{
return (AspectRatio)((m_cvt.bytes[2] >> 2) & 0x3);
}
u16 Parser::CoordinatedVideoTiming::preferred_refresh_rate()
{
switch ((m_cvt.bytes[2] >> 5) & 3) {
case 0:
return 50;
case 1:
return 60;
case 2:
return 75;
case 3:
return 85;
default:
VERIFY_NOT_REACHED();
}
}
ErrorOr<IterationDecision> Parser::for_each_coordinated_video_timing(Function<IterationDecision(CoordinatedVideoTiming const&)> callback) const
{
return for_each_display_descriptor([&](u8 descriptor_tag, Definitions::DisplayDescriptor const& display_descriptor) {
if (descriptor_tag != (u8)Definitions::DisplayDescriptorTag::CVTTimingCodes)
return IterationDecision::Continue;
u8 version = read_host(&display_descriptor.coordinated_video_timings.version);
if (version != 1) {
dbgln("Unsupported CVT display descriptor version: {}", version);
return IterationDecision::Continue;
}
for (size_t i = 0; i < 4; i++) {
const DMT::CVT cvt {
{
read_host(&display_descriptor.coordinated_video_timings.cvt[i][0]),
read_host(&display_descriptor.coordinated_video_timings.cvt[i][1]),
read_host(&display_descriptor.coordinated_video_timings.cvt[i][2]),
}
};
if (cvt.bytes[0] == 0 && cvt.bytes[1] == 0 && cvt.bytes[2] == 0)
continue;
IterationDecision decision = callback(CoordinatedVideoTiming(cvt));
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
ErrorOr<IterationDecision> Parser::for_each_detailed_timing(Function<IterationDecision(DetailedTiming const&, unsigned)> callback) const
{
auto& edid = raw_edid();
for (size_t raw_index = 0; raw_index < 4; raw_index++) {
if (raw_index == 0 || read_le(&edid.detailed_timing_or_display_descriptors[raw_index].detailed_timing.pixel_clock) != 0) {
IterationDecision decision = callback(DetailedTiming(*this, &edid.detailed_timing_or_display_descriptors[raw_index].detailed_timing), 0);
if (decision != IterationDecision::Continue)
return decision;
}
}
Optional<Error> extension_error;
auto result = for_each_extension_block([&](u8 block_id, u8 tag, u8, ReadonlyBytes bytes) {
if (tag != (u8)Definitions::ExtensionBlockTag::CEA_861)
return IterationDecision::Continue;
CEA861ExtensionBlock cea861(*this, (Definitions::ExtensionBlock const*)bytes.data());
auto result = cea861.for_each_dtd([&](auto& dtd) {
return callback(dtd, block_id);
});
if (result.is_error()) {
dbgln("Failed to iterate DTDs in CEA861 extension block: {}", result.error());
extension_error = result.error();
return IterationDecision::Break;
}
return result.value();
});
if (!result.is_error()) {
if (extension_error.has_value())
return extension_error.value();
}
return result;
}
auto Parser::detailed_timing(size_t index) const -> Optional<DetailedTiming>
{
Optional<DetailedTiming> found_dtd;
auto result = for_each_detailed_timing([&](DetailedTiming const& dtd, unsigned) {
if (index == 0) {
found_dtd = dtd;
return IterationDecision::Break;
}
index--;
return IterationDecision::Continue;
});
if (result.is_error()) {
dbgln("Error getting Parser detailed timing #{}: {}", index, result.error());
return {};
}
return found_dtd;
}
ErrorOr<IterationDecision> Parser::for_each_short_video_descriptor(Function<IterationDecision(unsigned, bool, VIC::Details const&)> callback) const
{
Optional<Error> extension_error;
auto result = for_each_extension_block([&](u8 block_id, u8 tag, u8, ReadonlyBytes bytes) {
if (tag != (u8)Definitions::ExtensionBlockTag::CEA_861)
return IterationDecision::Continue;
CEA861ExtensionBlock cea861(*this, (Definitions::ExtensionBlock const*)bytes.data());
auto result = cea861.for_each_short_video_descriptor([&](bool is_native, VIC::Details const& vic) {
return callback(block_id, is_native, vic);
});
if (result.is_error()) {
extension_error = result.error();
return IterationDecision::Break;
}
return result.value();
});
if (result.is_error()) {
dbgln("Failed to iterate Parser extension blocks: {}", result.error());
return IterationDecision::Break;
}
return result.value();
}
ErrorOr<IterationDecision> Parser::for_each_display_descriptor(Function<IterationDecision(u8, Definitions::DisplayDescriptor const&)> callback) const
{
auto& edid = raw_edid();
for (size_t raw_index = 1; raw_index < 4; raw_index++) {
auto& display_descriptor = edid.detailed_timing_or_display_descriptors[raw_index].display_descriptor;
if (read_le(&display_descriptor.zero) != 0 || read_host(&display_descriptor.reserved1) != 0)
continue;
u8 tag = read_host(&display_descriptor.tag);
IterationDecision decision = callback(tag, display_descriptor);
if (decision != IterationDecision::Continue)
return decision;
}
Optional<Error> extension_error;
auto result = for_each_extension_block([&](u8, u8 tag, u8, ReadonlyBytes bytes) {
if (tag != (u8)Definitions::ExtensionBlockTag::CEA_861)
return IterationDecision::Continue;
CEA861ExtensionBlock cea861(*this, (Definitions::ExtensionBlock const*)bytes.data());
auto result = cea861.for_each_display_descriptor([&](u8 tag, auto& display_descriptor) {
return callback(tag, display_descriptor);
});
if (result.is_error()) {
dbgln("Failed to iterate display descriptors in CEA861 extension block: {}", result.error());
extension_error = result.error();
return IterationDecision::Break;
}
return result.value();
});
if (!result.is_error()) {
if (extension_error.has_value())
return extension_error.value();
}
return result;
}
#ifndef KERNEL
String Parser::display_product_name() const
{
String product_name;
auto result = for_each_display_descriptor([&](u8 descriptor_tag, Definitions::DisplayDescriptor const& display_descriptor) {
if (descriptor_tag != (u8)Definitions::DisplayDescriptorTag::DisplayProductName)
return IterationDecision::Continue;
StringBuilder str;
for (u8 byte : display_descriptor.display_product_name.ascii_name) {
if (byte == 0xa)
break;
str.append((char)byte);
}
product_name = str.build();
return IterationDecision::Break;
});
if (result.is_error()) {
dbgln("Failed to locate product name display descriptor: {}", result.error());
return {};
}
return product_name;
}
String Parser::display_product_serial_number() const
{
String product_name;
auto result = for_each_display_descriptor([&](u8 descriptor_tag, Definitions::DisplayDescriptor const& display_descriptor) {
if (descriptor_tag != (u8)Definitions::DisplayDescriptorTag::DisplayProductSerialNumber)
return IterationDecision::Continue;
StringBuilder str;
for (u8 byte : display_descriptor.display_product_serial_number.ascii_str) {
if (byte == 0xa)
break;
str.append((char)byte);
}
product_name = str.build();
return IterationDecision::Break;
});
if (result.is_error()) {
dbgln("Failed to locate product name display descriptor: {}", result.error());
return {};
}
return product_name;
}
#endif
auto Parser::supported_resolutions() const -> ErrorOr<Vector<SupportedResolution>>
{
Vector<SupportedResolution> resolutions;
auto add_resolution = [&](unsigned width, unsigned height, FixedPoint<16, u32> refresh_rate, bool preferred = false) {
auto it = resolutions.find_if([&](auto& info) {
return info.width == width && info.height == height;
});
if (it == resolutions.end()) {
resolutions.append({ width, height, { { refresh_rate, preferred } } });
} else {
auto& info = *it;
SupportedResolution::RefreshRate* found_refresh_rate = nullptr;
for (auto& supported_refresh_rate : info.refresh_rates) {
if (supported_refresh_rate.rate == refresh_rate) {
found_refresh_rate = &supported_refresh_rate;
break;
}
}
if (found_refresh_rate)
found_refresh_rate->preferred |= preferred;
else
info.refresh_rates.append({ refresh_rate, preferred });
}
};
auto result = for_each_established_timing([&](auto& established_timing) {
if (established_timing.source() != EstablishedTiming::Source::Manufacturer)
add_resolution(established_timing.width(), established_timing.height(), established_timing.refresh_rate());
return IterationDecision::Continue;
});
if (result.is_error())
return result.error();
result = for_each_standard_timing([&](auto& standard_timing) {
add_resolution(standard_timing.width(), standard_timing.height(), standard_timing.refresh_rate());
return IterationDecision::Continue;
});
if (result.is_error())
return result.error();
size_t detailed_timing_index = 0;
result = for_each_detailed_timing([&](auto& detailed_timing, auto) {
bool is_preferred = detailed_timing_index++ == 0;
add_resolution(detailed_timing.horizontal_addressable_pixels(), detailed_timing.vertical_addressable_lines(), detailed_timing.refresh_rate(), is_preferred);
return IterationDecision::Continue;
});
if (result.is_error())
return result.error();
result = for_each_short_video_descriptor([&](unsigned, bool, VIC::Details const& vic_details) {
add_resolution(vic_details.horizontal_pixels, vic_details.vertical_lines, vic_details.refresh_rate_hz());
return IterationDecision::Continue;
});
if (result.is_error())
return result.error();
result = for_each_coordinated_video_timing([&](auto& coordinated_video_timing) {
if (auto* dmt = DMT::find_timing_by_cvt(coordinated_video_timing.cvt_code())) {
add_resolution(dmt->horizontal_pixels, dmt->vertical_lines, dmt->vertical_frequency_hz());
} else {
// TODO: We couldn't find this cvt code, try to decode it
auto cvt = coordinated_video_timing.cvt_code();
dbgln("TODO: Decode CVT code: {:02x},{:02x},{:02x}", cvt.bytes[0], cvt.bytes[1], cvt.bytes[2]);
}
return IterationDecision::Continue;
});
quick_sort(resolutions, [&](auto& info1, auto& info2) {
if (info1.width < info2.width)
return true;
if (info1.width == info2.width && info1.height < info2.height)
return true;
return false;
});
for (auto& res : resolutions) {
if (res.refresh_rates.size() > 1)
quick_sort(res.refresh_rates);
}
return resolutions;
}
}