mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-24 18:24:45 -05:00
874 lines
25 KiB
C++
874 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/BuiltinWrappers.h>
|
|
#include <AK/Checked.h>
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Format.h>
|
|
#include <AK/NumericLimits.h>
|
|
#include <AK/StdLibExtraDetails.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/StringBuilder.h>
|
|
|
|
namespace AK {
|
|
|
|
template<typename T>
|
|
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt;
|
|
|
|
// FIXME: This breaks formatting
|
|
// template<typename T>
|
|
// constexpr inline bool Detail::IsIntegral<UFixedBigInt<T>> = true;
|
|
|
|
template<typename T>
|
|
constexpr inline bool Detail::IsUnsigned<UFixedBigInt<T>> = true;
|
|
template<typename T>
|
|
constexpr inline bool Detail::IsSigned<UFixedBigInt<T>> = false;
|
|
|
|
template<typename T>
|
|
struct NumericLimits<UFixedBigInt<T>> {
|
|
static constexpr UFixedBigInt<T> min() { return 0; }
|
|
static constexpr UFixedBigInt<T> max() { return { NumericLimits<T>::max(), NumericLimits<T>::max() }; }
|
|
static constexpr bool is_signed() { return false; }
|
|
};
|
|
|
|
template<Unsigned T>
|
|
struct UFixedBigIntMultiplicationResult {
|
|
T low;
|
|
T high;
|
|
};
|
|
|
|
template<typename T>
|
|
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt {
|
|
public:
|
|
using R = UFixedBigInt<T>;
|
|
|
|
constexpr UFixedBigInt() = default;
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr UFixedBigInt(U low)
|
|
: m_low(low)
|
|
, m_high(0u)
|
|
{
|
|
}
|
|
template<Unsigned U, Unsigned U2>
|
|
requires(sizeof(T) >= sizeof(U) && sizeof(T) >= sizeof(U2)) constexpr UFixedBigInt(U low, U2 high)
|
|
: m_low(low)
|
|
, m_high(high)
|
|
{
|
|
}
|
|
constexpr T& low()
|
|
{
|
|
return m_low;
|
|
}
|
|
constexpr const T& low() const
|
|
{
|
|
return m_low;
|
|
}
|
|
constexpr T& high()
|
|
{
|
|
return m_high;
|
|
}
|
|
constexpr const T& high() const
|
|
{
|
|
return m_high;
|
|
}
|
|
|
|
Span<u8> bytes()
|
|
{
|
|
return Span<u8>(reinterpret_cast<u8*>(this), sizeof(R));
|
|
}
|
|
Span<const u8> bytes() const
|
|
{
|
|
return Span<const u8>(reinterpret_cast<u8 const*>(this), sizeof(R));
|
|
}
|
|
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) explicit operator U() const
|
|
{
|
|
return static_cast<U>(m_low);
|
|
}
|
|
|
|
// Utils
|
|
constexpr size_t clz() const requires(IsSame<T, u64>)
|
|
{
|
|
if (m_high)
|
|
return count_leading_zeroes(m_high);
|
|
else
|
|
return sizeof(T) * 8 + count_leading_zeroes(m_low);
|
|
}
|
|
constexpr size_t clz() const requires(!IsSame<T, u64>)
|
|
{
|
|
if (m_high)
|
|
return m_high.clz();
|
|
else
|
|
return sizeof(T) * 8 + m_low.clz();
|
|
}
|
|
constexpr size_t ctz() const requires(IsSame<T, u64>)
|
|
{
|
|
if (m_low)
|
|
return count_trailing_zeroes(m_low);
|
|
else
|
|
return sizeof(T) * 8 + count_trailing_zeroes(m_high);
|
|
}
|
|
constexpr size_t ctz() const requires(!IsSame<T, u64>)
|
|
{
|
|
if (m_low)
|
|
return m_low.ctz();
|
|
else
|
|
return sizeof(T) * 8 + m_high.ctz();
|
|
}
|
|
constexpr size_t popcnt() const requires(IsSame<T, u64>)
|
|
{
|
|
return __builtin_popcntll(m_low) + __builtin_popcntll(m_high);
|
|
}
|
|
constexpr size_t popcnt() const requires(!IsSame<T, u64>)
|
|
{
|
|
return m_low.popcnt() + m_high.popcnt();
|
|
}
|
|
|
|
// Comparison Operations
|
|
constexpr bool operator!() const
|
|
{
|
|
return !m_low && !m_high;
|
|
}
|
|
constexpr explicit operator bool() const
|
|
{
|
|
return m_low || m_high;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator==(const U& other) const
|
|
{
|
|
return !m_high && m_low == other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator!=(const U& other) const
|
|
{
|
|
return m_high || m_low != other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator>(const U& other) const
|
|
{
|
|
return m_high || m_low > other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator<(const U& other) const
|
|
{
|
|
return !m_high && m_low < other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator>=(const U& other) const
|
|
{
|
|
return *this == other || *this > other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr bool operator<=(const U& other) const
|
|
{
|
|
return *this == other || *this < other;
|
|
}
|
|
|
|
constexpr bool operator==(const R& other) const
|
|
{
|
|
return m_low == other.low() && m_high == other.high();
|
|
}
|
|
constexpr bool operator!=(const R& other) const
|
|
{
|
|
return m_low != other.low() || m_high != other.high();
|
|
}
|
|
constexpr bool operator>(const R& other) const
|
|
{
|
|
return m_high > other.high()
|
|
|| (m_high == other.high() && m_low > other.low());
|
|
}
|
|
constexpr bool operator<(const R& other) const
|
|
{
|
|
return m_high < other.high()
|
|
|| (m_high == other.high() && m_low < other.low());
|
|
}
|
|
constexpr bool operator>=(const R& other) const
|
|
{
|
|
return *this == other || *this > other;
|
|
}
|
|
constexpr bool operator<=(const R& other) const
|
|
{
|
|
return *this == other || *this < other;
|
|
}
|
|
|
|
// Bitwise operations
|
|
constexpr R operator~() const
|
|
{
|
|
return { ~m_low, ~m_high };
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr U operator&(const U& other) const
|
|
{
|
|
return static_cast<const U>(m_low) & other;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R operator|(const U& other) const
|
|
{
|
|
return { m_low | other, m_high };
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R operator^(const U& other) const
|
|
{
|
|
return { m_low ^ other, m_high };
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R operator<<(const U& shift) const
|
|
{
|
|
if (shift >= sizeof(R) * 8u)
|
|
return 0u;
|
|
if (shift >= sizeof(T) * 8u)
|
|
return R { 0u, m_low << (shift - sizeof(T) * 8u) };
|
|
if (!shift)
|
|
return *this;
|
|
|
|
T overflow = m_low >> (sizeof(T) * 8u - shift);
|
|
return R { m_low << shift, (m_high << shift) | overflow };
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R operator>>(const U& shift) const
|
|
{
|
|
if (shift >= sizeof(R) * 8u)
|
|
return 0u;
|
|
if (shift >= sizeof(T) * 8u)
|
|
return m_high >> (shift - sizeof(T) * 8u);
|
|
if (!shift)
|
|
return *this;
|
|
|
|
T underflow = m_high << (sizeof(T) * 8u - shift);
|
|
return R { (m_low >> shift) | underflow, m_high >> shift };
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R rol(const U& shift) const
|
|
{
|
|
return (*this >> sizeof(T) * 8u - shift) | (*this << shift);
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R ror(const U& shift) const
|
|
{
|
|
return (*this << sizeof(T) * 8u - shift) | (*this >> shift);
|
|
}
|
|
|
|
constexpr R operator&(const R& other) const
|
|
{
|
|
return { m_low & other.low(), m_high & other.high() };
|
|
}
|
|
constexpr R operator|(const R& other) const
|
|
{
|
|
return { m_low | other.low(), m_high | other.high() };
|
|
}
|
|
constexpr R operator^(const R& other) const
|
|
{
|
|
return { m_low ^ other.low(), m_high ^ other.high() };
|
|
}
|
|
|
|
// Bitwise assignment
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R& operator&=(const U& other)
|
|
{
|
|
m_high = 0u;
|
|
m_low &= other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R& operator|=(const U& other)
|
|
{
|
|
m_low |= other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R& operator^=(const U& other)
|
|
{
|
|
m_low ^= other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R& operator>>=(const U& other)
|
|
{
|
|
*this = *this >> other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R& operator<<=(const U& other)
|
|
{
|
|
*this = *this << other;
|
|
return *this;
|
|
}
|
|
|
|
constexpr R& operator&=(const R& other)
|
|
{
|
|
m_high &= other.high();
|
|
m_low &= other.low();
|
|
return *this;
|
|
}
|
|
constexpr R& operator|=(const R& other)
|
|
{
|
|
m_high |= other.high();
|
|
m_low |= other.low();
|
|
return *this;
|
|
}
|
|
constexpr R& operator^=(const R& other)
|
|
{
|
|
m_high ^= other.high();
|
|
m_low ^= other.low();
|
|
return *this;
|
|
}
|
|
|
|
static constexpr size_t my_size()
|
|
{
|
|
return sizeof(R);
|
|
}
|
|
|
|
// Arithmetic
|
|
|
|
// implies size of less than u64, so passing references isn't useful
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U) && IsSame<T, u64>) constexpr R addc(const U other, bool& carry) const
|
|
{
|
|
bool low_carry = Checked<T>::addition_would_overflow(m_low, other);
|
|
low_carry |= Checked<T>::addition_would_overflow(m_low, carry);
|
|
bool high_carry = Checked<T>::addition_would_overflow(m_high, low_carry);
|
|
|
|
T lower = m_low + other + carry;
|
|
T higher = m_high + low_carry;
|
|
|
|
carry = high_carry;
|
|
|
|
return {
|
|
lower,
|
|
higher
|
|
};
|
|
}
|
|
template<Unsigned U>
|
|
requires(my_size() > sizeof(U) && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
|
|
{
|
|
T lower = m_low.addc(other, carry);
|
|
T higher = m_high.addc(0u, carry);
|
|
|
|
return {
|
|
lower,
|
|
higher
|
|
};
|
|
}
|
|
template<Unsigned U>
|
|
requires(IsSame<R, U>&& IsSame<T, u64>) constexpr R addc(const U& other, bool& carry) const
|
|
{
|
|
bool low_carry = Checked<T>::addition_would_overflow(m_low, other.low());
|
|
bool high_carry = Checked<T>::addition_would_overflow(m_high, other.high());
|
|
|
|
T lower = m_low + other.low();
|
|
T higher = m_high + other.high();
|
|
low_carry |= Checked<T>::addition_would_overflow(lower, carry);
|
|
high_carry |= Checked<T>::addition_would_overflow(higher, low_carry);
|
|
|
|
lower += carry;
|
|
higher += low_carry;
|
|
carry = high_carry;
|
|
|
|
return {
|
|
lower,
|
|
higher
|
|
};
|
|
}
|
|
template<Unsigned U>
|
|
requires(IsSame<R, U> && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
|
|
{
|
|
T lower = m_low.addc(other.low(), carry);
|
|
T higher = m_high.addc(other.high(), carry);
|
|
|
|
return {
|
|
lower,
|
|
higher
|
|
};
|
|
}
|
|
template<Unsigned U>
|
|
requires(my_size() < sizeof(U)) constexpr U addc(const U& other, bool& carry) const
|
|
{
|
|
return other.addc(*this, carry);
|
|
}
|
|
|
|
// FIXME: subc for sizeof(T) < sizeof(U)
|
|
template<Unsigned U>
|
|
requires(sizeof(T) >= sizeof(U)) constexpr R subc(const U& other, bool& carry) const
|
|
{
|
|
bool low_carry = (!m_low && carry) || (m_low - carry) < other;
|
|
bool high_carry = !m_high && low_carry;
|
|
|
|
T lower = m_low - other - carry;
|
|
T higher = m_high - low_carry;
|
|
carry = high_carry;
|
|
|
|
return { lower, higher };
|
|
}
|
|
constexpr R subc(const R& other, bool& carry) const
|
|
{
|
|
bool low_carry = (!m_low && carry) || (m_low - carry) < other.low();
|
|
bool high_carry = (!m_high && low_carry) || (m_high - low_carry) < other.high();
|
|
|
|
T lower = m_low - other.low() - carry;
|
|
T higher = m_high - other.high() - low_carry;
|
|
carry = high_carry;
|
|
|
|
return { lower, higher };
|
|
}
|
|
|
|
constexpr R operator+(bool const& other) const
|
|
{
|
|
bool carry = false; // unused
|
|
return addc((u8)other, carry);
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R operator+(const U& other) const
|
|
{
|
|
bool carry = false; // unused
|
|
return addc(other, carry);
|
|
}
|
|
|
|
constexpr R operator-(bool const& other) const
|
|
{
|
|
bool carry = false; // unused
|
|
return subc((u8)other, carry);
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr R operator-(const U& other) const
|
|
{
|
|
bool carry = false; // unused
|
|
return subc(other, carry);
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr R& operator+=(const U& other)
|
|
{
|
|
*this = *this + other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R& operator-=(const U& other)
|
|
{
|
|
*this = *this - other;
|
|
return *this;
|
|
}
|
|
|
|
constexpr R operator++()
|
|
{
|
|
// x++
|
|
auto old = *this;
|
|
*this += 1;
|
|
return old;
|
|
}
|
|
constexpr R& operator++(int)
|
|
{
|
|
// ++x
|
|
*this += 1;
|
|
return *this;
|
|
}
|
|
constexpr R operator--()
|
|
{
|
|
// x--
|
|
auto old = *this;
|
|
*this -= 1;
|
|
return old;
|
|
}
|
|
constexpr R& operator--(int)
|
|
{
|
|
// --x
|
|
*this -= 1;
|
|
return *this;
|
|
}
|
|
|
|
// FIXME: no restraints on this
|
|
template<Unsigned U>
|
|
requires(my_size() >= sizeof(U)) constexpr R div_mod(const U& divisor, U& remainder) const
|
|
{
|
|
// FIXME: Is there a better way to raise a division by 0?
|
|
// Maybe as a compiletime warning?
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wdiv-by-zero"
|
|
if (!divisor) {
|
|
int volatile x = 1;
|
|
int volatile y = 0;
|
|
[[maybe_unused]] int volatile z = x / y;
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
// fastpaths
|
|
if (*this < divisor) {
|
|
remainder = static_cast<U>(*this);
|
|
return 0u;
|
|
}
|
|
if (*this == divisor) {
|
|
remainder = 0u;
|
|
return 1u;
|
|
}
|
|
if (divisor == 1u) {
|
|
remainder = 0u;
|
|
return *this;
|
|
}
|
|
|
|
remainder = 0u;
|
|
R quotient = 0u;
|
|
|
|
for (ssize_t i = sizeof(R) * 8 - clz() - 1; i >= 0; --i) {
|
|
remainder <<= 1u;
|
|
remainder |= (*this >> (size_t)i) & 1u;
|
|
if (remainder >= divisor) {
|
|
remainder -= divisor;
|
|
quotient |= R { 1u } << (size_t)i;
|
|
}
|
|
}
|
|
|
|
return quotient;
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr R operator*(U other) const
|
|
{
|
|
R res = 0u;
|
|
R that = *this;
|
|
for (; other != 0u; other >>= 1u) {
|
|
if (other & 1u)
|
|
res += that;
|
|
that <<= 1u;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<Unsigned U>
|
|
requires(IsSame<R, U>&& IsSame<T, u64>) constexpr UFixedBigIntMultiplicationResult<R> wide_multiply(U const& other) const
|
|
{
|
|
auto mult_64_to_128 = [](u64 a, u64 b) -> UFixedBigIntMultiplicationResult<u64> {
|
|
#ifdef __SIZEOF_INT128__
|
|
unsigned __int128 result = (unsigned __int128)a * b;
|
|
u64 low = result;
|
|
u64 high = result >> 64;
|
|
return { low, high };
|
|
#else
|
|
u32 a_low = a;
|
|
u32 a_high = (a >> 32);
|
|
u32 b_low = b;
|
|
u32 b_high = (b >> 32);
|
|
|
|
u64 ll_result = (u64)a_low * b_low;
|
|
u64 lh_result = (u64)a_low * b_high;
|
|
u64 hl_result = (u64)a_high * b_low;
|
|
u64 hh_result = (u64)a_high * b_high;
|
|
|
|
UFixedBigInt<u64> ll { ll_result, 0u };
|
|
UFixedBigInt<u64> lh { lh_result << 32, lh_result >> 32 };
|
|
UFixedBigInt<u64> hl { hl_result << 32, hl_result >> 32 };
|
|
UFixedBigInt<u64> hh { 0u, hh_result };
|
|
|
|
UFixedBigInt<u64> result = ll + lh + hl + hh;
|
|
return { result.low(), result.high() };
|
|
#endif
|
|
};
|
|
|
|
auto ll_result = mult_64_to_128(m_low, other.low());
|
|
auto lh_result = mult_64_to_128(m_low, other.high());
|
|
auto hl_result = mult_64_to_128(m_high, other.low());
|
|
auto hh_result = mult_64_to_128(m_high, other.high());
|
|
|
|
UFixedBigInt<R> ll { R { ll_result.low, ll_result.high }, R { 0u, 0u } };
|
|
UFixedBigInt<R> lh { R { 0u, lh_result.low }, R { lh_result.high, 0u } };
|
|
UFixedBigInt<R> hl { R { 0u, hl_result.low }, R { hl_result.high, 0u } };
|
|
UFixedBigInt<R> hh { R { 0u, 0u }, R { hh_result.low, hh_result.high } };
|
|
|
|
UFixedBigInt<R> result = ll + lh + hl + hh;
|
|
return { result.low(), result.high() };
|
|
}
|
|
|
|
template<Unsigned U>
|
|
requires(IsSame<R, U> && sizeof(T) > sizeof(u64)) constexpr UFixedBigIntMultiplicationResult<R> wide_multiply(U const& other) const
|
|
{
|
|
T left_low = m_low;
|
|
T left_high = m_high;
|
|
T right_low = other.low();
|
|
T right_high = other.high();
|
|
|
|
auto ll_result = left_low.wide_multiply(right_low);
|
|
auto lh_result = left_low.wide_multiply(right_high);
|
|
auto hl_result = left_high.wide_multiply(right_low);
|
|
auto hh_result = left_high.wide_multiply(right_high);
|
|
|
|
UFixedBigInt<R> ll { R { ll_result.low, ll_result.high }, R { 0u, 0u } };
|
|
UFixedBigInt<R> lh { R { 0u, lh_result.low }, R { lh_result.high, 0u } };
|
|
UFixedBigInt<R> hl { R { 0u, hl_result.low }, R { hl_result.high, 0u } };
|
|
UFixedBigInt<R> hh { R { 0u, 0u }, R { hh_result.low, hh_result.high } };
|
|
|
|
UFixedBigInt<R> result = ll + lh + hl + hh;
|
|
return { result.low(), result.high() };
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr R operator/(const U& other) const
|
|
{
|
|
U mod { 0u }; // unused
|
|
return div_mod(other, mod);
|
|
}
|
|
template<Unsigned U>
|
|
constexpr U operator%(const U& other) const
|
|
{
|
|
R res { 0u };
|
|
div_mod(other, res);
|
|
return res;
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr R& operator*=(const U& other)
|
|
{
|
|
*this = *this * other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R& operator/=(const U& other)
|
|
{
|
|
*this = *this / other;
|
|
return *this;
|
|
}
|
|
template<Unsigned U>
|
|
constexpr R& operator%=(const U& other)
|
|
{
|
|
*this = *this % other;
|
|
return *this;
|
|
}
|
|
|
|
constexpr R sqrt() const
|
|
{
|
|
// Bitwise method: https://en.wikipedia.org/wiki/Integer_square_root#Using_bitwise_operations
|
|
// the bitwise method seems to be way faster then Newtons:
|
|
// https://quick-bench.com/q/eXZwW1DVhZxLE0llumeCXkfOK3Q
|
|
if (*this == 1u)
|
|
return 1u;
|
|
|
|
ssize_t shift = (sizeof(R) * 8 - clz()) & ~1ULL;
|
|
// should be equivalent to:
|
|
// long shift = 2;
|
|
// while ((val >> shift) != 0)
|
|
// shift += 2;
|
|
|
|
R res = 0u;
|
|
while (shift >= 0) {
|
|
res = res << 1u;
|
|
R large_cand = (res | 1u);
|
|
if (*this >> (size_t)shift >= large_cand * large_cand)
|
|
res = large_cand;
|
|
shift -= 2;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
constexpr R pow(u64 exp)
|
|
{
|
|
// Montgomery's Ladder Technique
|
|
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
|
|
R x1 = *this;
|
|
R x2 = *this * *this;
|
|
u64 exp_copy = exp;
|
|
for (ssize_t i = sizeof(u64) * 8 - count_leading_zeroes(exp) - 2; i >= 0; --i) {
|
|
if (exp_copy & 1u) {
|
|
x2 *= x1;
|
|
x1 *= x1;
|
|
} else {
|
|
x1 *= x2;
|
|
x2 *= x2;
|
|
}
|
|
exp_copy >>= 1u;
|
|
}
|
|
return x1;
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(U) > sizeof(u64)) constexpr R pow(U exp)
|
|
{
|
|
// Montgomery's Ladder Technique
|
|
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
|
|
R x1 = *this;
|
|
R x2 = *this * *this;
|
|
U exp_copy = exp;
|
|
for (ssize_t i = sizeof(U) * 8 - exp().clz() - 2; i >= 0; --i) {
|
|
if (exp_copy & 1u) {
|
|
x2 *= x1;
|
|
x1 *= x1;
|
|
} else {
|
|
x1 *= x2;
|
|
x2 *= x2;
|
|
}
|
|
exp_copy >>= 1u;
|
|
}
|
|
return x1;
|
|
}
|
|
|
|
template<Unsigned U>
|
|
constexpr U pow_mod(u64 exp, U mod)
|
|
{
|
|
// Left to right binary method:
|
|
// https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
|
|
// FIXME: this is not sidechanel proof
|
|
if (!mod)
|
|
return 0u;
|
|
|
|
U res = 1;
|
|
u64 exp_copy = exp;
|
|
for (size_t i = sizeof(u64) - count_leading_zeroes(exp) - 1u; i < exp; ++i) {
|
|
res *= res;
|
|
res %= mod;
|
|
if (exp_copy & 1u) {
|
|
res = (*this * res) % mod;
|
|
}
|
|
exp_copy >>= 1u;
|
|
}
|
|
return res;
|
|
}
|
|
template<Unsigned ExpT, Unsigned U>
|
|
requires(sizeof(ExpT) > sizeof(u64)) constexpr U pow_mod(ExpT exp, U mod)
|
|
{
|
|
// Left to right binary method:
|
|
// https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
|
|
// FIXME: this is not side channel proof
|
|
if (!mod)
|
|
return 0u;
|
|
|
|
U res = 1;
|
|
ExpT exp_copy = exp;
|
|
for (size_t i = sizeof(ExpT) - exp.clz() - 1u; i < exp; ++i) {
|
|
res *= res;
|
|
res %= mod;
|
|
if (exp_copy & 1u) {
|
|
res = (*this * res) % mod;
|
|
}
|
|
exp_copy >>= 1u;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
constexpr size_t log2()
|
|
{
|
|
// FIXME: proper rounding
|
|
return sizeof(R) - clz();
|
|
}
|
|
constexpr size_t logn(u64 base)
|
|
{
|
|
// FIXME: proper rounding
|
|
return log2() / (sizeof(u64) - count_leading_zeroes(base));
|
|
}
|
|
template<Unsigned U>
|
|
requires(sizeof(U) > sizeof(u64)) constexpr size_t logn(U base)
|
|
{
|
|
// FIXME: proper rounding
|
|
return log2() / base.log2();
|
|
}
|
|
|
|
constexpr u64 fold_or() const requires(IsSame<T, u64>)
|
|
{
|
|
return m_low | m_high;
|
|
}
|
|
constexpr u64 fold_or() const requires(!IsSame<T, u64>)
|
|
{
|
|
return m_low.fold_or() | m_high.fold_or();
|
|
}
|
|
constexpr bool is_zero_constant_time() const
|
|
{
|
|
return fold_or() == 0;
|
|
}
|
|
|
|
constexpr u64 fold_xor_pair(R& other) const requires(IsSame<T, u64>)
|
|
{
|
|
return (m_low ^ other.low()) | (m_high ^ other.high());
|
|
}
|
|
constexpr u64 fold_xor_pair(R& other) const requires(!IsSame<T, u64>)
|
|
{
|
|
return (m_low.fold_xor_pair(other.low())) | (m_high.fold_xor_pair(other.high()));
|
|
}
|
|
constexpr bool is_equal_to_constant_time(R& other)
|
|
{
|
|
return fold_xor_pair(other) == 0;
|
|
}
|
|
|
|
private:
|
|
T m_low;
|
|
T m_high;
|
|
};
|
|
|
|
// reverse operators
|
|
template<Unsigned U, Unsigned T>
|
|
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<(const U a, UFixedBigInt<T> const& b) { return b >= a; }
|
|
template<Unsigned U, Unsigned T>
|
|
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>(const U a, UFixedBigInt<T> const& b) { return b <= a; }
|
|
template<Unsigned U, Unsigned T>
|
|
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<=(const U a, UFixedBigInt<T> const& b) { return b > a; }
|
|
template<Unsigned U, Unsigned T>
|
|
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>=(const U a, UFixedBigInt<T> const& b) { return b < a; }
|
|
|
|
template<Unsigned T>
|
|
struct Formatter<UFixedBigInt<T>> : StandardFormatter {
|
|
Formatter() = default;
|
|
explicit Formatter(StandardFormatter formatter)
|
|
: StandardFormatter(formatter)
|
|
{
|
|
}
|
|
|
|
ErrorOr<void> format(FormatBuilder& builder, UFixedBigInt<T> value)
|
|
{
|
|
if (m_precision.has_value())
|
|
VERIFY_NOT_REACHED();
|
|
|
|
if (m_mode == Mode::Pointer) {
|
|
// these are way to big for a pointer
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
if (m_mode == Mode::Default)
|
|
m_mode = Mode::Hexadecimal;
|
|
|
|
if (!value.high()) {
|
|
Formatter<T> formatter { *this };
|
|
return formatter.format(builder, value.low());
|
|
}
|
|
|
|
u8 base = 0;
|
|
if (m_mode == Mode::Binary) {
|
|
base = 2;
|
|
} else if (m_mode == Mode::BinaryUppercase) {
|
|
base = 2;
|
|
} else if (m_mode == Mode::Octal) {
|
|
TODO();
|
|
} else if (m_mode == Mode::Decimal) {
|
|
TODO();
|
|
} else if (m_mode == Mode::Hexadecimal) {
|
|
base = 16;
|
|
} else if (m_mode == Mode::HexadecimalUppercase) {
|
|
base = 16;
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
ssize_t width = m_width.value_or(0);
|
|
ssize_t lower_length = ceil_div(sizeof(T) * 8, (ssize_t)base);
|
|
Formatter<T> formatter { *this };
|
|
formatter.m_width = max(width - lower_length, (ssize_t)0);
|
|
TRY(formatter.format(builder, value.high()));
|
|
TRY(builder.put_literal("'"sv));
|
|
formatter.m_zero_pad = true;
|
|
formatter.m_alternative_form = false;
|
|
formatter.m_width = lower_length;
|
|
TRY(formatter.format(builder, value.low()));
|
|
return {};
|
|
}
|
|
};
|
|
}
|
|
|
|
// Nit: Doing these as custom classes might be faster, especially when writing
|
|
// then in SSE, but this would cause a lot of Code duplication and due to
|
|
// the nature of constexprs and the intelligence of the compiler they might
|
|
// be using SSE/MMX either way
|
|
|
|
// these sizes should suffice for most usecases
|
|
using u128 = AK::UFixedBigInt<u64>;
|
|
using u256 = AK::UFixedBigInt<u128>;
|
|
using u512 = AK::UFixedBigInt<u256>;
|
|
using u1024 = AK::UFixedBigInt<u512>;
|
|
using u2048 = AK::UFixedBigInt<u1024>;
|
|
using u4096 = AK::UFixedBigInt<u2048>;
|