mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-26 19:22:30 -05:00
3005 lines
116 KiB
C++
3005 lines
116 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Random.h>
|
|
#include <LibCore/ArgsParser.h>
|
|
#include <LibCore/ConfigFile.h>
|
|
#include <LibCore/EventLoop.h>
|
|
#include <LibCore/File.h>
|
|
#include <LibCrypto/ASN1/ASN1.h>
|
|
#include <LibCrypto/Authentication/GHash.h>
|
|
#include <LibCrypto/Authentication/HMAC.h>
|
|
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
|
|
#include <LibCrypto/BigInt/SignedBigInteger.h>
|
|
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
|
|
#include <LibCrypto/Checksum/Adler32.h>
|
|
#include <LibCrypto/Checksum/CRC32.h>
|
|
#include <LibCrypto/Cipher/AES.h>
|
|
#include <LibCrypto/Hash/MD5.h>
|
|
#include <LibCrypto/Hash/SHA1.h>
|
|
#include <LibCrypto/Hash/SHA2.h>
|
|
#include <LibCrypto/PK/RSA.h>
|
|
#include <LibLine/Editor.h>
|
|
#include <LibTLS/TLSv12.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
static const char* secret_key = "WellHelloFreinds";
|
|
static const char* suite = nullptr;
|
|
static const char* filename = nullptr;
|
|
static const char* server = nullptr;
|
|
static const char* ca_certs_file = "/etc/ca_certs.ini";
|
|
static int key_bits = 128;
|
|
static bool binary = false;
|
|
static bool interactive = false;
|
|
static bool run_tests = false;
|
|
static int port = 443;
|
|
static bool in_ci = false;
|
|
|
|
static struct timeval start_time {
|
|
0, 0
|
|
};
|
|
static bool g_some_test_failed = false;
|
|
static bool encrypting = true;
|
|
|
|
constexpr const char* DEFAULT_DIGEST_SUITE { "HMAC-SHA256" };
|
|
constexpr const char* DEFAULT_CHECKSUM_SUITE { "CRC32" };
|
|
constexpr const char* DEFAULT_HASH_SUITE { "SHA256" };
|
|
constexpr const char* DEFAULT_CIPHER_SUITE { "AES_CBC" };
|
|
constexpr const char* DEFAULT_SERVER { "www.google.com" };
|
|
|
|
static Vector<Certificate> s_root_ca_certificates;
|
|
|
|
// listAllTests
|
|
// Cipher
|
|
static int aes_cbc_tests();
|
|
static int aes_ctr_tests();
|
|
static int aes_gcm_tests();
|
|
|
|
// Hash
|
|
static int md5_tests();
|
|
static int sha1_tests();
|
|
static int sha256_tests();
|
|
static int sha384_tests();
|
|
static int sha512_tests();
|
|
|
|
// Authentication
|
|
static int hmac_md5_tests();
|
|
static int hmac_sha256_tests();
|
|
static int hmac_sha512_tests();
|
|
static int hmac_sha1_tests();
|
|
static int ghash_tests();
|
|
|
|
// Public-Key
|
|
static int rsa_tests();
|
|
|
|
// TLS
|
|
static int tls_tests();
|
|
|
|
// Big Integer
|
|
static int bigint_tests();
|
|
|
|
// Checksum
|
|
static int adler32_tests();
|
|
static int crc32_tests();
|
|
|
|
// stop listing tests
|
|
|
|
static void print_buffer(ReadonlyBytes buffer, int split)
|
|
{
|
|
if (split > 0)
|
|
out("{:>{}hex-dump}", buffer, split);
|
|
else
|
|
out("{:hex-dump}", buffer);
|
|
}
|
|
|
|
static Core::EventLoop g_loop;
|
|
|
|
static int run(Function<void(const char*, size_t)> fn)
|
|
{
|
|
if (interactive) {
|
|
auto editor = Line::Editor::construct();
|
|
editor->initialize();
|
|
for (;;) {
|
|
auto line_result = editor->get_line("> ");
|
|
|
|
if (line_result.is_error())
|
|
break;
|
|
auto& line = line_result.value();
|
|
|
|
if (line == ".wait") {
|
|
g_loop.exec();
|
|
} else {
|
|
fn(line.characters(), line.length());
|
|
g_loop.pump();
|
|
}
|
|
}
|
|
} else {
|
|
if (filename == nullptr) {
|
|
warnln("must specify a filename");
|
|
return 1;
|
|
}
|
|
if (!Core::File::exists(filename)) {
|
|
warnln("File does not exist");
|
|
return 1;
|
|
}
|
|
auto file = Core::File::open(filename, Core::OpenMode::ReadOnly);
|
|
if (file.is_error()) {
|
|
warnln("Failed to open {}: {}", filename, file.error());
|
|
return 1;
|
|
}
|
|
auto buffer = file.value()->read_all();
|
|
fn((const char*)buffer.data(), buffer.size());
|
|
g_loop.exec();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void tls(const char* message, size_t len)
|
|
{
|
|
static RefPtr<TLS::TLSv12> tls;
|
|
static ByteBuffer write {};
|
|
if (!tls) {
|
|
tls = TLS::TLSv12::construct(nullptr);
|
|
tls->set_root_certificates(s_root_ca_certificates);
|
|
tls->connect(server ?: DEFAULT_SERVER, port);
|
|
tls->on_tls_ready_to_read = [](auto& tls) {
|
|
auto buffer = tls.read();
|
|
if (buffer.has_value())
|
|
out("{}", StringView { buffer->data(), buffer->size() });
|
|
};
|
|
tls->set_on_tls_ready_to_write([&](auto&) {
|
|
if (write.size()) {
|
|
tls->write(write);
|
|
write.clear();
|
|
}
|
|
});
|
|
tls->on_tls_error = [&](auto) {
|
|
g_loop.quit(1);
|
|
};
|
|
tls->on_tls_finished = [&]() {
|
|
g_loop.quit(0);
|
|
};
|
|
}
|
|
MUST(write.try_append(message, len));
|
|
MUST(write.try_append("\r\n", 2));
|
|
}
|
|
|
|
static void aes_cbc(const char* message, size_t len)
|
|
{
|
|
ReadonlyBytes buffer { message, len };
|
|
// FIXME: Take iv as an optional parameter
|
|
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size()).release_value();
|
|
|
|
if (encrypting) {
|
|
Crypto::Cipher::AESCipher::CBCMode cipher(
|
|
StringView(secret_key).bytes(),
|
|
key_bits,
|
|
Crypto::Cipher::Intent::Encryption);
|
|
|
|
auto enc = cipher.create_aligned_buffer(buffer.size()).release_value();
|
|
auto enc_span = enc.bytes();
|
|
cipher.encrypt(buffer, enc_span, iv);
|
|
|
|
if (binary)
|
|
out("{}", StringView { enc_span.data(), enc_span.size() });
|
|
else
|
|
print_buffer(enc_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else {
|
|
Crypto::Cipher::AESCipher::CBCMode cipher(
|
|
StringView(secret_key).bytes(),
|
|
key_bits,
|
|
Crypto::Cipher::Intent::Decryption);
|
|
auto dec = cipher.create_aligned_buffer(buffer.size()).release_value();
|
|
auto dec_span = dec.bytes();
|
|
cipher.decrypt(buffer, dec_span, iv);
|
|
outln("{}", StringView { dec_span.data(), dec_span.size() });
|
|
}
|
|
}
|
|
|
|
static void adler32(const char* message, size_t len)
|
|
{
|
|
auto checksum = Crypto::Checksum::Adler32({ (const u8*)message, len });
|
|
outln("{:#10X}", checksum.digest());
|
|
}
|
|
|
|
static void crc32(const char* message, size_t len)
|
|
{
|
|
auto checksum = Crypto::Checksum::CRC32({ (const u8*)message, len });
|
|
outln("{:#10X}", checksum.digest());
|
|
}
|
|
|
|
static void md5(const char* message, size_t len)
|
|
{
|
|
auto digest = Crypto::Hash::MD5::hash((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { digest.data, Crypto::Hash::MD5::digest_size() });
|
|
else
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
}
|
|
|
|
static void hmac_md5(const char* message, size_t len)
|
|
{
|
|
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac(secret_key);
|
|
auto mac = hmac.process((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { mac.data, hmac.digest_size() });
|
|
else
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
}
|
|
|
|
static void sha1(const char* message, size_t len)
|
|
{
|
|
auto digest = Crypto::Hash::SHA1::hash((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { digest.data, Crypto::Hash::SHA1::digest_size() });
|
|
else
|
|
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
|
|
}
|
|
|
|
static void sha256(const char* message, size_t len)
|
|
{
|
|
auto digest = Crypto::Hash::SHA256::hash((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { digest.data, Crypto::Hash::SHA256::digest_size() });
|
|
else
|
|
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
|
|
}
|
|
|
|
static void hmac_sha256(const char* message, size_t len)
|
|
{
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(secret_key);
|
|
auto mac = hmac.process((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { mac.data, hmac.digest_size() });
|
|
else
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
}
|
|
|
|
static void sha384(const char* message, size_t len)
|
|
{
|
|
auto digest = Crypto::Hash::SHA384::hash((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { digest.data, Crypto::Hash::SHA384::digest_size() });
|
|
else
|
|
print_buffer({ digest.data, Crypto::Hash::SHA384::digest_size() }, -1);
|
|
}
|
|
|
|
static void sha512(const char* message, size_t len)
|
|
{
|
|
auto digest = Crypto::Hash::SHA512::hash((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { digest.data, Crypto::Hash::SHA512::digest_size() });
|
|
else
|
|
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
|
|
}
|
|
|
|
static void hmac_sha512(const char* message, size_t len)
|
|
{
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac(secret_key);
|
|
auto mac = hmac.process((const u8*)message, len);
|
|
if (binary)
|
|
out("{}", StringView { mac.data, hmac.digest_size() });
|
|
else
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
}
|
|
|
|
auto main(int argc, char** argv) -> int
|
|
{
|
|
const char* mode = nullptr;
|
|
Core::ArgsParser parser;
|
|
parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode");
|
|
|
|
parser.add_option(secret_key, "Set the secret key (default key is 'WellHelloFriends')", "secret-key", 'k', "secret key");
|
|
parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits");
|
|
parser.add_option(filename, "Read from file", "file", 'f', "from file");
|
|
parser.add_option(binary, "Force binary output", "force-binary", 0);
|
|
parser.add_option(interactive, "REPL mode", "interactive", 'i');
|
|
parser.add_option(run_tests, "Run tests for the specified suite", "tests", 't');
|
|
parser.add_option(suite, "Set the suite used", "suite-name", 'n', "suite name");
|
|
parser.add_option(server, "Set the server to talk to (only for `tls')", "server-address", 's', "server-address");
|
|
parser.add_option(port, "Set the port to talk to (only for `tls')", "port", 'p', "port");
|
|
parser.add_option(ca_certs_file, "INI file to read root CA certificates from (only for `tls')", "ca-certs-file", 0, "file");
|
|
parser.add_option(in_ci, "CI Test mode", "ci-mode", 'c');
|
|
parser.parse(argc, argv);
|
|
|
|
StringView mode_sv { mode };
|
|
if (mode_sv == "list") {
|
|
outln("test-crypto modes");
|
|
outln("\tdigest - Access digest (authentication) functions");
|
|
outln("\thash - Access hash functions");
|
|
outln("\tchecksum - Access checksum functions");
|
|
outln("\tencrypt -- Access encryption functions");
|
|
outln("\tdecrypt -- Access decryption functions");
|
|
outln("\ttls -- Connect to a peer over TLS 1.2");
|
|
outln("\tlist -- List all known modes");
|
|
outln("these modes only contain tests");
|
|
outln("\ttest -- Run every test suite");
|
|
outln("\tbigint -- Run big integer test suite");
|
|
outln("\tpk -- Run Public-key system tests");
|
|
return 0;
|
|
}
|
|
|
|
if (mode_sv == "hash") {
|
|
if (suite == nullptr)
|
|
suite = DEFAULT_HASH_SUITE;
|
|
StringView suite_sv { suite };
|
|
|
|
if (suite_sv == "MD5") {
|
|
if (run_tests)
|
|
return md5_tests();
|
|
return run(md5);
|
|
}
|
|
if (suite_sv == "SHA1") {
|
|
if (run_tests)
|
|
return sha1_tests();
|
|
return run(sha1);
|
|
}
|
|
if (suite_sv == "SHA256") {
|
|
if (run_tests)
|
|
return sha256_tests();
|
|
return run(sha256);
|
|
}
|
|
if (suite_sv == "SHA384") {
|
|
if (run_tests)
|
|
return sha384_tests();
|
|
return run(sha384);
|
|
}
|
|
if (suite_sv == "SHA512") {
|
|
if (run_tests)
|
|
return sha512_tests();
|
|
return run(sha512);
|
|
}
|
|
warnln("unknown hash function '{}'", suite);
|
|
return 1;
|
|
}
|
|
if (mode_sv == "checksum") {
|
|
if (suite == nullptr)
|
|
suite = DEFAULT_CHECKSUM_SUITE;
|
|
StringView suite_sv { suite };
|
|
|
|
if (suite_sv == "CRC32") {
|
|
if (run_tests)
|
|
return crc32_tests();
|
|
return run(crc32);
|
|
}
|
|
if (suite_sv == "Adler32") {
|
|
if (run_tests)
|
|
return adler32_tests();
|
|
return run(adler32);
|
|
}
|
|
warnln("unknown checksum function '{}'", suite);
|
|
return 1;
|
|
}
|
|
if (mode_sv == "digest") {
|
|
if (suite == nullptr)
|
|
suite = DEFAULT_DIGEST_SUITE;
|
|
StringView suite_sv { suite };
|
|
|
|
if (suite_sv == "HMAC-MD5") {
|
|
if (run_tests)
|
|
return hmac_md5_tests();
|
|
return run(hmac_md5);
|
|
}
|
|
if (suite_sv == "HMAC-SHA256") {
|
|
if (run_tests)
|
|
return hmac_sha256_tests();
|
|
return run(hmac_sha256);
|
|
}
|
|
if (suite_sv == "HMAC-SHA512") {
|
|
if (run_tests)
|
|
return hmac_sha512_tests();
|
|
return run(hmac_sha512);
|
|
}
|
|
if (suite_sv == "HMAC-SHA1") {
|
|
if (run_tests)
|
|
return hmac_sha1_tests();
|
|
}
|
|
if (suite_sv == "GHash") {
|
|
if (run_tests)
|
|
return ghash_tests();
|
|
}
|
|
warnln("unknown hash function '{}'", suite);
|
|
return 1;
|
|
}
|
|
if (mode_sv == "pk") {
|
|
return rsa_tests();
|
|
}
|
|
if (mode_sv == "bigint") {
|
|
return bigint_tests();
|
|
}
|
|
if (mode_sv == "tls") {
|
|
if (!Core::File::exists(ca_certs_file)) {
|
|
warnln("Nonexistent CA certs file '{}'", ca_certs_file);
|
|
return 1;
|
|
}
|
|
auto config = Core::ConfigFile::open(ca_certs_file);
|
|
auto now = Core::DateTime::now();
|
|
auto last_year = Core::DateTime::create(now.year() - 1);
|
|
auto next_year = Core::DateTime::create(now.year() + 1);
|
|
for (auto& entity : config->groups()) {
|
|
Certificate cert;
|
|
cert.subject.subject = entity;
|
|
cert.issuer.subject = config->read_entry(entity, "issuer_subject", entity);
|
|
cert.subject.country = config->read_entry(entity, "country");
|
|
cert.not_before = Crypto::ASN1::parse_generalized_time(config->read_entry(entity, "not_before", "")).value_or(last_year);
|
|
cert.not_after = Crypto::ASN1::parse_generalized_time(config->read_entry(entity, "not_after", "")).value_or(next_year);
|
|
s_root_ca_certificates.append(move(cert));
|
|
}
|
|
if (run_tests)
|
|
return tls_tests();
|
|
return run(tls);
|
|
}
|
|
if (mode_sv == "test") {
|
|
encrypting = true;
|
|
aes_cbc_tests();
|
|
aes_ctr_tests();
|
|
aes_gcm_tests();
|
|
|
|
encrypting = false;
|
|
aes_cbc_tests();
|
|
aes_ctr_tests();
|
|
aes_gcm_tests();
|
|
|
|
md5_tests();
|
|
sha1_tests();
|
|
sha256_tests();
|
|
sha384_tests();
|
|
sha512_tests();
|
|
|
|
hmac_md5_tests();
|
|
hmac_sha256_tests();
|
|
hmac_sha512_tests();
|
|
hmac_sha1_tests();
|
|
|
|
ghash_tests();
|
|
|
|
rsa_tests();
|
|
|
|
if (!in_ci) {
|
|
// Do not run these in CI to avoid tests with variables outside our control.
|
|
if (!Core::File::exists(ca_certs_file)) {
|
|
warnln("Nonexistent CA certs file '{}'", ca_certs_file);
|
|
return 1;
|
|
}
|
|
auto config = Core::ConfigFile::open(ca_certs_file);
|
|
auto now = Core::DateTime::now();
|
|
auto last_year = Core::DateTime::create(now.year() - 1);
|
|
auto next_year = Core::DateTime::create(now.year() + 1);
|
|
for (auto& entity : config->groups()) {
|
|
Certificate cert;
|
|
cert.subject.subject = entity;
|
|
cert.issuer.subject = config->read_entry(entity, "issuer_subject", entity);
|
|
cert.subject.country = config->read_entry(entity, "country");
|
|
cert.not_before = Crypto::ASN1::parse_generalized_time(config->read_entry(entity, "not_before", "")).value_or(last_year);
|
|
cert.not_after = Crypto::ASN1::parse_generalized_time(config->read_entry(entity, "not_after", "")).value_or(next_year);
|
|
s_root_ca_certificates.append(move(cert));
|
|
}
|
|
tls_tests();
|
|
}
|
|
|
|
bigint_tests();
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
encrypting = mode_sv == "encrypt";
|
|
if (encrypting || mode_sv == "decrypt") {
|
|
if (suite == nullptr)
|
|
suite = DEFAULT_CIPHER_SUITE;
|
|
StringView suite_sv { suite };
|
|
|
|
if (StringView(suite) == "AES_CBC") {
|
|
if (run_tests)
|
|
return aes_cbc_tests();
|
|
|
|
if (!Crypto::Cipher::AESCipher::KeyType::is_valid_key_size(key_bits)) {
|
|
warnln("Invalid key size for AES: {}", key_bits);
|
|
return 1;
|
|
}
|
|
if (strlen(secret_key) != (size_t)key_bits / 8) {
|
|
warnln("Key must be exactly {} bytes long", key_bits / 8);
|
|
return 1;
|
|
}
|
|
return run(aes_cbc);
|
|
}
|
|
if (StringView(suite) == "AES_GCM") {
|
|
if (run_tests)
|
|
return aes_gcm_tests();
|
|
|
|
return 1;
|
|
} else {
|
|
warnln("Unknown cipher suite '{}'", suite);
|
|
return 1;
|
|
}
|
|
}
|
|
warnln("Unknown mode '{}', check out the list of modes", mode);
|
|
return 1;
|
|
}
|
|
|
|
#define I_TEST(thing) \
|
|
{ \
|
|
out("Testing " #thing "... "); \
|
|
fflush(stdout); \
|
|
gettimeofday(&start_time, nullptr); \
|
|
}
|
|
#define PASS \
|
|
{ \
|
|
struct timeval end_time { \
|
|
0, 0 \
|
|
}; \
|
|
gettimeofday(&end_time, nullptr); \
|
|
time_t interval_s = end_time.tv_sec - start_time.tv_sec; \
|
|
suseconds_t interval_us = end_time.tv_usec; \
|
|
if (interval_us < start_time.tv_usec) { \
|
|
interval_s -= 1; \
|
|
interval_us += 1000000; \
|
|
} \
|
|
interval_us -= start_time.tv_usec; \
|
|
outln("PASS {}s {}us", (long long)interval_s, (long long)interval_us); \
|
|
}
|
|
#define FAIL(reason) \
|
|
do { \
|
|
outln("FAIL: " #reason); \
|
|
g_some_test_failed = true; \
|
|
} while (0)
|
|
|
|
static ReadonlyBytes operator""_b(const char* string, size_t length)
|
|
{
|
|
return ReadonlyBytes(string, length);
|
|
}
|
|
|
|
// tests go after here
|
|
// please be reasonable with orders kthx
|
|
static void aes_cbc_test_name();
|
|
static void aes_cbc_test_encrypt();
|
|
static void aes_cbc_test_decrypt();
|
|
static void aes_ctr_test_name();
|
|
static void aes_ctr_test_encrypt();
|
|
static void aes_ctr_test_decrypt();
|
|
static void aes_gcm_test_name();
|
|
static void aes_gcm_test_encrypt();
|
|
static void aes_gcm_test_decrypt();
|
|
|
|
static void md5_test_name();
|
|
static void md5_test_hash();
|
|
static void md5_test_consecutive_updates();
|
|
|
|
static void sha1_test_name();
|
|
static void sha1_test_hash();
|
|
|
|
static void sha256_test_name();
|
|
static void sha256_test_hash();
|
|
|
|
static void sha384_test_name();
|
|
static void sha384_test_hash();
|
|
|
|
static void sha512_test_name();
|
|
static void sha512_test_hash();
|
|
|
|
static void ghash_test_name();
|
|
static void ghash_test_process();
|
|
|
|
static void hmac_md5_test_name();
|
|
static void hmac_md5_test_process();
|
|
|
|
static void hmac_sha256_test_name();
|
|
static void hmac_sha256_test_process();
|
|
|
|
static void hmac_sha512_test_name();
|
|
static void hmac_sha512_test_process();
|
|
|
|
static void hmac_sha1_test_name();
|
|
static void hmac_sha1_test_process();
|
|
|
|
static void rsa_test_encrypt();
|
|
static void rsa_test_der_parse();
|
|
static void rsa_test_encrypt_decrypt();
|
|
static void rsa_emsa_pss_test_create();
|
|
|
|
static void tls_test_client_hello();
|
|
|
|
static void bigint_test_fibo500();
|
|
static void bigint_addition_edgecases();
|
|
static void bigint_subtraction();
|
|
static void bigint_multiplication();
|
|
static void bigint_division();
|
|
static void bigint_base10();
|
|
static void bigint_import_export();
|
|
static void bigint_bitwise();
|
|
|
|
static void bigint_theory_modular_inverse();
|
|
static void bigint_theory_modular_power();
|
|
static void bigint_theory_primality();
|
|
static void bigint_theory_random_number();
|
|
|
|
static void bigint_test_signed_fibo500();
|
|
static void bigint_signed_addition_edgecases();
|
|
static void bigint_signed_subtraction();
|
|
static void bigint_signed_multiplication();
|
|
static void bigint_signed_division();
|
|
static void bigint_signed_base10();
|
|
static void bigint_signed_import_export();
|
|
static void bigint_signed_bitwise();
|
|
|
|
static int aes_cbc_tests()
|
|
{
|
|
aes_cbc_test_name();
|
|
if (encrypting) {
|
|
aes_cbc_test_encrypt();
|
|
} else {
|
|
aes_cbc_test_decrypt();
|
|
}
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void aes_cbc_test_name()
|
|
{
|
|
I_TEST((AES CBC class name));
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
if (cipher.class_name() != "AES_CBC")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void aes_cbc_test_encrypt()
|
|
{
|
|
auto test_it = [](auto& cipher, auto& result) {
|
|
auto in = "This is a test! This is another test!"_b;
|
|
auto out = cipher.create_aligned_buffer(in.size()).release_value();
|
|
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size()).release_value();
|
|
auto out_span = out.bytes();
|
|
cipher.encrypt(in, out_span, iv);
|
|
if (out.size() != sizeof(result))
|
|
FAIL(size mismatch);
|
|
else if (memcmp(out_span.data(), result, out_span.size()) != 0) {
|
|
FAIL(invalid data);
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else
|
|
PASS;
|
|
};
|
|
{
|
|
I_TEST((AES CBC with 128 bit key | Encrypt))
|
|
u8 result[] {
|
|
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
|
|
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
|
|
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
|
|
0x45, 0x6b, 0x1c
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
test_it(cipher, result);
|
|
}
|
|
{
|
|
I_TEST((AES CBC with 192 bit key | Encrypt))
|
|
u8 result[] {
|
|
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
|
|
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
|
|
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
|
|
0xe0, 0x3f, 0xcb
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Encryption);
|
|
test_it(cipher, result);
|
|
}
|
|
{
|
|
I_TEST((AES CBC with 256 bit key | Encrypt))
|
|
u8 result[] {
|
|
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
|
|
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
|
|
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
|
|
0xd1, 0x41, 0xe6
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Encryption);
|
|
test_it(cipher, result);
|
|
}
|
|
{
|
|
I_TEST((AES CBC with 256 bit key | Encrypt with unsigned key))
|
|
u8 result[] {
|
|
0x18, 0x71, 0x80, 0x4c, 0x28, 0x07, 0x55, 0x3c, 0x05, 0x33, 0x36, 0x3f, 0x19, 0x38, 0x5c,
|
|
0xbe, 0xf8, 0xb8, 0x0e, 0x0e, 0x66, 0x67, 0x63, 0x9c, 0xbf, 0x73, 0xcd, 0x82, 0xf9, 0xcb,
|
|
0x9d, 0x81, 0x56, 0xc6, 0x75, 0x14, 0x8b, 0x79, 0x60, 0xb0, 0xdf, 0xaa, 0x2c, 0x2b, 0xd4,
|
|
0xd6, 0xa0, 0x46
|
|
};
|
|
u8 key[] { 0x0a, 0x8c, 0x5b, 0x0d, 0x8a, 0x68, 0x43, 0xf7, 0xaf, 0xc0, 0xe3, 0x4e, 0x4b, 0x43, 0xaa, 0x28, 0x69, 0x9b, 0x6f, 0xe7, 0x24, 0x82, 0x1c, 0x71, 0x86, 0xf6, 0x2b, 0x87, 0xd6, 0x8b, 0x8f, 0xf1 };
|
|
Crypto::Cipher::AESCipher::CBCMode cipher(ReadonlyBytes { key, sizeof(key) }, 256, Crypto::Cipher::Intent::Encryption);
|
|
test_it(cipher, result);
|
|
}
|
|
// TODO: Test non-CMS padding options
|
|
}
|
|
static void aes_cbc_test_decrypt()
|
|
{
|
|
auto test_it = [](auto& cipher, auto& result, auto result_len) {
|
|
auto true_value = "This is a test! This is another test!";
|
|
auto in = ByteBuffer::copy(result, result_len).release_value();
|
|
auto out = cipher.create_aligned_buffer(in.size()).release_value();
|
|
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size()).release_value();
|
|
auto out_span = out.bytes();
|
|
cipher.decrypt(in, out_span, iv);
|
|
if (out_span.size() != strlen(true_value)) {
|
|
FAIL(size mismatch);
|
|
outln("Expected {} bytes but got {}", strlen(true_value), out_span.size());
|
|
} else if (memcmp(out_span.data(), true_value, strlen(true_value)) != 0) {
|
|
FAIL(invalid data);
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else
|
|
PASS;
|
|
};
|
|
{
|
|
I_TEST((AES CBC with 128 bit key | Decrypt))
|
|
u8 result[] {
|
|
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
|
|
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
|
|
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
|
|
0x45, 0x6b, 0x1c
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Decryption);
|
|
test_it(cipher, result, 48);
|
|
}
|
|
{
|
|
I_TEST((AES CBC with 192 bit key | Decrypt))
|
|
u8 result[] {
|
|
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
|
|
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
|
|
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
|
|
0xe0, 0x3f, 0xcb
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Decryption);
|
|
test_it(cipher, result, 48);
|
|
}
|
|
{
|
|
I_TEST((AES CBC with 256 bit key | Decrypt))
|
|
u8 result[] {
|
|
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
|
|
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
|
|
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
|
|
0xd1, 0x41, 0xe6
|
|
};
|
|
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Decryption);
|
|
test_it(cipher, result, 48);
|
|
}
|
|
// TODO: Test non-CMS padding options
|
|
}
|
|
|
|
static int aes_ctr_tests()
|
|
{
|
|
aes_ctr_test_name();
|
|
if (encrypting) {
|
|
aes_ctr_test_encrypt();
|
|
} else {
|
|
aes_ctr_test_decrypt();
|
|
}
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void aes_ctr_test_name()
|
|
{
|
|
I_TEST((AES CTR class name));
|
|
Crypto::Cipher::AESCipher::CTRMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
if (cipher.class_name() != "AES_CTR")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
#define AS_BB(x) (ReadonlyBytes { (x), sizeof((x)) / sizeof((x)[0]) })
|
|
static void aes_ctr_test_encrypt()
|
|
{
|
|
auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
|
|
// nonce is already included in ivec.
|
|
Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Encryption);
|
|
ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size()).release_value();
|
|
Bytes out_span = out_actual.bytes();
|
|
cipher.encrypt(in, out_span, ivec);
|
|
if (out_expected.size() != out_actual.size()) {
|
|
FAIL(size mismatch);
|
|
outln("Expected {} bytes but got {}", out_expected.size(), out_span.size());
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
|
|
FAIL(invalid data);
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else
|
|
PASS;
|
|
};
|
|
// From RFC 3686, Section 6
|
|
{
|
|
// Test Vector #1
|
|
I_TEST((AES CTR 16 octets with 128 bit key | Encrypt))
|
|
u8 key[] {
|
|
0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
|
};
|
|
u8 out[] {
|
|
0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #2
|
|
I_TEST((AES CTR 32 octets with 128 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x7e, 0x24, 0x06, 0x78, 0x17, 0xfa, 0xe0, 0xd7, 0x43, 0xd6, 0xce, 0x1f, 0x32, 0x53, 0x91, 0x63
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59, 0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
|
};
|
|
u8 out[] {
|
|
0x51, 0x04, 0xa1, 0x06, 0x16, 0x8a, 0x72, 0xd9, 0x79, 0x0d, 0x41, 0xee, 0x8e, 0xda, 0xd3, 0x88,
|
|
0xeb, 0x2e, 0x1e, 0xfc, 0x46, 0xda, 0x57, 0xc8, 0xfc, 0xe6, 0x30, 0xdf, 0x91, 0x41, 0xbe, 0x28
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #3
|
|
I_TEST((AES CTR 36 octets with 128 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x76, 0x91, 0xbe, 0x03, 0x5e, 0x50, 0x20, 0xa8, 0xac, 0x6e, 0x61, 0x85, 0x29, 0xf9, 0xa0, 0xdc
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f, 0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
|
|
};
|
|
u8 out[] {
|
|
0xc1, 0xcf, 0x48, 0xa8, 0x9f, 0x2f, 0xfd, 0xd9, 0xcf, 0x46, 0x52, 0xe9, 0xef, 0xdb, 0x72, 0xd7, 0x45, 0x40, 0xa4, 0x2b, 0xde, 0x6d, 0x78, 0x36, 0xd5, 0x9a, 0x5c, 0xea, 0xae, 0xf3, 0x10, 0x53, 0x25, 0xb2, 0x07, 0x2f
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #4
|
|
I_TEST((AES CTR 16 octets with 192 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x16, 0xaf, 0x5b, 0x14, 0x5f, 0xc9, 0xf5, 0x79, 0xc1, 0x75, 0xf9, 0x3e, 0x3b, 0xfb, 0x0e, 0xed, 0x86, 0x3d, 0x06, 0xcc, 0xfd, 0xb7, 0x85, 0x15
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x00, 0x00, 0x48, 0x36, 0x73, 0x3c, 0x14, 0x7d, 0x6d, 0x93, 0xcb, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
|
};
|
|
u8 out[] {
|
|
0x4b, 0x55, 0x38, 0x4f, 0xe2, 0x59, 0xc9, 0xc8, 0x4e, 0x79, 0x35, 0xa0, 0x03, 0xcb, 0xe9, 0x28
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #5
|
|
I_TEST((AES CTR 32 octets with 192 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x7c, 0x5c, 0xb2, 0x40, 0x1b, 0x3d, 0xc3, 0x3c, 0x19, 0xe7, 0x34, 0x08, 0x19, 0xe0, 0xf6, 0x9c, 0x67, 0x8c, 0x3d, 0xb8, 0xe6, 0xf6, 0xa9, 0x1a
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad, 0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
|
};
|
|
u8 out[] {
|
|
0x45, 0x32, 0x43, 0xfc, 0x60, 0x9b, 0x23, 0x32, 0x7e, 0xdf, 0xaa, 0xfa, 0x71, 0x31, 0xcd, 0x9f, 0x84, 0x90, 0x70, 0x1c, 0x5a, 0xd4, 0xa7, 0x9c, 0xfc, 0x1f, 0xe0, 0xff, 0x42, 0xf4, 0xfb, 0x00
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #6
|
|
I_TEST((AES CTR 36 octets with 192 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x02, 0xbf, 0x39, 0x1e, 0xe8, 0xec, 0xb1, 0x59, 0xb9, 0x59, 0x61, 0x7b, 0x09, 0x65, 0x27, 0x9b, 0xf5, 0x9b, 0x60, 0xa7, 0x86, 0xd3, 0xe0, 0xfe
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27, 0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
|
|
};
|
|
u8 out[] {
|
|
0x96, 0x89, 0x3f, 0xc5, 0x5e, 0x5c, 0x72, 0x2f, 0x54, 0x0b, 0x7d, 0xd1, 0xdd, 0xf7, 0xe7, 0x58, 0xd2, 0x88, 0xbc, 0x95, 0xc6, 0x91, 0x65, 0x88, 0x45, 0x36, 0xc8, 0x11, 0x66, 0x2f, 0x21, 0x88, 0xab, 0xee, 0x09, 0x35
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #7
|
|
I_TEST((AES CTR 16 octets with 256 bit key | Encrypt))
|
|
u8 key[] {
|
|
0x77, 0x6b, 0xef, 0xf2, 0x85, 0x1d, 0xb0, 0x6f, 0x4c, 0x8a, 0x05, 0x42, 0xc8, 0x69, 0x6f, 0x6c, 0x6a, 0x81, 0xaf, 0x1e, 0xec, 0x96, 0xb4, 0xd3, 0x7f, 0xc1, 0xd6, 0x89, 0xe6, 0xc1, 0xc1, 0x04
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x00, 0x00, 0x60, 0xdb, 0x56, 0x72, 0xc9, 0x7a, 0xa8, 0xf0, 0xb2, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
|
};
|
|
u8 out[] {
|
|
0x14, 0x5a, 0xd0, 0x1d, 0xbf, 0x82, 0x4e, 0xc7, 0x56, 0x08, 0x63, 0xdc, 0x71, 0xe3, 0xe0, 0xc0
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #8
|
|
I_TEST((AES CTR 32 octets with 256 bit key | Encrypt))
|
|
u8 key[] {
|
|
0xf6, 0xd6, 0x6d, 0x6b, 0xd5, 0x2d, 0x59, 0xbb, 0x07, 0x96, 0x36, 0x58, 0x79, 0xef, 0xf8, 0x86, 0xc6, 0x6d, 0xd5, 0x1a, 0x5b, 0x6a, 0x99, 0x74, 0x4b, 0x50, 0x59, 0x0c, 0x87, 0xa2, 0x38, 0x84
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1, 0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
|
};
|
|
u8 out[] {
|
|
0xf0, 0x5e, 0x23, 0x1b, 0x38, 0x94, 0x61, 0x2c, 0x49, 0xee, 0x00, 0x0b, 0x80, 0x4e, 0xb2, 0xa9, 0xb8, 0x30, 0x6b, 0x50, 0x8f, 0x83, 0x9d, 0x6a, 0x55, 0x30, 0x83, 0x1d, 0x93, 0x44, 0xaf, 0x1c
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
{
|
|
// Test Vector #9
|
|
I_TEST((AES CTR 36 octets with 256 bit key | Encrypt))
|
|
u8 key[] {
|
|
0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70, 0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
|
|
};
|
|
u8 out[] {
|
|
0xeb, 0x6c, 0x52, 0x82, 0x1d, 0x0b, 0xbb, 0xf7, 0xce, 0x75, 0x94, 0x46, 0x2a, 0xca, 0x4f, 0xaa, 0xb4, 0x07, 0xdf, 0x86, 0x65, 0x69, 0xfd, 0x07, 0xf4, 0x8c, 0xc0, 0xb5, 0x83, 0xd6, 0x07, 0x1f, 0x1e, 0xc0, 0xe6, 0xb8
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
// Manual test case
|
|
{
|
|
// This test checks whether counter overflow crashes.
|
|
I_TEST((AES CTR 36 octets with 256 bit key, high counter | Encrypt))
|
|
u8 key[] {
|
|
0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
|
|
};
|
|
u8 ivec[] {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
u8 in[] {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
|
|
};
|
|
u8 out[] {
|
|
// Pasted from the output. The actual success condition is
|
|
// not crashing when incrementing the counter.
|
|
0x6e, 0x8c, 0xfc, 0x59, 0x08, 0xa8, 0xc0, 0xf1, 0xe6, 0x85, 0x96, 0xe9, 0xc5, 0x40, 0xb6, 0x8b, 0xfe, 0x28, 0x72, 0xe2, 0x24, 0x11, 0x7e, 0x59, 0xef, 0xac, 0x5c, 0xe1, 0x06, 0x89, 0x09, 0xab, 0xf8, 0x90, 0x1c, 0x66
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
}
|
|
|
|
static void aes_ctr_test_decrypt()
|
|
{
|
|
auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
|
|
// nonce is already included in ivec.
|
|
Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Decryption);
|
|
ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size()).release_value();
|
|
auto out_span = out_actual.bytes();
|
|
cipher.decrypt(in, out_span, ivec);
|
|
if (out_expected.size() != out_span.size()) {
|
|
FAIL(size mismatch);
|
|
outln("Expected {} bytes but got {}", out_expected.size(), out_span.size());
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
|
|
FAIL(invalid data);
|
|
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
|
|
} else
|
|
PASS;
|
|
};
|
|
// From RFC 3686, Section 6
|
|
{
|
|
// Test Vector #1
|
|
I_TEST((AES CTR 16 octets with 128 bit key | Decrypt))
|
|
u8 key[] {
|
|
0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
|
|
};
|
|
u8 ivec[] {
|
|
0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
|
|
};
|
|
u8 out[] {
|
|
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
|
};
|
|
u8 in[] {
|
|
0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
|
|
};
|
|
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
|
|
}
|
|
// If encryption works, then decryption works, too.
|
|
}
|
|
|
|
static int aes_gcm_tests()
|
|
{
|
|
aes_gcm_test_name();
|
|
if (encrypting) {
|
|
aes_gcm_test_encrypt();
|
|
} else {
|
|
aes_gcm_test_decrypt();
|
|
}
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void aes_gcm_test_name()
|
|
{
|
|
I_TEST((AES GCM class name));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
if (cipher.class_name() != "AES_GCM")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void aes_gcm_test_encrypt()
|
|
{
|
|
{
|
|
I_TEST((AES GCM Encrypt | Empty));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 result_tag[] { 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61, 0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a };
|
|
Bytes out;
|
|
auto tag = ByteBuffer::create_uninitialized(16).release_value();
|
|
cipher.encrypt({}, out, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, {}, tag);
|
|
if (memcmp(result_tag, tag.data(), tag.size()) != 0) {
|
|
FAIL(Invalid auth tag);
|
|
print_buffer(tag, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Encrypt | Zeros));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 result_tag[] { 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd, 0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf };
|
|
u8 result_ct[] { 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92, 0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 };
|
|
auto tag = ByteBuffer::create_uninitialized(16).release_value();
|
|
auto out = ByteBuffer::create_uninitialized(16).release_value();
|
|
auto out_bytes = out.bytes();
|
|
cipher.encrypt("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, out_bytes, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, {}, tag);
|
|
if (memcmp(result_ct, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid ciphertext);
|
|
print_buffer(out, -1);
|
|
} else if (memcmp(result_tag, tag.data(), tag.size()) != 0) {
|
|
FAIL(Invalid auth tag);
|
|
print_buffer(tag, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Encrypt | Multiple Blocks With IV));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 result_tag[] { 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6, 0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 };
|
|
u8 result_ct[] { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 };
|
|
auto tag = ByteBuffer::create_uninitialized(16).release_value();
|
|
auto out = ByteBuffer::create_uninitialized(64).release_value();
|
|
auto out_bytes = out.bytes();
|
|
cipher.encrypt(
|
|
"\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39\x1a\xaf\xd2\x55"_b,
|
|
out_bytes,
|
|
"\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88\x00\x00\x00\x00"_b,
|
|
{},
|
|
tag);
|
|
if (memcmp(result_ct, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid ciphertext);
|
|
print_buffer(out, -1);
|
|
} else if (memcmp(result_tag, tag.data(), tag.size()) != 0) {
|
|
FAIL(Invalid auth tag);
|
|
print_buffer(tag, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Encrypt | With AAD));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 result_tag[] { 0x93, 0xae, 0x16, 0x97, 0x49, 0xa3, 0xbf, 0x39, 0x4f, 0x61, 0xb7, 0xc1, 0xb1, 0x2, 0x4f, 0x60 };
|
|
u8 result_ct[] { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 };
|
|
auto tag = ByteBuffer::create_uninitialized(16).release_value();
|
|
auto out = ByteBuffer::create_uninitialized(64).release_value();
|
|
auto out_bytes = out.bytes();
|
|
cipher.encrypt(
|
|
"\xd9\x31\x32\x25\xf8\x84\x06\xe5\xa5\x59\x09\xc5\xaf\xf5\x26\x9a\x86\xa7\xa9\x53\x15\x34\xf7\xda\x2e\x4c\x30\x3d\x8a\x31\x8a\x72\x1c\x3c\x0c\x95\x95\x68\x09\x53\x2f\xcf\x0e\x24\x49\xa6\xb5\x25\xb1\x6a\xed\xf5\xaa\x0d\xe6\x57\xba\x63\x7b\x39\x1a\xaf\xd2\x55"_b,
|
|
out_bytes,
|
|
"\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88\x00\x00\x00\x00"_b,
|
|
"\xde\xad\xbe\xef\xfa\xaf\x11\xcc"_b,
|
|
tag);
|
|
if (memcmp(result_ct, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid ciphertext);
|
|
print_buffer(out, -1);
|
|
} else if (memcmp(result_tag, tag.data(), tag.size()) != 0) {
|
|
FAIL(Invalid auth tag);
|
|
print_buffer(tag, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void aes_gcm_test_decrypt()
|
|
{
|
|
{
|
|
I_TEST((AES GCM Decrypt | Empty));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 input_tag[] { 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61, 0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a };
|
|
Bytes out;
|
|
auto consistency = cipher.decrypt({}, out, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, {}, { input_tag, 16 });
|
|
if (consistency != Crypto::VerificationConsistency::Consistent) {
|
|
FAIL(Verification reported inconsistent);
|
|
} else if (out.size() != 0) {
|
|
FAIL(Invalid plain text);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Decrypt | Zeros));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 input_tag[] { 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd, 0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf };
|
|
u8 input_ct[] { 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92, 0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 };
|
|
u8 result_pt[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
auto out = ByteBuffer::create_uninitialized(16).release_value();
|
|
auto out_bytes = out.bytes();
|
|
auto consistency = cipher.decrypt({ input_ct, 16 }, out_bytes, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"_b, {}, { input_tag, 16 });
|
|
if (consistency != Crypto::VerificationConsistency::Consistent) {
|
|
FAIL(Verification reported inconsistent);
|
|
} else if (memcmp(result_pt, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid plaintext);
|
|
print_buffer(out, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Decrypt | Multiple Blocks With IV));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 input_tag[] { 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6, 0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 };
|
|
u8 input_ct[] { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 };
|
|
u8 result_pt[] { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 };
|
|
auto out = ByteBuffer::create_uninitialized(64).release_value();
|
|
auto out_bytes = out.bytes();
|
|
|
|
auto consistency = cipher.decrypt(
|
|
{ input_ct, 64 },
|
|
out_bytes,
|
|
"\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88\x00\x00\x00\x00"_b,
|
|
{},
|
|
{ input_tag, 16 });
|
|
if (memcmp(result_pt, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid plaintext);
|
|
print_buffer(out, -1);
|
|
} else if (consistency != Crypto::VerificationConsistency::Consistent) {
|
|
FAIL(Verification reported inconsistent);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Decrypt | With AAD));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 input_tag[] { 0x93, 0xae, 0x16, 0x97, 0x49, 0xa3, 0xbf, 0x39, 0x4f, 0x61, 0xb7, 0xc1, 0xb1, 0x2, 0x4f, 0x60 };
|
|
u8 input_ct[] { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 };
|
|
u8 result_pt[] { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 };
|
|
auto out = ByteBuffer::create_uninitialized(64).release_value();
|
|
auto out_bytes = out.bytes();
|
|
auto consistency = cipher.decrypt(
|
|
{ input_ct, 64 },
|
|
out_bytes,
|
|
"\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88\x00\x00\x00\x00"_b,
|
|
"\xde\xad\xbe\xef\xfa\xaf\x11\xcc"_b,
|
|
{ input_tag, 16 });
|
|
if (memcmp(result_pt, out.data(), out.size()) != 0) {
|
|
FAIL(Invalid plaintext);
|
|
print_buffer(out, -1);
|
|
} else if (consistency != Crypto::VerificationConsistency::Consistent) {
|
|
FAIL(Verification reported inconsistent);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((AES GCM Decrypt | With AAD - Invalid Tag));
|
|
Crypto::Cipher::AESCipher::GCMMode cipher("\xfe\xff\xe9\x92\x86\x65\x73\x1c\x6d\x6a\x8f\x94\x67\x30\x83\x08"_b, 128, Crypto::Cipher::Intent::Encryption);
|
|
u8 input_tag[] { 0x94, 0xae, 0x16, 0x97, 0x49, 0xa3, 0xbf, 0x39, 0x4f, 0x61, 0xb7, 0xc1, 0xb1, 0x2, 0x4f, 0x60 };
|
|
u8 input_ct[] { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 };
|
|
auto out = ByteBuffer::create_uninitialized(64).release_value();
|
|
auto out_bytes = out.bytes();
|
|
auto consistency = cipher.decrypt(
|
|
{ input_ct, 64 },
|
|
out_bytes,
|
|
"\xca\xfe\xba\xbe\xfa\xce\xdb\xad\xde\xca\xf8\x88\x00\x00\x00\x00"_b,
|
|
"\xde\xad\xbe\xef\xfa\xaf\x11\xcc"_b,
|
|
{ input_tag, 16 });
|
|
|
|
if (consistency != Crypto::VerificationConsistency::Inconsistent)
|
|
FAIL(Verification reported consistent);
|
|
else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int md5_tests()
|
|
{
|
|
md5_test_name();
|
|
md5_test_hash();
|
|
md5_test_consecutive_updates();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void md5_test_name()
|
|
{
|
|
I_TEST((MD5 class name));
|
|
Crypto::Hash::MD5 md5;
|
|
if (md5.class_name() != "MD5")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void md5_test_hash()
|
|
{
|
|
{
|
|
I_TEST((MD5 Hashing | "Well hello friends"));
|
|
u8 result[] {
|
|
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
|
|
};
|
|
auto digest = Crypto::Hash::MD5::hash("Well hello friends");
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
// RFC tests
|
|
{
|
|
I_TEST((MD5 Hashing | ""));
|
|
u8 result[] {
|
|
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
|
|
};
|
|
auto digest = Crypto::Hash::MD5::hash("");
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
{
|
|
I_TEST((MD5 Hashing | "a"));
|
|
u8 result[] {
|
|
0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61
|
|
};
|
|
auto digest = Crypto::Hash::MD5::hash("a");
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
{
|
|
I_TEST((MD5 Hashing | "abcdefghijklmnopqrstuvwxyz"));
|
|
u8 result[] {
|
|
0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b
|
|
};
|
|
auto digest = Crypto::Hash::MD5::hash("abcdefghijklmnopqrstuvwxyz");
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
{
|
|
I_TEST((MD5 Hashing | Long Sequence));
|
|
u8 result[] {
|
|
0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a
|
|
};
|
|
auto digest = Crypto::Hash::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void md5_test_consecutive_updates()
|
|
{
|
|
{
|
|
I_TEST((MD5 Hashing | Multiple Updates));
|
|
u8 result[] {
|
|
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
|
|
};
|
|
Crypto::Hash::MD5 md5;
|
|
|
|
md5.update("Well");
|
|
md5.update(" hello ");
|
|
md5.update("friends");
|
|
auto digest = md5.digest();
|
|
|
|
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0)
|
|
FAIL(Invalid hash);
|
|
else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((MD5 Hashing | Reuse));
|
|
Crypto::Hash::MD5 md5;
|
|
|
|
md5.update("Well");
|
|
md5.update(" hello ");
|
|
md5.update("friends");
|
|
auto digest0 = md5.digest();
|
|
|
|
md5.update("Well");
|
|
md5.update(" hello ");
|
|
md5.update("friends");
|
|
auto digest1 = md5.digest();
|
|
|
|
if (memcmp(digest0.data, digest1.data, Crypto::Hash::MD5::digest_size()) != 0)
|
|
FAIL(Cannot reuse);
|
|
else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int hmac_md5_tests()
|
|
{
|
|
hmac_md5_test_name();
|
|
hmac_md5_test_process();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static int hmac_sha256_tests()
|
|
{
|
|
hmac_sha256_test_name();
|
|
hmac_sha256_test_process();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static int hmac_sha512_tests()
|
|
{
|
|
hmac_sha512_test_name();
|
|
hmac_sha512_test_process();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static int hmac_sha1_tests()
|
|
{
|
|
hmac_sha1_test_name();
|
|
hmac_sha1_test_process();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void hmac_md5_test_name()
|
|
{
|
|
I_TEST((HMAC - MD5 | Class name));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
|
|
if (hmac.class_name() != "HMAC-MD5")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void hmac_md5_test_process()
|
|
{
|
|
{
|
|
I_TEST((HMAC - MD5 | Basic));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
|
|
u8 result[] {
|
|
0x3b, 0x5b, 0xde, 0x30, 0x3a, 0x54, 0x7b, 0xbb, 0x09, 0xfe, 0x78, 0x89, 0xbc, 0x9f, 0x22, 0xa3
|
|
};
|
|
auto mac = hmac.process("Some bogus data");
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - MD5 | Reuse));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
|
|
|
|
auto mac_0 = hmac.process("Some bogus data");
|
|
auto mac_1 = hmac.process("Some bogus data");
|
|
|
|
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
|
|
FAIL(Cannot reuse);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int ghash_tests()
|
|
{
|
|
ghash_test_name();
|
|
ghash_test_process();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void ghash_test_name()
|
|
{
|
|
I_TEST((GHash class name));
|
|
Crypto::Authentication::GHash ghash("WellHelloFriends");
|
|
if (ghash.class_name() != "GHash")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void hmac_sha1_test_name()
|
|
{
|
|
I_TEST((HMAC - SHA1 | Class name));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA1> hmac("Well Hello Friends");
|
|
if (hmac.class_name() != "HMAC-SHA1")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void hmac_sha1_test_process()
|
|
{
|
|
{
|
|
I_TEST((HMAC - SHA1 | Basic));
|
|
u8 key[] { 0xc8, 0x52, 0xe5, 0x4a, 0x2c, 0x03, 0x2b, 0xc9, 0x63, 0xd3, 0xc2, 0x79, 0x0f, 0x76, 0x43, 0xef, 0x36, 0xc3, 0x7a, 0xca };
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA1> hmac(ReadonlyBytes { key, sizeof(key) });
|
|
u8 result[] {
|
|
0x2c, 0x57, 0x32, 0x61, 0x3b, 0xa7, 0x84, 0x87, 0x0e, 0x4f, 0x42, 0x07, 0x2f, 0xf0, 0xe7, 0x41, 0xd7, 0x15, 0xf4, 0x56
|
|
};
|
|
u8 value[] {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x16, 0x03, 0x03, 0x00, 0x10, 0x14, 0x00, 0x00, 0x0c, 0xa1, 0x91, 0x1a, 0x20, 0x59, 0xb5, 0x45, 0xa9, 0xb4, 0xad, 0x75, 0x3e
|
|
};
|
|
auto mac = hmac.process(value, 29);
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - SHA1 | Reuse));
|
|
u8 key[] { 0xc8, 0x52, 0xe5, 0x4a, 0x2c, 0x03, 0x2b, 0xc9, 0x63, 0xd3, 0xc2, 0x79, 0x0f, 0x76, 0x43, 0xef, 0x36, 0xc3, 0x7a, 0xca };
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA1> hmac(ReadonlyBytes { key, sizeof(key) });
|
|
u8 result[] {
|
|
0x2c, 0x57, 0x32, 0x61, 0x3b, 0xa7, 0x84, 0x87, 0x0e, 0x4f, 0x42, 0x07, 0x2f, 0xf0, 0xe7, 0x41, 0xd7, 0x15, 0xf4, 0x56
|
|
};
|
|
u8 value[] {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x16, 0x03, 0x03, 0x00, 0x10, 0x14, 0x00, 0x00, 0x0c, 0xa1, 0x91, 0x1a, 0x20, 0x59, 0xb5, 0x45, 0xa9, 0xb4, 0xad, 0x75, 0x3e
|
|
};
|
|
hmac.update(value, 8);
|
|
hmac.update(value + 8, 5);
|
|
hmac.update(value + 13, 16);
|
|
auto mac = hmac.digest();
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void ghash_test_process()
|
|
{
|
|
{
|
|
I_TEST((GHash | Galois Field Multiply));
|
|
u32 x[4] { 0x42831ec2, 0x21777424, 0x4b7221b7, 0x84d0d49c },
|
|
y[4] { 0xb83b5337, 0x08bf535d, 0x0aa6e529, 0x80d53b78 }, z[4] { 0, 0, 0, 0 };
|
|
static constexpr u32 result[4] { 0x59ed3f2b, 0xb1a0aaa0, 0x7c9f56c6, 0xa504647b };
|
|
|
|
Crypto::Authentication::galois_multiply(z, x, y);
|
|
if (memcmp(result, z, 4 * sizeof(u32)) != 0) {
|
|
FAIL(Invalid multiply value);
|
|
print_buffer({ z, 4 * sizeof(u32) }, -1);
|
|
print_buffer({ result, 4 * sizeof(u32) }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((GHash | Galois Field Multiply #2));
|
|
u32 x[4] { 59300558, 1622582162, 4079534777, 1907555960 },
|
|
y[4] { 1726565332, 4018809915, 2286746201, 3392416558 }, z[4];
|
|
constexpr static u32 result[4] { 1580123974, 2440061576, 746958952, 1398005431 };
|
|
|
|
Crypto::Authentication::galois_multiply(z, x, y);
|
|
if (memcmp(result, z, 4 * sizeof(u32)) != 0) {
|
|
FAIL(Invalid multiply value);
|
|
print_buffer({ z, 4 * sizeof(u32) }, -1);
|
|
print_buffer({ result, 4 * sizeof(u32) }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
// TODO: Add some GHash tests?
|
|
// Kinda hard, as there are no vectors and existing tools don't have an interface to it.
|
|
}
|
|
|
|
static int sha1_tests()
|
|
{
|
|
sha1_test_name();
|
|
sha1_test_hash();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void sha1_test_name()
|
|
{
|
|
I_TEST((SHA1 class name));
|
|
Crypto::Hash::SHA1 sha;
|
|
if (sha.class_name() != "SHA1") {
|
|
FAIL(Invalid class name);
|
|
outln("{}", sha.class_name());
|
|
} else
|
|
PASS;
|
|
}
|
|
|
|
static void sha1_test_hash()
|
|
{
|
|
{
|
|
I_TEST((SHA256 Hashing | ""));
|
|
u8 result[] {
|
|
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09
|
|
};
|
|
auto digest = Crypto::Hash::SHA1::hash("");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((SHA256 Hashing | Long String));
|
|
u8 result[] {
|
|
0x12, 0x15, 0x1f, 0xb1, 0x04, 0x44, 0x93, 0xcc, 0xed, 0x54, 0xa6, 0xb8, 0x7e, 0x93, 0x37, 0x7b, 0xb2, 0x13, 0x39, 0xdb
|
|
};
|
|
auto digest = Crypto::Hash::SHA1::hash("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((SHA256 Hashing | Successive Updates));
|
|
u8 result[] {
|
|
0xd6, 0x6e, 0xce, 0xd1, 0xf4, 0x08, 0xc6, 0xd8, 0x35, 0xab, 0xf0, 0xc9, 0x05, 0x26, 0xa4, 0xb2, 0xb8, 0xa3, 0x7c, 0xd3
|
|
};
|
|
auto hasher = Crypto::Hash::SHA1 {};
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaaaaaaaa");
|
|
hasher.update("aaaaaaaaa");
|
|
auto digest = hasher.digest();
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int sha256_tests()
|
|
{
|
|
sha256_test_name();
|
|
sha256_test_hash();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void sha256_test_name()
|
|
{
|
|
I_TEST((SHA256 class name));
|
|
Crypto::Hash::SHA256 sha;
|
|
if (sha.class_name() != "SHA256") {
|
|
FAIL(Invalid class name);
|
|
outln("{}", sha.class_name());
|
|
} else
|
|
PASS;
|
|
}
|
|
|
|
static void sha256_test_hash()
|
|
{
|
|
{
|
|
I_TEST((SHA256 Hashing | "Well hello friends"));
|
|
u8 result[] {
|
|
0x9a, 0xcd, 0x50, 0xf9, 0xa2, 0xaf, 0x37, 0xe4, 0x71, 0xf7, 0x61, 0xc3, 0xfe, 0x7b, 0x8d, 0xea, 0x56, 0x17, 0xe5, 0x1d, 0xac, 0x80, 0x2f, 0xe6, 0xc1, 0x77, 0xb7, 0x4a, 0xbf, 0x0a, 0xbb, 0x5a
|
|
};
|
|
auto digest = Crypto::Hash::SHA256::hash("Well hello friends");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((SHA256 Hashing | ""));
|
|
u8 result[] {
|
|
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
|
|
};
|
|
auto digest = Crypto::Hash::SHA256::hash("");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void hmac_sha256_test_name()
|
|
{
|
|
I_TEST((HMAC - SHA256 | Class name));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
|
|
if (hmac.class_name() != "HMAC-SHA256")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void hmac_sha256_test_process()
|
|
{
|
|
{
|
|
I_TEST((HMAC - SHA256 | Basic));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
|
|
u8 result[] {
|
|
0x1a, 0xf2, 0x20, 0x62, 0xde, 0x3b, 0x84, 0x65, 0xc1, 0x25, 0x23, 0x99, 0x76, 0x15, 0x1b, 0xec, 0x15, 0x21, 0x82, 0x1f, 0x23, 0xca, 0x11, 0x66, 0xdd, 0x8c, 0x6e, 0xf1, 0x81, 0x3b, 0x7f, 0x1b
|
|
};
|
|
auto mac = hmac.process("Some bogus data");
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - SHA256 | DataSize > FinalBlockDataSize));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
|
|
u8 result[] = {
|
|
0x9b, 0xa3, 0x9e, 0xf3, 0xb4, 0x30, 0x5f, 0x6f, 0x67, 0xd0, 0xa8, 0xb0, 0xf0, 0xcb, 0x12, 0xf5, 0x85, 0xe2, 0x19, 0xba, 0x0c, 0x8b, 0xe5, 0x43, 0xf0, 0x93, 0x39, 0xa8, 0xa3, 0x07, 0xf1, 0x95
|
|
};
|
|
auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - SHA256 | DataSize == BlockSize));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
|
|
u8 result[] = {
|
|
0x1d, 0x90, 0xce, 0x68, 0x45, 0x0b, 0xba, 0xd6, 0xbe, 0x1c, 0xb2, 0x3a, 0xea, 0x7f, 0xac, 0x4b, 0x68, 0x08, 0xa4, 0x77, 0x81, 0x2a, 0xad, 0x5d, 0x05, 0xe2, 0x15, 0xe8, 0xf4, 0xcb, 0x06, 0xaf
|
|
};
|
|
auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - SHA256 | Reuse));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
|
|
|
|
auto mac_0 = hmac.process("Some bogus data");
|
|
auto mac_1 = hmac.process("Some bogus data");
|
|
|
|
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
|
|
FAIL(Cannot reuse);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int sha384_tests()
|
|
{
|
|
sha384_test_name();
|
|
sha384_test_hash();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void sha384_test_name()
|
|
{
|
|
I_TEST((SHA384 class name));
|
|
Crypto::Hash::SHA384 sha;
|
|
if (sha.class_name() != "SHA384") {
|
|
FAIL(Invalid class name);
|
|
outln("{}", sha.class_name());
|
|
} else
|
|
PASS;
|
|
}
|
|
|
|
static void sha384_test_hash()
|
|
{
|
|
{
|
|
I_TEST((SHA384 Hashing | "Well hello friends"));
|
|
u8 result[] {
|
|
0x2f, 0x01, 0x8e, 0x9a, 0x4f, 0xd1, 0x36, 0xb9, 0x0f, 0xcc, 0x21, 0xde, 0x1a, 0xd4, 0x49, 0x51, 0x57, 0x82, 0x86, 0x84, 0x54, 0x09, 0x82, 0x7b, 0x54, 0x56, 0x93, 0xac, 0x2c, 0x46, 0x0c, 0x1f, 0x5e, 0xec, 0xe0, 0xf7, 0x8b, 0x0b, 0x84, 0x27, 0xc8, 0xb8, 0xbe, 0x49, 0xce, 0x8f, 0x1c, 0xff
|
|
};
|
|
auto digest = Crypto::Hash::SHA384::hash("Well hello friends");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA384::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA384::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((SHA384 Hashing | ""));
|
|
u8 result[] {
|
|
0x38, 0xb0, 0x60, 0xa7, 0x51, 0xac, 0x96, 0x38, 0x4c, 0xd9, 0x32, 0x7e, 0xb1, 0xb1, 0xe3, 0x6a, 0x21, 0xfd, 0xb7, 0x11, 0x14, 0xbe, 0x07, 0x43, 0x4c, 0x0c, 0xc7, 0xbf, 0x63, 0xf6, 0xe1, 0xda, 0x27, 0x4e, 0xde, 0xbf, 0xe7, 0x6f, 0x65, 0xfb, 0xd5, 0x1a, 0xd2, 0xf1, 0x48, 0x98, 0xb9, 0x5b
|
|
};
|
|
auto digest = Crypto::Hash::SHA384::hash("");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA384::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA384::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int sha512_tests()
|
|
{
|
|
sha512_test_name();
|
|
sha512_test_hash();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void sha512_test_name()
|
|
{
|
|
I_TEST((SHA512 class name));
|
|
Crypto::Hash::SHA512 sha;
|
|
if (sha.class_name() != "SHA512") {
|
|
FAIL(Invalid class name);
|
|
outln("{}", sha.class_name());
|
|
} else
|
|
PASS;
|
|
}
|
|
|
|
static void sha512_test_hash()
|
|
{
|
|
{
|
|
I_TEST((SHA512 Hashing | "Well hello friends"));
|
|
u8 result[] {
|
|
0x00, 0xfe, 0x68, 0x09, 0x71, 0x0e, 0xcb, 0x2b, 0xe9, 0x58, 0x00, 0x13, 0x69, 0x6a, 0x9e, 0x9e, 0xbd, 0x09, 0x1b, 0xfe, 0x14, 0xc9, 0x13, 0x82, 0xc7, 0x40, 0x34, 0xfe, 0xca, 0xe6, 0x87, 0xcb, 0x26, 0x36, 0x92, 0xe6, 0x34, 0x94, 0x3a, 0x11, 0xe5, 0xbb, 0xb5, 0xeb, 0x8e, 0x70, 0xef, 0x64, 0xca, 0xf7, 0x21, 0xb1, 0xde, 0xf2, 0x34, 0x85, 0x6f, 0xa8, 0x56, 0xd8, 0x23, 0xa1, 0x3b, 0x29
|
|
};
|
|
auto digest = Crypto::Hash::SHA512::hash("Well hello friends");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((SHA512 Hashing | ""));
|
|
u8 result[] {
|
|
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
|
|
};
|
|
auto digest = Crypto::Hash::SHA512::hash("");
|
|
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
|
|
FAIL(Invalid hash);
|
|
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void hmac_sha512_test_name()
|
|
{
|
|
I_TEST((HMAC - SHA512 | Class name));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
|
|
if (hmac.class_name() != "HMAC-SHA512")
|
|
FAIL(Invalid class name);
|
|
else
|
|
PASS;
|
|
}
|
|
|
|
static void hmac_sha512_test_process()
|
|
{
|
|
{
|
|
I_TEST((HMAC - SHA512 | Basic));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
|
|
u8 result[] {
|
|
0xeb, 0xa8, 0x34, 0x11, 0xfd, 0x5b, 0x46, 0x5b, 0xef, 0xbb, 0x67, 0x5e, 0x7d, 0xc2, 0x7c, 0x2c, 0x6b, 0xe1, 0xcf, 0xe6, 0xc7, 0xe4, 0x7d, 0xeb, 0xca, 0x97, 0xb7, 0x4c, 0xd3, 0x4d, 0x6f, 0x08, 0x9f, 0x0d, 0x3a, 0xf1, 0xcb, 0x00, 0x79, 0x78, 0x2f, 0x05, 0x8e, 0xeb, 0x94, 0x48, 0x0d, 0x50, 0x64, 0x3b, 0xca, 0x70, 0xe2, 0x69, 0x38, 0x4f, 0xe4, 0xb0, 0x49, 0x0f, 0xc5, 0x4c, 0x7a, 0xa7
|
|
};
|
|
auto mac = hmac.process("Some bogus data");
|
|
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
|
|
FAIL(Invalid mac);
|
|
print_buffer({ mac.data, hmac.digest_size() }, -1);
|
|
} else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((HMAC - SHA512 | Reuse));
|
|
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
|
|
|
|
auto mac_0 = hmac.process("Some bogus data");
|
|
auto mac_1 = hmac.process("Some bogus data");
|
|
|
|
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
|
|
FAIL(Cannot reuse);
|
|
} else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int rsa_tests()
|
|
{
|
|
rsa_test_encrypt();
|
|
rsa_test_der_parse();
|
|
rsa_test_encrypt_decrypt();
|
|
rsa_emsa_pss_test_create();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void rsa_test_encrypt()
|
|
{
|
|
{
|
|
I_TEST((RSA RAW | Encryption));
|
|
ReadonlyBytes data { "hellohellohellohellohellohellohellohellohellohellohellohello123-"_b };
|
|
u8 result[] { 0x6f, 0x7b, 0xe2, 0xd3, 0x95, 0xf8, 0x8d, 0x87, 0x6d, 0x10, 0x5e, 0xc3, 0xcd, 0xf7, 0xbb, 0xa6, 0x62, 0x8e, 0x45, 0xa0, 0xf1, 0xe5, 0x0f, 0xdf, 0x69, 0xcb, 0xb6, 0xd5, 0x42, 0x06, 0x7d, 0x72, 0xa9, 0x5e, 0xae, 0xbf, 0xbf, 0x0f, 0xe0, 0xeb, 0x31, 0x31, 0xca, 0x8a, 0x81, 0x1e, 0xb9, 0xec, 0x6d, 0xcc, 0xb8, 0xa4, 0xac, 0xa3, 0x31, 0x05, 0xa9, 0xac, 0xc9, 0xd3, 0xe6, 0x2a, 0x18, 0xfe };
|
|
Crypto::PK::RSA rsa(
|
|
"8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
|
|
"4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
|
|
"65537"_bigint);
|
|
u8 buffer[rsa.output_size()];
|
|
auto buf = Bytes { buffer, sizeof(buffer) };
|
|
rsa.encrypt(data, buf);
|
|
if (memcmp(result, buf.data(), buf.size())) {
|
|
FAIL(Invalid encryption result);
|
|
print_buffer(buf, 16);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
{
|
|
I_TEST((RSA PKCS #1 1.5 | Encryption));
|
|
ReadonlyBytes data { "hellohellohellohellohellohellohellohellohello123-"_b };
|
|
Crypto::PK::RSA_PKCS1_EME rsa(
|
|
"8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
|
|
"4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
|
|
"65537"_bigint);
|
|
u8 buffer[rsa.output_size()];
|
|
auto buf = Bytes { buffer, sizeof(buffer) };
|
|
rsa.encrypt(data, buf);
|
|
rsa.decrypt(buf, buf);
|
|
|
|
if (memcmp(buf.data(), "hellohellohellohellohellohellohellohellohello123-", 49))
|
|
FAIL(Invalid encryption);
|
|
else {
|
|
dbgln("out size {} values {}", buf.size(), StringView { (char*)buf.data(), buf.size() });
|
|
|
|
PASS;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rsa_emsa_pss_test_create()
|
|
{
|
|
{
|
|
// This is a template validity test
|
|
I_TEST((RSA EMSA_PSS | Construction));
|
|
Crypto::PK::RSA rsa;
|
|
Crypto::PK::RSA_EMSA_PSS<Crypto::Hash::SHA256> rsa_esma_pss(rsa);
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void rsa_test_der_parse()
|
|
{
|
|
{
|
|
I_TEST((RSA | ASN1 PKCS1 DER / PEM encoded Key import));
|
|
auto privkey = R"(-----BEGIN RSA PRIVATE KEY-----
|
|
MIIBOgIBAAJBAJsrIYHxs1YL9tpfodaWs1lJoMdF4kgFisUFSj6nvBhJUlmBh607AlgTaX0E
|
|
DGPYycXYGZ2n6rqmms5lpDXBpUcCAwEAAQJAUNpPkmtEHDENxsoQBUXvXDYeXdePSiIBJhpU
|
|
joNOYoR5R9z5oX2cpcyykQ58FC2vKKg+x8N6xczG7qO95tw5UQIhAN354CP/FA+uTeJ6KJ+i
|
|
zCBCl58CjNCzO0s5HTc56el5AiEAsvPKXo5/9gS/S4UzDRP6abq7GreixTfjR8LXidk3FL8C
|
|
IQCTjYI861Y+hjMnlORkGSdvWlTHUj6gjEOh4TlWeJzQoQIgAxMZOQKtxCZUuxFwzRq4xLRG
|
|
nrDlBQpuxz7bwSyQO7UCIHrYMnDohgNbwtA5ZpW3H1cKKQQvueWm6sxW9P5sUrZ3
|
|
-----END RSA PRIVATE KEY-----)";
|
|
|
|
Crypto::PK::RSA rsa(privkey);
|
|
if (rsa.public_key().public_exponent() == 65537) {
|
|
if (rsa.private_key().private_exponent() == "4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint) {
|
|
PASS;
|
|
} else
|
|
FAIL(Invalid private exponent);
|
|
} else {
|
|
FAIL(Invalid public exponent);
|
|
}
|
|
}
|
|
|
|
{
|
|
I_TEST((RSA | ASN1 PKCS8 DER / PEM encoded Key import));
|
|
auto privkey = R"(-----BEGIN PRIVATE KEY-----
|
|
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQC7ZBYaG9+CcJP7
|
|
WVFJRI/uw3hljc7WpzeYs8MN82/g9CG1gnEF3P3ZSBdWVr8gnbh05EsSGHKghIce
|
|
CB7DNrM5Ab0ru04CuODdPx56xCj+4MmzTc/aq79ntmOt131NGHgq9yVwfJqnSpyl
|
|
OoVw7j/Wg4ciwPDQaeLmD1BsE/W9UsF1km7DWasBpW5br82DpudKgJq2Ixf52+rY
|
|
TCkMgyWcetx4MfXll4y5ZVtJXCnHJfkCS64EaCqXmClP4ovOuHH4khJ3rW9j4yuL
|
|
e5ck3PSXOrtOTR43HZkCXzseCkbW7qKSmk/9ZreImOzOgu8vvw7ewLAQR9qYVS6X
|
|
PXY8IilDAgMBAAECggEBAIV3ld5mt90Z/exqA2Fh+fofMyNxyz5Lv2d9sZHAL5FT
|
|
kKbND18TtaIKnMSb6Gl8rKJk76slyo7Vlb8oHXEBBsm1mV0KfVenAlHS4QyjpmdT
|
|
B5Yz97VR2nQuDfUFpHNC2GQRv5LMzQIWPFfaxKxYpRNOfvOb5Gks4bTmd2tjFAYR
|
|
MCbHgPw1liKA9dYKk4NB0301EY05e4Zz8RjqYHkkmOPD7DnjFbHqcFUjVKK5E3vD
|
|
WjxNXUbiSudCCN7WLEOyeHZNd+l6kSAVxZuCAp0G3Da5ndXgIStcy4hYi/fL3XQQ
|
|
bNpxjfhsjlD3tdHNr3NNYDAqxcxpsyO1NCpCIW3ZVrECgYEA7l6gTZ3e9AiSNlMd
|
|
2O2vNnbQ6UZfsEfu2y7HmpCuNJkFkAnM/1h72Krejnn31rRuR6uCFn4YgQUN9Eq0
|
|
E1PJCtTay2ucZw5rqtkewT9QzXvVD9eiGM+MF89UzSCC+dOW0/odkD+xP2evnPvG
|
|
PbXztnuERC1pi0YWLj1YcsfsEX0CgYEAyUA2UtYjnvCcteIy+rURT0aoZ9tDMrG+
|
|
Es42EURVv1sduVdUst5R+bXx1aDzpCkcdni3TyxeosvTGAZngI3O8ghh1GV7NPZR
|
|
nkiPXjMnhL0Zf+X9gCA6TFANfPuWhMSGijYsCd46diKGDReGYUnmcN9XopeG1h6i
|
|
3JiOuVPAIb8CgYBmIcUtfGb6yHFdNV+kgrJ/84ivaqe1MBz3bKO5ZiQ+BRKNFKXx
|
|
AkiOHSgeg8PdCpH1w1aJrJ1zKmdANIHThiKtsWXNot3wig03tq+mvSox4Mz5bLrX
|
|
RpYP3ZXIDhYQVMhbKt9f3upi8FoeOQJHjp5Nob6aN5rxQaZfSYmMJHzRQQKBgQCO
|
|
ALwUGTtLNBYvlKtKEadkG8RKfAFfbOFkXZLy/hfPDRjdJY0DJTIMk+BPT+F6rPOD
|
|
eMxHllQ0ZMPPiP1RTT5/s4BsISsdhMy0dhiLbGbvF4s9nugPly3rmPTbgp6DkjQo
|
|
o+7RC7iOkO+rnzTXwxBSBpXMiUTAIx/hrdfPVxQT+wKBgCh7N3OLIOH6EWcW1fif
|
|
UoENh8rkt/kzm89G1JLwBhuBIBPXUEZt2dS/xSUempqVqFGONpP87gvqxkMTtgCA
|
|
73KXn/cxHWM2kmXyHA3kQlOYw6WHjpldQAxLE+TRHXO2JUtZ09Mu4rVXX7lmwbTm
|
|
l3vmuDEF3/Bo1C1HTg0xRV/l
|
|
-----END PRIVATE KEY-----)";
|
|
|
|
Crypto::PK::RSA rsa(privkey);
|
|
if (rsa.public_key().public_exponent() == 65537) {
|
|
if (rsa.private_key().private_exponent() == "16848664331299797559656678180469464902267415922431923391961407795209879741791261105581093539484181644099608161661780611501562625272630894063592208758992911105496755004417051031019663332258403844985328863382168329621318366311519850803972480500782200178279692319955495383119697563295214236936264406600739633470565823022975212999060908747002623721589308539473108154612454595201561671949550531384574873324370774408913092560971930541734744950937900805812300970883306404011323308000168926094053141613790857814489531436452649384151085451448183385611208320292948291211969430321231180227006521681776197974694030147965578466993"_bigint) {
|
|
PASS;
|
|
} else
|
|
FAIL(Invalid private exponent);
|
|
} else {
|
|
FAIL(Invalid public exponent);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rsa_test_encrypt_decrypt()
|
|
{
|
|
I_TEST((RSA | Encrypt));
|
|
dbgln(" creating rsa object");
|
|
Crypto::PK::RSA rsa(
|
|
"9527497237087650398000977129550904920919162360737979403539302312977329868395261515707123424679295515888026193056908173564681660256268221509339074678416049"_bigint,
|
|
"39542231845947188736992321577701849924317746648774438832456325878966594812143638244746284968851807975097653255909707366086606867657273809465195392910913"_bigint,
|
|
"65537"_bigint);
|
|
|
|
dbgln("Output size: {}", rsa.output_size());
|
|
|
|
u8 enc_buffer[rsa.output_size()];
|
|
u8 dec_buffer[rsa.output_size()];
|
|
|
|
auto enc = Bytes { enc_buffer, rsa.output_size() };
|
|
auto dec = Bytes { dec_buffer, rsa.output_size() };
|
|
|
|
enc.overwrite(0, "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64);
|
|
|
|
rsa.encrypt(enc, dec);
|
|
rsa.decrypt(dec, enc);
|
|
|
|
dbgln("enc size {} dec size {}", enc.size(), dec.size());
|
|
|
|
if (memcmp(enc.data(), "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64) != 0) {
|
|
FAIL(Could not encrypt then decrypt);
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static int tls_tests()
|
|
{
|
|
tls_test_client_hello();
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static void tls_test_client_hello()
|
|
{
|
|
I_TEST((TLS | Connect and Data Transfer));
|
|
Core::EventLoop loop;
|
|
RefPtr<TLS::TLSv12> tls = TLS::TLSv12::construct(nullptr);
|
|
tls->set_root_certificates(s_root_ca_certificates);
|
|
bool sent_request = false;
|
|
ByteBuffer contents;
|
|
tls->set_on_tls_ready_to_write([&](TLS::TLSv12& tls) {
|
|
if (sent_request)
|
|
return;
|
|
sent_request = true;
|
|
Core::deferred_invoke([&tls] { tls.set_on_tls_ready_to_write(nullptr); });
|
|
if (!tls.write("GET / HTTP/1.1\r\nHost: "_b)) {
|
|
FAIL(write(0) failed);
|
|
loop.quit(0);
|
|
}
|
|
auto* the_server = server ?: DEFAULT_SERVER;
|
|
if (!tls.write(StringView(the_server).bytes())) {
|
|
FAIL(write(1) failed);
|
|
loop.quit(0);
|
|
}
|
|
if (!tls.write("\r\nConnection : close\r\n\r\n"_b)) {
|
|
FAIL(write(2) failed);
|
|
loop.quit(0);
|
|
}
|
|
});
|
|
tls->on_tls_ready_to_read = [&](TLS::TLSv12& tls) {
|
|
auto data = tls.read();
|
|
if (!data.has_value()) {
|
|
FAIL(No data received);
|
|
loop.quit(1);
|
|
} else {
|
|
// print_buffer(data.value(), 16);
|
|
if (contents.try_append(data.value().data(), data.value().size()).is_error()) {
|
|
FAIL(Allocation failed);
|
|
loop.quit(1);
|
|
}
|
|
}
|
|
};
|
|
tls->on_tls_finished = [&] {
|
|
PASS;
|
|
loop.quit(0);
|
|
};
|
|
tls->on_tls_error = [&](TLS::AlertDescription) {
|
|
FAIL(Connection failure);
|
|
loop.quit(1);
|
|
};
|
|
if (!tls->connect(server ?: DEFAULT_SERVER, port)) {
|
|
FAIL(connect() failed);
|
|
return;
|
|
}
|
|
loop.exec();
|
|
}
|
|
|
|
static int adler32_tests()
|
|
{
|
|
auto do_test = [](ReadonlyBytes input, u32 expected_result) {
|
|
I_TEST((CRC32));
|
|
|
|
auto pass = Crypto::Checksum::Adler32(input).digest() == expected_result;
|
|
|
|
if (pass) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
};
|
|
|
|
do_test(String("").bytes(), 0x1);
|
|
do_test(String("a").bytes(), 0x00620062);
|
|
do_test(String("abc").bytes(), 0x024d0127);
|
|
do_test(String("message digest").bytes(), 0x29750586);
|
|
do_test(String("abcdefghijklmnopqrstuvwxyz").bytes(), 0x90860b20);
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static int crc32_tests()
|
|
{
|
|
auto do_test = [](ReadonlyBytes input, u32 expected_result) {
|
|
I_TEST((Adler32));
|
|
|
|
auto pass = Crypto::Checksum::CRC32(input).digest() == expected_result;
|
|
|
|
if (pass) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
};
|
|
|
|
do_test(String("").bytes(), 0x0);
|
|
do_test(String("The quick brown fox jumps over the lazy dog").bytes(), 0x414FA339);
|
|
do_test(String("various CRC algorithms input data").bytes(), 0x9BD366AE);
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static int bigint_tests()
|
|
{
|
|
bigint_test_fibo500();
|
|
bigint_addition_edgecases();
|
|
bigint_subtraction();
|
|
bigint_multiplication();
|
|
bigint_division();
|
|
bigint_base10();
|
|
bigint_import_export();
|
|
bigint_bitwise();
|
|
|
|
bigint_theory_modular_inverse();
|
|
bigint_theory_modular_power();
|
|
bigint_theory_primality();
|
|
bigint_theory_random_number();
|
|
|
|
bigint_test_signed_fibo500();
|
|
bigint_signed_addition_edgecases();
|
|
bigint_signed_subtraction();
|
|
bigint_signed_multiplication();
|
|
bigint_signed_division();
|
|
bigint_signed_base10();
|
|
bigint_signed_import_export();
|
|
bigint_signed_bitwise();
|
|
|
|
return g_some_test_failed ? 1 : 0;
|
|
}
|
|
|
|
static Crypto::UnsignedBigInteger bigint_fibonacci(size_t n)
|
|
{
|
|
Crypto::UnsignedBigInteger num1(0);
|
|
Crypto::UnsignedBigInteger num2(1);
|
|
for (size_t i = 0; i < n; ++i) {
|
|
Crypto::UnsignedBigInteger t = num1.plus(num2);
|
|
num2 = num1;
|
|
num1 = t;
|
|
}
|
|
return num1;
|
|
}
|
|
|
|
static Crypto::SignedBigInteger bigint_signed_fibonacci(size_t n)
|
|
{
|
|
Crypto::SignedBigInteger num1(0);
|
|
Crypto::SignedBigInteger num2(1);
|
|
for (size_t i = 0; i < n; ++i) {
|
|
Crypto::SignedBigInteger t = num1.plus(num2);
|
|
num2 = num1;
|
|
num1 = t;
|
|
}
|
|
return num1;
|
|
}
|
|
static void bigint_test_fibo500()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Fibonacci500));
|
|
bool pass = (bigint_fibonacci(500).words() == Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
|
|
|
|
if (pass) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_addition_edgecases()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Edge Cases));
|
|
Crypto::UnsignedBigInteger num1;
|
|
Crypto::UnsignedBigInteger num2(70);
|
|
Crypto::UnsignedBigInteger num3 = num1.plus(num2);
|
|
bool pass = (num3 == num2);
|
|
pass &= (num1 == Crypto::UnsignedBigInteger(0));
|
|
|
|
if (pass) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Borrow with zero));
|
|
Crypto::UnsignedBigInteger num1({ UINT32_MAX - 3, UINT32_MAX });
|
|
Crypto::UnsignedBigInteger num2({ UINT32_MAX - 2, 0 });
|
|
if (num1.plus(num2).words() == Vector<u32> { 4294967289, 0, 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Basic add to accumulator));
|
|
Crypto::UnsignedBigInteger num1(10);
|
|
Crypto::UnsignedBigInteger num2(70);
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 80 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to empty accumulator));
|
|
Crypto::UnsignedBigInteger num1({});
|
|
Crypto::UnsignedBigInteger num2(10);
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 10 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to smaller accumulator));
|
|
Crypto::UnsignedBigInteger num1(10);
|
|
Crypto::UnsignedBigInteger num2({ 10, 10 });
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 20, 10 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to accumulator with carry));
|
|
Crypto::UnsignedBigInteger num1(UINT32_MAX - 1);
|
|
Crypto::UnsignedBigInteger num2(2);
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 0, 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to accumulator with multiple carries));
|
|
Crypto::UnsignedBigInteger num1({ UINT32_MAX - 2, UINT32_MAX - 1 });
|
|
Crypto::UnsignedBigInteger num2({ 5, 1 });
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 2, 0, 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to accumulator with multiple carry levels));
|
|
Crypto::UnsignedBigInteger num1({ UINT32_MAX - 2, UINT32_MAX });
|
|
Crypto::UnsignedBigInteger num2(5);
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 2, 0, 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to accumulator with leading zero));
|
|
Crypto::UnsignedBigInteger num1(1);
|
|
Crypto::UnsignedBigInteger num2({ 1, 0 });
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 2 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Add to accumulator with carry and leading zero));
|
|
Crypto::UnsignedBigInteger num1({ UINT32_MAX, 0, 0, 0 });
|
|
Crypto::UnsignedBigInteger num2({ 1, 0 });
|
|
Crypto::UnsignedBigIntegerAlgorithms::add_into_accumulator_without_allocation(num1, num2);
|
|
if (num1.words() == Vector<u32> { 0, 1, 0, 0 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_subtraction()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Simple Subtraction 1));
|
|
Crypto::UnsignedBigInteger num1(80);
|
|
Crypto::UnsignedBigInteger num2(70);
|
|
|
|
if (num1.minus(num2) == Crypto::UnsignedBigInteger(10)) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Simple Subtraction 2));
|
|
Crypto::UnsignedBigInteger num1(50);
|
|
Crypto::UnsignedBigInteger num2(70);
|
|
|
|
if (num1.minus(num2).is_invalid()) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Subtraction with borrow));
|
|
Crypto::UnsignedBigInteger num1(UINT32_MAX);
|
|
Crypto::UnsignedBigInteger num2(1);
|
|
Crypto::UnsignedBigInteger num3 = num1.plus(num2);
|
|
Crypto::UnsignedBigInteger result = num3.minus(num2);
|
|
if (result == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Subtraction with large numbers));
|
|
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(343);
|
|
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(218);
|
|
Crypto::UnsignedBigInteger result = num1.minus(num2);
|
|
if ((result.plus(num2) == num1)
|
|
&& (result.words() == Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 })) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Subtraction with large numbers 2));
|
|
Crypto::UnsignedBigInteger num1(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 });
|
|
Crypto::UnsignedBigInteger num2(Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 });
|
|
Crypto::UnsignedBigInteger result = num1.minus(num2);
|
|
// this test only verifies that we don't crash on an assertion
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Subtraction Regression 1));
|
|
auto num = Crypto::UnsignedBigInteger { 1 }.shift_left(256);
|
|
if (num.minus(1).words() == Vector<u32> { 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 0 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_multiplication()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Simple Multiplication));
|
|
Crypto::UnsignedBigInteger num1(8);
|
|
Crypto::UnsignedBigInteger num2(251);
|
|
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result.words() == Vector<u32> { 2008 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Multiplications with big numbers 1));
|
|
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
|
|
Crypto::UnsignedBigInteger num2(12345678);
|
|
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result.words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Multiplications with big numbers 2));
|
|
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
|
|
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(341);
|
|
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result.words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
static void bigint_division()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Simple Division));
|
|
Crypto::UnsignedBigInteger num1(27194);
|
|
Crypto::UnsignedBigInteger num2(251);
|
|
auto result = num1.divided_by(num2);
|
|
Crypto::UnsignedDivisionResult expected = { Crypto::UnsignedBigInteger(108), Crypto::UnsignedBigInteger(86) };
|
|
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Division with big numbers));
|
|
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(386);
|
|
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(238);
|
|
auto result = num1.divided_by(num2);
|
|
Crypto::UnsignedDivisionResult expected = {
|
|
Crypto::UnsignedBigInteger(Vector<u32> { 2300984486, 2637503534, 2022805584, 107 }),
|
|
Crypto::UnsignedBigInteger(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 })
|
|
};
|
|
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Combined test));
|
|
auto num1 = bigint_fibonacci(497);
|
|
auto num2 = bigint_fibonacci(238);
|
|
auto div_result = num1.divided_by(num2);
|
|
if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_base10()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | From String));
|
|
auto result = Crypto::UnsignedBigInteger::from_base(10, "57195071295721390579057195715793");
|
|
if (result.words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | To String));
|
|
auto result = Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }.to_base(10);
|
|
if (result == "57195071295721390579057195715793") {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_theory_modular_inverse()
|
|
{
|
|
{
|
|
I_TEST((Number Theory | Modular Inverse));
|
|
if (Crypto::NumberTheory::ModularInverse(7, 87) == 25) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_theory_modular_power()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Simple Modular Power | Even));
|
|
Crypto::UnsignedBigInteger base { 7 };
|
|
Crypto::UnsignedBigInteger exponent { 2 };
|
|
Crypto::UnsignedBigInteger modulo { 10 };
|
|
auto result = Crypto::NumberTheory::ModularPower(base, exponent, modulo);
|
|
if (result.words() == Vector<u32> { 9 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Simple Modular Power | Odd));
|
|
Crypto::UnsignedBigInteger base { 10 };
|
|
Crypto::UnsignedBigInteger exponent { 2 };
|
|
Crypto::UnsignedBigInteger modulo { 9 };
|
|
auto result = Crypto::NumberTheory::ModularPower(base, exponent, modulo);
|
|
if (result.words() == Vector<u32> { 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Large Modular Power | Even Fibonacci));
|
|
Crypto::UnsignedBigInteger base = bigint_fibonacci(200);
|
|
Crypto::UnsignedBigInteger exponent = bigint_fibonacci(100);
|
|
Crypto::UnsignedBigInteger modulo = bigint_fibonacci(150);
|
|
// Result according to Wolfram Alpha : 7195284628716783672927396027925
|
|
auto result = Crypto::NumberTheory::ModularPower(base, exponent, modulo);
|
|
if (result.words() == Vector<u32> { 2042093077, 1351416233, 3510104665, 90 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Large Modular Power | Odd Fibonacci));
|
|
Crypto::UnsignedBigInteger base = bigint_fibonacci(200);
|
|
Crypto::UnsignedBigInteger exponent = bigint_fibonacci(100);
|
|
Crypto::UnsignedBigInteger modulo = bigint_fibonacci(149);
|
|
// Result according to Wolfram Alpha : 1136278609611966596838389694992
|
|
auto result = Crypto::NumberTheory::ModularPower(base, exponent, modulo);
|
|
if (result.words() == Vector<u32> { 2106049040, 2169509253, 1468244710, 14 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Large Modular Power | Odd Fibonacci with carry));
|
|
Crypto::UnsignedBigInteger base = bigint_fibonacci(200);
|
|
Crypto::UnsignedBigInteger exponent = bigint_fibonacci(100);
|
|
Crypto::UnsignedBigInteger modulo = bigint_fibonacci(185);
|
|
// Result according to Wolfram Alpha : 55094573983071006678665780782730672080
|
|
auto result = Crypto::NumberTheory::ModularPower(base, exponent, modulo);
|
|
if (result.words() == Vector<u32> { 1988720592, 2097784252, 347129583, 695391288 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
|
|
{
|
|
struct {
|
|
Crypto::UnsignedBigInteger base;
|
|
Crypto::UnsignedBigInteger exp;
|
|
Crypto::UnsignedBigInteger mod;
|
|
Crypto::UnsignedBigInteger expected;
|
|
} mod_pow_tests[] = {
|
|
{ "2988348162058574136915891421498819466320163312926952423791023078876139"_bigint, "2351399303373464486466122544523690094744975233415544072992656881240319"_bigint, "10000"_bigint, "3059"_bigint },
|
|
{ "24231"_bigint, "12448"_bigint, "14679"_bigint, "4428"_bigint },
|
|
{ "1005404"_bigint, "8352654"_bigint, "8161408"_bigint, "2605696"_bigint },
|
|
{ "3665005778"_bigint, "3244425589"_bigint, "565668506"_bigint, "524766494"_bigint },
|
|
{ "10662083169959689657"_bigint, "11605678468317533000"_bigint, "1896834583057209739"_bigint, "1292743154593945858"_bigint },
|
|
{ "99667739213529524852296932424683448520"_bigint, "123394910770101395416306279070921784207"_bigint, "238026722756504133786938677233768788719"_bigint, "197165477545023317459748215952393063201"_bigint },
|
|
{ "49368547511968178788919424448914214709244872098814465088945281575062739912239"_bigint, "25201856190991298572337188495596990852134236115562183449699512394891190792064"_bigint, "45950460777961491021589776911422805972195170308651734432277141467904883064645"_bigint, "39917885806532796066922509794537889114718612292469285403012781055544152450051"_bigint },
|
|
{ "48399385336454791246880286907257136254351739111892925951016159217090949616810"_bigint, "5758661760571644379364752528081901787573279669668889744323710906207949658569"_bigint, "32812120644405991429173950312949738783216437173380339653152625840449006970808"_bigint, "7948464125034399875323770213514649646309423451213282653637296324080400293584"_bigint },
|
|
};
|
|
|
|
for (auto test_case : mod_pow_tests) {
|
|
I_TEST((BigInteger | Modular Power | Several other test cases));
|
|
auto actual = Crypto::NumberTheory::ModularPower(
|
|
test_case.base, test_case.exp, test_case.mod);
|
|
|
|
if (actual == test_case.expected) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Wrong result);
|
|
outln("b: {}", test_case.base.to_base(10));
|
|
outln("e: {}", test_case.exp.to_base(10));
|
|
outln("m: {}", test_case.mod.to_base(10));
|
|
outln("expect: {}", test_case.expected.to_base(10));
|
|
outln("actual: {}", actual.to_base(10));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_theory_primality()
|
|
{
|
|
struct {
|
|
Crypto::UnsignedBigInteger candidate;
|
|
bool expected_result;
|
|
} primality_tests[] = {
|
|
{ "1180591620717411303424"_bigint, false }, // 2**70
|
|
{ "620448401733239439360000"_bigint, false }, // 25!
|
|
{ "953962166440690129601298432"_bigint, false }, // 12**25
|
|
{ "620448401733239439360000"_bigint, false }, // 25!
|
|
{ "147926426347074375"_bigint, false }, // 35! / 2**32
|
|
{ "340282366920938429742726440690708343523"_bigint, false }, // 2 factors near 2^64
|
|
{ "73"_bigint, true },
|
|
{ "6967"_bigint, true },
|
|
{ "787649"_bigint, true },
|
|
{ "73513949"_bigint, true },
|
|
{ "6691236901"_bigint, true },
|
|
{ "741387182759"_bigint, true },
|
|
{ "67466615915827"_bigint, true },
|
|
{ "9554317039214687"_bigint, true },
|
|
{ "533344522150170391"_bigint, true },
|
|
{ "18446744073709551557"_bigint, true }, // just below 2**64
|
|
};
|
|
|
|
for (auto test_case : primality_tests) {
|
|
I_TEST((BigInteger | Primality));
|
|
bool actual_result = Crypto::NumberTheory::is_probably_prime(test_case.candidate);
|
|
if (test_case.expected_result == actual_result) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Wrong primality guess);
|
|
outln("The number {} is {}a prime, but the test said it is {}a prime!",
|
|
test_case.candidate.to_base(10), test_case.expected_result ? "" : "not ", actual_result ? "" : "not ");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_theory_random_number()
|
|
{
|
|
{
|
|
struct {
|
|
Crypto::UnsignedBigInteger min;
|
|
Crypto::UnsignedBigInteger max;
|
|
} random_number_tests[] = {
|
|
{ "1"_bigint, "1000000"_bigint },
|
|
{ "10000000000"_bigint, "20000000000"_bigint },
|
|
{ "1000"_bigint, "200000000000000000"_bigint },
|
|
{ "200000000000000000"_bigint, "200000000000010000"_bigint },
|
|
};
|
|
|
|
for (auto test_case : random_number_tests) {
|
|
I_TEST((BigInteger | Random numbers));
|
|
auto actual_result = Crypto::NumberTheory::random_number(test_case.min, test_case.max);
|
|
if (actual_result < test_case.min) {
|
|
FAIL(Too small);
|
|
outln("The generated number {} is smaller than the requested minimum {}. (max = {})", actual_result.to_base(10), test_case.min.to_base(10), test_case.max.to_base(10));
|
|
} else if (!(actual_result < test_case.max)) {
|
|
FAIL(Too large);
|
|
outln("The generated number {} is larger-or-equal to the requested maximum {}. (min = {})", actual_result.to_base(10), test_case.max.to_base(10), test_case.min.to_base(10));
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Random distribution));
|
|
auto actual_result = Crypto::NumberTheory::random_number(
|
|
"1"_bigint,
|
|
"100000000000000000000000000000"_bigint); // 10**29
|
|
if (actual_result < "100000000000000000000"_bigint) { // 10**20
|
|
FAIL(Too small);
|
|
outln("The generated number {} is extremely small. This *can* happen by pure chance, but should happen only once in a billion times. So it's probably an error.", actual_result.to_base(10));
|
|
} else if ("99999999900000000000000000000"_bigint < actual_result) { // 10**29 - 10**20
|
|
FAIL(Too large);
|
|
outln("The generated number {} is extremely large. This *can* happen by pure chance, but should happen only once in a billion times. So it's probably an error.", actual_result.to_base(10));
|
|
} else {
|
|
PASS;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_import_export()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | BigEndian Decode / Encode roundtrip));
|
|
u8 random_bytes[128];
|
|
u8 target_buffer[128];
|
|
fill_with_random(random_bytes, 128);
|
|
auto encoded = Crypto::UnsignedBigInteger::import_data(random_bytes, 128);
|
|
encoded.export_data({ target_buffer, 128 });
|
|
if (memcmp(target_buffer, random_bytes, 128) != 0)
|
|
FAIL(Could not roundtrip);
|
|
else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((BigInteger | BigEndian Encode / Decode roundtrip));
|
|
u8 target_buffer[128];
|
|
auto encoded = "12345678901234567890"_bigint;
|
|
auto size = encoded.export_data({ target_buffer, 128 });
|
|
auto decoded = Crypto::UnsignedBigInteger::import_data(target_buffer, size);
|
|
if (encoded != decoded)
|
|
FAIL(Could not roundtrip);
|
|
else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((BigInteger | BigEndian Import));
|
|
auto number = Crypto::UnsignedBigInteger::import_data("hello");
|
|
if (number == "448378203247"_bigint) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | BigEndian Export));
|
|
auto number = "448378203247"_bigint;
|
|
char exported[8] { 0 };
|
|
auto exported_length = number.export_data({ exported, 8 }, true);
|
|
if (exported_length == 5 && memcmp(exported + 3, "hello", 5) == 0) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
print_buffer({ exported - exported_length + 8, exported_length }, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_bitwise()
|
|
{
|
|
{
|
|
I_TEST((BigInteger | Basic bitwise or));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "1234567"_bigint;
|
|
if (num1.bitwise_or(num2) == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Bitwise or handles different lengths));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "123456789012345678901234567890"_bigint;
|
|
auto expected = "123456789012345678901234622167"_bigint;
|
|
auto result = num1.bitwise_or(num2);
|
|
if (result == expected) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Basic bitwise and));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "1234561"_bigint;
|
|
if (num1.bitwise_and(num2) == "1234561"_bigint) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Bitwise and handles different lengths));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "123456789012345678901234567890"_bigint;
|
|
if (num1.bitwise_and(num2) == "1180290"_bigint) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Basic bitwise xor));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "1234561"_bigint;
|
|
if (num1.bitwise_xor(num2) == 6) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((BigInteger | Bitwise xor handles different lengths));
|
|
auto num1 = "1234567"_bigint;
|
|
auto num2 = "123456789012345678901234567890"_bigint;
|
|
if (num1.bitwise_xor(num2) == "123456789012345678901233441877"_bigint) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_test_signed_fibo500()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Fibonacci500));
|
|
bool pass = (bigint_signed_fibonacci(500).unsigned_value().words() == Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
|
|
|
|
if (pass) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_addition_edgecases()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Borrow with zero));
|
|
Crypto::SignedBigInteger num1 { Crypto::UnsignedBigInteger { { UINT32_MAX - 3, UINT32_MAX } }, false };
|
|
Crypto::SignedBigInteger num2 { Crypto::UnsignedBigInteger { UINT32_MAX - 2 }, false };
|
|
if (num1.plus(num2).unsigned_value().words() == Vector<u32> { 4294967289, 0, 1 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Addition to other sign));
|
|
Crypto::SignedBigInteger num1 = INT32_MAX;
|
|
Crypto::SignedBigInteger num2 = num1;
|
|
num2.negate();
|
|
if (num1.plus(num2) == Crypto::SignedBigInteger { 0 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_subtraction()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Simple Subtraction 1));
|
|
Crypto::SignedBigInteger num1(80);
|
|
Crypto::SignedBigInteger num2(70);
|
|
|
|
if (num1.minus(num2) == Crypto::SignedBigInteger(10)) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Simple Subtraction 2));
|
|
Crypto::SignedBigInteger num1(50);
|
|
Crypto::SignedBigInteger num2(70);
|
|
|
|
if (num1.minus(num2) == Crypto::SignedBigInteger { -20 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Subtraction with borrow));
|
|
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { UINT32_MAX });
|
|
Crypto::SignedBigInteger num2(1);
|
|
Crypto::SignedBigInteger num3 = num1.plus(num2);
|
|
Crypto::SignedBigInteger result = num2.minus(num3);
|
|
num1.negate();
|
|
if (result == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Subtraction with large numbers));
|
|
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(343);
|
|
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(218);
|
|
Crypto::SignedBigInteger result = num2.minus(num1);
|
|
auto expected = Crypto::UnsignedBigInteger { Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 } };
|
|
if ((result.plus(num1) == num2)
|
|
&& (result.unsigned_value() == expected)) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Subtraction with large numbers 2));
|
|
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } });
|
|
Crypto::SignedBigInteger num2(Crypto::UnsignedBigInteger { Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 } });
|
|
Crypto::SignedBigInteger result = num1.minus(num2);
|
|
// this test only verifies that we don't crash on an assertion
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_multiplication()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Simple Multiplication));
|
|
Crypto::SignedBigInteger num1(8);
|
|
Crypto::SignedBigInteger num2(-251);
|
|
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result == Crypto::SignedBigInteger { -2008 }) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Multiplications with big numbers 1));
|
|
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
|
|
Crypto::SignedBigInteger num2(-12345678);
|
|
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result.unsigned_value().words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 } && result.is_negative()) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Multiplications with big numbers 2));
|
|
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
|
|
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(341);
|
|
num1.negate();
|
|
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
|
|
if (result.unsigned_value().words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 } && result.is_negative()) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
static void bigint_signed_division()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Simple Division));
|
|
Crypto::SignedBigInteger num1(27194);
|
|
Crypto::SignedBigInteger num2(-251);
|
|
auto result = num1.divided_by(num2);
|
|
Crypto::SignedDivisionResult expected = { Crypto::SignedBigInteger(-108), Crypto::SignedBigInteger(86) };
|
|
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Division with big numbers));
|
|
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(386);
|
|
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(238);
|
|
num1.negate();
|
|
auto result = num1.divided_by(num2);
|
|
Crypto::SignedDivisionResult expected = {
|
|
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 2300984486, 2637503534, 2022805584, 107 } }, true),
|
|
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } }, true)
|
|
};
|
|
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | Combined test));
|
|
auto num1 = bigint_signed_fibonacci(497);
|
|
auto num2 = bigint_signed_fibonacci(238);
|
|
num1.negate();
|
|
auto div_result = num1.divided_by(num2);
|
|
if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_base10()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | From String));
|
|
auto result = Crypto::SignedBigInteger::from_base(10, "-57195071295721390579057195715793");
|
|
if (result.unsigned_value().words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 } && result.is_negative()) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | To String));
|
|
auto result = Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }, true }.to_base(10);
|
|
if (result == "-57195071295721390579057195715793") {
|
|
PASS;
|
|
} else {
|
|
FAIL(Incorrect Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_import_export()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | BigEndian Decode / Encode roundtrip));
|
|
u8 random_bytes[129];
|
|
u8 target_buffer[129];
|
|
random_bytes[0] = 1;
|
|
fill_with_random(random_bytes + 1, 128);
|
|
auto encoded = Crypto::SignedBigInteger::import_data(random_bytes, 129);
|
|
encoded.export_data({ target_buffer, 129 });
|
|
if (memcmp(target_buffer, random_bytes, 129) != 0)
|
|
FAIL(Could not roundtrip);
|
|
else
|
|
PASS;
|
|
}
|
|
{
|
|
I_TEST((Signed BigInteger | BigEndian Encode / Decode roundtrip));
|
|
u8 target_buffer[128];
|
|
auto encoded = "-12345678901234567890"_sbigint;
|
|
auto size = encoded.export_data({ target_buffer, 128 });
|
|
auto decoded = Crypto::SignedBigInteger::import_data(target_buffer, size);
|
|
if (encoded != decoded)
|
|
FAIL(Could not roundtrip);
|
|
else
|
|
PASS;
|
|
}
|
|
}
|
|
|
|
static void bigint_signed_bitwise()
|
|
{
|
|
{
|
|
I_TEST((Signed BigInteger | Bitwise or handles sign));
|
|
auto num1 = "-1234567"_sbigint;
|
|
auto num2 = "1234567"_sbigint;
|
|
if (num1.bitwise_or(num2) == num1) {
|
|
PASS;
|
|
} else {
|
|
FAIL(Invalid value);
|
|
}
|
|
}
|
|
}
|