ladybird/Userland/Libraries/LibGfx/Size.h
Daniel Bertalan cc92c3f551 LibCrypto+LibGfx: Fix GCC 14 compile errors
The C++ standard does not allow specifying the template parameters in
constructor declarations, see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97202#c8.

Converting constructors have a higher priority that user-defined
conversion functions; let's constrain `Gfx::Size<T>(Gfx::Size<U>)` to
only be considered when `U` is convertible to `T`. This lets us fall
back to conversion operators in the case of `UISize` -> `IntSize`, for
instance. Clang is still okay without this, but MSVC would error out
similarly: https://godbolt.org/z/PTbeYPM7s

Note that a not-yet-committed patch is required for full compilation:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114784#c3
2024-04-20 15:52:29 -06:00

231 lines
6 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <LibGfx/Orientation.h>
#include <LibGfx/Point.h>
#include <LibIPC/Forward.h>
namespace Gfx {
template<typename T>
class Size {
public:
constexpr Size() = default;
constexpr Size(T w, T h)
: m_width(w)
, m_height(h)
{
}
template<typename U>
constexpr Size(U width, U height)
: m_width(width)
, m_height(height)
{
}
template<typename U>
requires(IsConstructible<T, U>) explicit constexpr Size(Size<U> const& other)
: m_width(other.width())
, m_height(other.height())
{
}
[[nodiscard]] ALWAYS_INLINE constexpr T width() const { return m_width; }
[[nodiscard]] ALWAYS_INLINE constexpr T height() const { return m_height; }
[[nodiscard]] ALWAYS_INLINE constexpr T area() const { return width() * height(); }
ALWAYS_INLINE constexpr void set_width(T w) { m_width = w; }
ALWAYS_INLINE constexpr void set_height(T h) { m_height = h; }
[[nodiscard]] ALWAYS_INLINE constexpr bool is_empty() const { return m_width <= 0 || m_height <= 0; }
constexpr void scale_by(T dx, T dy)
{
m_width *= dx;
m_height *= dy;
}
constexpr void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
ALWAYS_INLINE constexpr void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE constexpr void scale_by(Point<T> const& s) { scale_by(s.x(), s.y()); }
[[nodiscard]] constexpr Size scaled(T dx, T dy) const
{
Size<T> size = *this;
size.scale_by(dx, dy);
return size;
}
[[nodiscard]] constexpr Size scaled(T dboth) const
{
Size<T> size = *this;
size.scale_by(dboth);
return size;
}
[[nodiscard]] constexpr Size scaled(Point<T> const& s) const
{
Size<T> size = *this;
size.scale_by(s);
return size;
}
[[nodiscard]] constexpr Size transformed_by(AffineTransform const& transform) const
{
Size<T> size = *this;
size.transform_by(transform);
return size;
}
[[nodiscard]] constexpr float aspect_ratio() const
{
VERIFY(height() != 0);
return static_cast<float>(width()) / static_cast<float>(height());
}
// Horizontal means preserve the width, Vertical means preserve the height.
[[nodiscard]] constexpr Size<T> match_aspect_ratio(float aspect_ratio, Orientation side_to_preserve) const
{
VERIFY(aspect_ratio != 0.0f);
auto matched = *this;
auto height_corresponding_to_width = static_cast<T>(static_cast<float>(width()) / aspect_ratio);
auto width_corresponding_to_height = static_cast<T>(static_cast<float>(height()) * aspect_ratio);
switch (side_to_preserve) {
case Orientation::Vertical:
matched.m_width = width_corresponding_to_height;
break;
case Orientation::Horizontal:
matched.m_height = height_corresponding_to_width;
break;
}
return matched;
}
template<typename U>
[[nodiscard]] constexpr bool contains(Size<U> const& other) const
{
return other.m_width <= m_width && other.m_height <= m_height;
}
template<class U>
[[nodiscard]] constexpr bool operator==(Size<U> const& other) const
{
return width() == other.width() && height() == other.height();
}
constexpr Size<T>& operator-=(Size<T> const& other)
{
m_width -= other.m_width;
m_height -= other.m_height;
return *this;
}
Size<T>& operator+=(Size<T> const& other)
{
m_width += other.m_width;
m_height += other.m_height;
return *this;
}
[[nodiscard]] constexpr Size<T> operator*(T factor) const { return { m_width * factor, m_height * factor }; }
constexpr Size<T>& operator*=(T factor)
{
m_width *= factor;
m_height *= factor;
return *this;
}
[[nodiscard]] constexpr T primary_size_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? height() : width();
}
constexpr void set_primary_size_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_height(value);
} else {
set_width(value);
}
}
[[nodiscard]] constexpr T secondary_size_for_orientation(Orientation orientation) const
{
return orientation == Orientation::Vertical ? width() : height();
}
constexpr void set_secondary_size_for_orientation(Orientation orientation, T value)
{
if (orientation == Orientation::Vertical) {
set_width(value);
} else {
set_height(value);
}
}
template<typename U>
requires(!IsSame<T, U>)
[[nodiscard]] ALWAYS_INLINE constexpr Size<U> to_type() const
{
return Size<U>(*this);
}
[[nodiscard]] ByteString to_byte_string() const;
template<Integral I>
[[nodiscard]] Size<I> to_rounded() const
{
return Size<I>(round_to<I>(width()), round_to<I>(height()));
}
private:
T m_width { 0 };
T m_height { 0 };
};
using IntSize = Size<int>;
using FloatSize = Size<float>;
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Size<T>> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Gfx::Size<T> const& value)
{
return Formatter<FormatString>::format(builder, "[{}x{}]"sv, value.width(), value.height());
}
};
}
namespace IPC {
template<>
ErrorOr<void> encode(Encoder&, Gfx::IntSize const&);
template<>
ErrorOr<Gfx::IntSize> decode(Decoder&);
}
template<typename T>
struct AK::Traits<Gfx::Size<T>> : public AK::DefaultTraits<Gfx::Size<T>> {
static constexpr bool is_trivial() { return false; }
static unsigned hash(Gfx::Size<T> const& size)
{
return pair_int_hash(AK::Traits<T>::hash(size.width()), AK::Traits<T>::hash(size.height()));
}
};