ladybird/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
devgianlu f49a55d089 LibCrypto: Update ModularInverse implementation to use extended GCD
The previous implementation of `ModularInverse` was flaky and did not
compute the correct value in many occasions, especially with big numbers
like in RSA.

Also added a bunch of tests with big numbers.
2024-12-15 23:31:49 +01:00

238 lines
8 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Random.h>
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
namespace Crypto::NumberTheory {
UnsignedBigInteger Mod(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger result;
result.set_to(a);
result.set_to(result.divided_by(b).remainder);
return result;
}
UnsignedBigInteger ModularInverse(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
if (b == 1)
return { 1 };
UnsignedBigInteger result;
UnsignedBigInteger temp_y;
UnsignedBigInteger temp_gcd;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_shift_result;
UnsignedBigInteger temp_shift_plus;
UnsignedBigInteger temp_shift;
UnsignedBigInteger temp_r;
UnsignedBigInteger temp_s;
UnsignedBigInteger temp_t;
UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a, b, result, temp_y, temp_gcd, temp_quotient, temp_1, temp_2, temp_shift_result, temp_shift_plus, temp_shift, temp_r, temp_s, temp_t);
return result;
}
UnsignedBigInteger ModularPower(UnsignedBigInteger const& b, UnsignedBigInteger const& e, UnsignedBigInteger const& m)
{
if (m == 1)
return 0;
if (m.is_odd()) {
UnsignedBigInteger temp_z0 { 0 };
UnsignedBigInteger temp_rr { 0 };
UnsignedBigInteger temp_one { 0 };
UnsignedBigInteger temp_z { 0 };
UnsignedBigInteger temp_zz { 0 };
UnsignedBigInteger temp_x { 0 };
UnsignedBigInteger temp_extra { 0 };
UnsignedBigInteger result;
UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
return result;
}
UnsignedBigInteger ep { e };
UnsignedBigInteger base { b };
UnsignedBigInteger result;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_multiply;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_multiply, temp_quotient, temp_remainder, result);
return result;
}
UnsignedBigInteger GCD(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger output;
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_quotient, temp_remainder, output);
return output;
}
UnsignedBigInteger LCM(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
{
UnsignedBigInteger temp_a { a };
UnsignedBigInteger temp_b { b };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger gcd_output;
UnsignedBigInteger output { 0 };
UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_quotient, temp_remainder, gcd_output);
if (gcd_output == 0) {
dbgln_if(NT_DEBUG, "GCD is zero");
return output;
}
// output = (a / gcd_output) * b
UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_quotient, temp_remainder);
UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
return output;
}
static bool MR_primality_test(UnsignedBigInteger n, Vector<UnsignedBigInteger, 256> const& tests)
{
// Written using Wikipedia:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
VERIFY(!(n < 4));
auto predecessor = n.minus({ 1 });
auto d = predecessor;
size_t r = 0;
{
auto div_result = d.divided_by(2);
while (div_result.remainder == 0) {
d = div_result.quotient;
div_result = d.divided_by(2);
++r;
}
}
if (r == 0) {
// n - 1 is odd, so n was even. But there is only one even prime:
return n == 2;
}
for (auto& a : tests) {
// Technically: VERIFY(2 <= a && a <= n - 2)
VERIFY(a < n);
auto x = ModularPower(a, d, n);
if (x == 1 || x == predecessor)
continue;
bool skip_this_witness = false;
// r 1 iterations.
for (size_t i = 0; i < r - 1; ++i) {
x = ModularPower(x, 2, n);
if (x == predecessor) {
skip_this_witness = true;
break;
}
}
if (skip_this_witness)
continue;
return false; // "composite"
}
return true; // "probably prime"
}
UnsignedBigInteger random_number(UnsignedBigInteger const& min, UnsignedBigInteger const& max_excluded)
{
VERIFY(min < max_excluded);
auto range = max_excluded.minus(min);
UnsignedBigInteger base;
auto size = range.trimmed_length() * sizeof(u32) + 2;
// "+2" is intentional (see below).
auto buffer = ByteBuffer::create_uninitialized(size).release_value_but_fixme_should_propagate_errors(); // FIXME: Handle possible OOM situation.
auto* buf = buffer.data();
fill_with_random(buffer);
UnsignedBigInteger random { buf, size };
// At this point, `random` is a large number, in the range [0, 256^size).
// To get down to the actual range, we could just compute random % range.
// This introduces "modulo bias". However, since we added 2 to `size`,
// we know that the generated range is at least 65536 times as large as the
// required range! This means that the modulo bias is only 0.0015%, if all
// inputs are chosen adversarially. Let's hope this is good enough.
auto divmod = random.divided_by(range);
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
return divmod.remainder.plus(min);
}
bool is_probably_prime(UnsignedBigInteger const& p)
{
// Is it a small number?
if (p < 49) {
u32 p_value = p.words()[0];
// Is it a very small prime?
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
return true;
// Is it the multiple of a very small prime?
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
return false;
// Then it must be a prime, but not a very small prime, like 37.
return true;
}
Vector<UnsignedBigInteger, 256> tests;
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
tests.append(UnsignedBigInteger(2));
tests.append(UnsignedBigInteger(3));
tests.append(UnsignedBigInteger(5));
tests.append(UnsignedBigInteger(7));
tests.append(UnsignedBigInteger(11));
tests.append(UnsignedBigInteger(13));
UnsignedBigInteger seventeen { 17 };
for (size_t i = tests.size(); i < 256; ++i) {
tests.append(random_number(seventeen, p.minus(2)));
}
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
// With 200 random numbers, this would mean an error of about 2^-400.
// So we don't need to worry too much about the quality of the random numbers.
return MR_primality_test(p, tests);
}
UnsignedBigInteger random_big_prime(size_t bits)
{
VERIFY(bits >= 33);
UnsignedBigInteger min = "6074001000"_bigint.shift_left(bits - 33);
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
for (;;) {
auto p = random_number(min, max);
if ((p.words()[0] & 1) == 0) {
// An even number is definitely not a large prime.
continue;
}
if (is_probably_prime(p))
return p;
}
}
}