ladybird/Kernel/Process.h
AnotherTest 688e54eac7 Kernel: Distinguish between new and old process groups with equal pgids
This does not add any behaviour change to the processes, but it ties a
TTY to an active process group via TIOCSPGRP, and returns the TTY to the
kernel when all processes in the process group die.
Also makes the TTY keep a link to the original controlling process' parent (for
SIGCHLD) instead of the process itself.
2020-08-19 21:21:34 +02:00

842 lines
30 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Checked.h>
#include <AK/FixedArray.h>
#include <AK/HashMap.h>
#include <AK/InlineLinkedList.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/Forward.h>
#include <Kernel/Lock.h>
#include <Kernel/ProcessGroup.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/VM/RangeAllocator.h>
#include <LibC/signal_numbers.h>
#include <LibELF/AuxiliaryVector.h>
namespace ELF {
class Loader;
}
namespace Kernel {
timeval kgettimeofday();
void kgettimeofday(timeval&);
extern VirtualAddress g_return_to_ring3_from_signal_trampoline;
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(chroot) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(shared_buffer)
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
};
struct UnveiledPath {
enum Access {
Read = 1,
Write = 2,
Execute = 4,
CreateOrRemove = 8,
};
String path;
unsigned permissions { 0 };
};
class Process
: public RefCounted<Process>
, public InlineLinkedListNode<Process>
, public Weakable<Process> {
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
friend class InlineLinkedListNode<Process>;
friend class Thread;
public:
inline static Process* current()
{
auto current_thread = Processor::current().current_thread();
return current_thread ? &current_thread->process() : nullptr;
}
static NonnullRefPtr<Process> create_kernel_process(Thread*& first_thread, String&& name, void (*entry)(), u32 affinity = THREAD_AFFINITY_DEFAULT);
static RefPtr<Process> create_user_process(Thread*& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
~Process();
static Vector<ProcessID> all_pids();
static AK::NonnullRefPtrVector<Process> all_processes();
Thread* create_kernel_thread(void (*entry)(), u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
enum RingLevel : u8 {
Ring0 = 0,
Ring3 = 3,
};
KBuffer backtrace() const;
bool is_dead() const { return m_dead; }
bool is_ring0() const { return m_ring == Ring0; }
bool is_ring3() const { return m_ring == Ring3; }
PageDirectory& page_directory() { return *m_page_directory; }
const PageDirectory& page_directory() const { return *m_page_directory; }
static RefPtr<Process> from_pid(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
const String& name() const { return m_name; }
ProcessID pid() const { return m_pid; }
SessionID sid() const { return m_sid; }
bool is_session_leader() const { return m_sid.value() == m_pid.value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == m_pid.value(); }
const FixedArray<gid_t>& extra_gids() const { return m_extra_gids; }
uid_t euid() const { return m_euid; }
gid_t egid() const { return m_egid; }
uid_t uid() const { return m_uid; }
gid_t gid() const { return m_gid; }
uid_t suid() const { return m_suid; }
gid_t sgid() const { return m_sgid; }
ProcessID ppid() const { return m_ppid; }
ThreadID exec_tid() const { return m_exec_tid; }
mode_t umask() const { return m_umask; }
bool in_group(gid_t) const;
RefPtr<FileDescription> file_description(int fd) const;
int fd_flags(int fd) const;
template<typename Callback>
static void for_each(Callback);
template<typename Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<typename Callback>
void for_each_child(Callback);
template<typename Callback>
void for_each_thread(Callback) const;
void die();
void finalize();
ALWAYS_INLINE SpinLock<u32>& get_lock() const { return m_lock; }
int sys$yield();
int sys$sync();
int sys$beep();
int sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
int sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
int sys$watch_file(Userspace<const char*> path, size_t path_length);
int sys$dbgputch(u8);
int sys$dbgputstr(Userspace<const u8*>, int length);
int sys$dump_backtrace();
pid_t sys$gettid();
int sys$donate(pid_t tid);
int sys$ftruncate(int fd, off_t);
pid_t sys$setsid();
pid_t sys$getsid(pid_t);
int sys$setpgid(pid_t pid, pid_t pgid);
pid_t sys$getpgrp();
pid_t sys$getpgid(pid_t);
uid_t sys$getuid();
gid_t sys$getgid();
uid_t sys$geteuid();
gid_t sys$getegid();
pid_t sys$getpid();
pid_t sys$getppid();
int sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
int sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
mode_t sys$umask(mode_t);
int sys$open(Userspace<const Syscall::SC_open_params*>);
int sys$close(int fd);
ssize_t sys$read(int fd, Userspace<u8*>, ssize_t);
ssize_t sys$write(int fd, const u8*, ssize_t);
ssize_t sys$writev(int fd, const struct iovec* iov, int iov_count);
int sys$fstat(int fd, Userspace<stat*>);
int sys$stat(Userspace<const Syscall::SC_stat_params*>);
int sys$lseek(int fd, off_t, int whence);
int sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
int sys$sigreturn(RegisterState& registers);
pid_t sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
void* sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
int sys$munmap(void*, size_t size);
int sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
int sys$mprotect(void*, size_t, int prot);
int sys$madvise(void*, size_t, int advice);
int sys$minherit(void*, size_t, int inherit);
int sys$purge(int mode);
int sys$select(const Syscall::SC_select_params*);
int sys$poll(Userspace<const Syscall::SC_poll_params*>);
ssize_t sys$get_dir_entries(int fd, void*, ssize_t);
int sys$getcwd(Userspace<char*>, ssize_t);
int sys$chdir(Userspace<const char*>, size_t);
int sys$fchdir(int fd);
int sys$sleep(unsigned seconds);
int sys$usleep(useconds_t usec);
int sys$gettimeofday(Userspace<timeval*>);
int sys$clock_gettime(clockid_t, Userspace<timespec*>);
int sys$clock_settime(clockid_t, Userspace<const timespec*>);
int sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
int sys$gethostname(Userspace<char*>, ssize_t);
int sys$sethostname(Userspace<const char*>, ssize_t);
int sys$uname(Userspace<utsname*>);
int sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
int sys$ttyname(int fd, Userspace<char*>, size_t);
int sys$ptsname(int fd, Userspace<char*>, size_t);
pid_t sys$fork(RegisterState&);
int sys$execve(Userspace<const Syscall::SC_execve_params*>);
int sys$dup2(int old_fd, int new_fd);
int sys$sigaction(int signum, const sigaction* act, sigaction* old_act);
int sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
int sys$sigpending(Userspace<sigset_t*>);
int sys$getgroups(ssize_t, Userspace<gid_t*>);
int sys$setgroups(ssize_t, Userspace<const gid_t*>);
int sys$pipe(int pipefd[2], int flags);
int sys$killpg(pid_t pgrp, int sig);
int sys$seteuid(uid_t);
int sys$setegid(gid_t);
int sys$setuid(uid_t);
int sys$setgid(gid_t);
int sys$setresuid(uid_t, uid_t, uid_t);
int sys$setresgid(gid_t, gid_t, gid_t);
unsigned sys$alarm(unsigned seconds);
int sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
int sys$fcntl(int fd, int cmd, u32 extra_arg);
int sys$ioctl(int fd, unsigned request, FlatPtr arg);
int sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
clock_t sys$times(Userspace<tms*>);
int sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
int sys$link(Userspace<const Syscall::SC_link_params*>);
int sys$unlink(Userspace<const char*> pathname, size_t path_length);
int sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
int sys$rmdir(Userspace<const char*> pathname, size_t path_length);
int sys$mount(Userspace<const Syscall::SC_mount_params*>);
int sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
int sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
int sys$fchmod(int fd, mode_t);
int sys$chown(Userspace<const Syscall::SC_chown_params*>);
int sys$fchown(int fd, uid_t, gid_t);
int sys$socket(int domain, int type, int protocol);
int sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
int sys$listen(int sockfd, int backlog);
int sys$accept(int sockfd, Userspace<sockaddr*>, Userspace<socklen_t*>);
int sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
int sys$shutdown(int sockfd, int how);
ssize_t sys$sendto(Userspace<const Syscall::SC_sendto_params*>);
ssize_t sys$recvfrom(Userspace<const Syscall::SC_recvfrom_params*>);
int sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
int sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
int sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
int sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
int sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
int sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
int sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
void sys$exit_thread(Userspace<void*>);
int sys$join_thread(pid_t tid, Userspace<void**> exit_value);
int sys$detach_thread(pid_t tid);
int sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
int sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
int sys$rename(Userspace<const Syscall::SC_rename_params*>);
int sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
int sys$shbuf_create(int, void** buffer);
int sys$shbuf_allow_pid(int, pid_t peer_pid);
int sys$shbuf_allow_all(int);
void* sys$shbuf_get(int shbuf_id, Userspace<size_t*> size);
int sys$shbuf_release(int shbuf_id);
int sys$shbuf_seal(int shbuf_id);
int sys$shbuf_set_volatile(int shbuf_id, bool);
int sys$halt();
int sys$reboot();
int sys$set_process_icon(int icon_id);
int sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
ssize_t sys$getrandom(Userspace<void*>, size_t, unsigned int);
int sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
int sys$module_load(Userspace<const char*> path, size_t path_length);
int sys$module_unload(Userspace<const char*> name, size_t name_length);
int sys$profiling_enable(pid_t);
int sys$profiling_disable(pid_t);
int sys$futex(Userspace<const Syscall::SC_futex_params*>);
int sys$set_thread_boost(pid_t tid, int amount);
int sys$set_process_boost(pid_t, int amount);
int sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
int sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
int sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
int sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
int sys$get_stack_bounds(FlatPtr* stack_base, size_t* stack_size);
int sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
int sys$sendfd(int sockfd, int fd);
int sys$recvfd(int sockfd);
long sys$sysconf(int name);
int sys$disown(ProcessID);
template<bool sockname, typename Params>
int get_sock_or_peer_name(const Params&);
static void initialize();
[[noreturn]] void crash(int signal, u32 eip, bool out_of_memory = false);
[[nodiscard]] static siginfo_t reap(Process&);
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
size_t region_count() const { return m_regions.size(); }
const NonnullOwnPtrVector<Region>& regions() const
{
ASSERT(m_lock.is_locked());
return m_regions;
}
void dump_regions();
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
[[nodiscard]] bool validate_read_from_kernel(VirtualAddress, size_t) const;
[[nodiscard]] bool validate_read(const void*, size_t) const;
[[nodiscard]] bool validate_write(void*, size_t) const;
template<typename T>
[[nodiscard]] bool validate_read(Userspace<T*> ptr, size_t size) const
{
return validate_read(ptr.unsafe_userspace_ptr(), size);
}
template<typename T>
[[nodiscard]] bool validate_write(Userspace<T*> ptr, size_t size) const
{
return validate_write(ptr.unsafe_userspace_ptr(), size);
}
template<typename T>
[[nodiscard]] bool validate_read_typed(T* value, size_t count = 1)
{
Checked size = sizeof(T);
size *= count;
if (size.has_overflow())
return false;
return validate_read(value, size.value());
}
template<typename T>
[[nodiscard]] bool validate_read_typed(Userspace<T*> value, size_t count = 1)
{
Checked size = sizeof(T);
size *= count;
if (size.has_overflow())
return false;
return validate_read(value, size.value());
}
template<typename T>
[[nodiscard]] bool validate_read_and_copy_typed(T* dest, const T* src)
{
bool validated = validate_read_typed(src);
if (validated) {
copy_from_user(dest, src);
}
return validated;
}
template<typename T>
[[nodiscard]] bool validate_read_and_copy_typed(T* dest, Userspace<const T*> src)
{
bool validated = validate_read_typed(src);
if (validated) {
copy_from_user(dest, src);
}
return validated;
}
template<typename T>
[[nodiscard]] bool validate_read_and_copy_typed(T* dest, Userspace<T*> src)
{
Userspace<const T*> const_src { src.ptr() };
return validate_read_and_copy_typed(dest, const_src);
}
template<typename T>
[[nodiscard]] bool validate_write_typed(T* value, size_t count = 1)
{
Checked size = sizeof(T);
size *= count;
if (size.has_overflow())
return false;
return validate_write(value, size.value());
}
template<typename T>
[[nodiscard]] bool validate_write_typed(Userspace<T*> value, size_t count = 1)
{
Checked size = sizeof(T);
size *= count;
if (size.has_overflow())
return false;
return validate_write(value, size.value());
}
template<typename DataType, typename SizeType>
[[nodiscard]] bool validate(const Syscall::MutableBufferArgument<DataType, SizeType>& buffer)
{
return validate_write(buffer.data, buffer.size);
}
template<typename DataType, typename SizeType>
[[nodiscard]] bool validate(const Syscall::ImmutableBufferArgument<DataType, SizeType>& buffer)
{
return validate_read(buffer.data, buffer.size);
}
[[nodiscard]] String validate_and_copy_string_from_user(const char*, size_t) const;
[[nodiscard]] String validate_and_copy_string_from_user(Userspace<const char*> user_characters, size_t size) const
{
return validate_and_copy_string_from_user(user_characters.unsafe_userspace_ptr(), size);
}
[[nodiscard]] String validate_and_copy_string_from_user(const Syscall::StringArgument&) const;
Custody& current_directory();
Custody* executable()
{
return m_executable.ptr();
}
int number_of_open_file_descriptors() const;
int max_open_file_descriptors() const
{
return m_max_open_file_descriptors;
}
size_t amount_clean_inode() const;
size_t amount_dirty_private() const;
size_t amount_virtual() const;
size_t amount_resident() const;
size_t amount_shared() const;
size_t amount_purgeable_volatile() const;
size_t amount_purgeable_nonvolatile() const;
int exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
bool is_superuser() const
{
return m_euid == 0;
}
Region* allocate_region_with_vmobject(VirtualAddress, size_t, NonnullRefPtr<VMObject>, size_t offset_in_vmobject, const String& name, int prot);
Region* allocate_region(VirtualAddress, size_t, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true);
Region* allocate_region_with_vmobject(const Range&, NonnullRefPtr<VMObject>, size_t offset_in_vmobject, const String& name, int prot);
Region* allocate_region(const Range&, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true);
bool deallocate_region(Region& region);
Region& allocate_split_region(const Region& source_region, const Range&, size_t offset_in_vmobject);
Vector<Region*, 2> split_region_around_range(const Region& source_region, const Range&);
void terminate_due_to_signal(u8 signal);
KResult send_signal(u8 signal, Process* sender);
u16 thread_count() const
{
return m_thread_count.load(AK::MemoryOrder::memory_order_consume);
}
Lock& big_lock()
{
return m_big_lock;
}
struct ELFBundle {
OwnPtr<Region> region;
RefPtr<ELF::Loader> elf_loader;
};
OwnPtr<ELFBundle> elf_bundle() const;
int icon_id() const
{
return m_icon_id;
}
u32 priority_boost() const
{
return m_priority_boost;
}
Custody& root_directory();
Custody& root_directory_relative_to_global_root();
void set_root_directory(const Custody&);
bool has_promises() const
{
return m_promises;
}
bool has_promised(Pledge pledge) const
{
return m_promises & (1u << (u32)pledge);
}
VeilState veil_state() const
{
return m_veil_state;
}
const Vector<UnveiledPath>& unveiled_paths() const
{
return m_unveiled_paths;
}
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
KResultOr<u32> peek_user_data(Userspace<const u32*> address);
KResult poke_user_data(Userspace<u32*> address, u32 data);
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
Process(Thread*& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, RingLevel, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
static ProcessID allocate_pid();
Range allocate_range(VirtualAddress, size_t, size_t alignment = PAGE_SIZE);
Region& add_region(NonnullOwnPtr<Region>);
void kill_threads_except_self();
void kill_all_threads();
int do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags);
ssize_t do_write(FileDescription&, const u8*, int data_size);
KResultOr<NonnullRefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, char (&first_page)[PAGE_SIZE], int nread, size_t file_size);
Vector<AuxiliaryValue> generate_auxiliary_vector() const;
int alloc_fd(int first_candidate_fd = 0);
void disown_all_shared_buffers();
KResult do_kill(Process&, int signal);
KResult do_killpg(ProcessGroupID pgrp, int signal);
KResult do_killall(int signal);
KResult do_killself(int signal);
KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
KResultOr<String> get_syscall_path_argument(const char* user_path, size_t path_length) const;
KResultOr<String> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
{
return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
}
KResultOr<String> get_syscall_path_argument(const Syscall::StringArgument&) const;
bool has_tracee_thread(ProcessID tracer_pid) const;
RefPtr<PageDirectory> m_page_directory;
Process* m_prev { nullptr };
Process* m_next { nullptr };
String m_name;
ProcessID m_pid { 0 };
SessionID m_sid { 0 };
RefPtr<ProcessGroup> m_pg;
uid_t m_euid { 0 };
gid_t m_egid { 0 };
uid_t m_uid { 0 };
gid_t m_gid { 0 };
uid_t m_suid { 0 };
gid_t m_sgid { 0 };
ThreadID m_exec_tid { 0 };
FlatPtr m_load_offset { 0U };
FlatPtr m_entry_eip { 0U };
static const int m_max_open_file_descriptors { FD_SETSIZE };
class FileDescriptionAndFlags {
public:
operator bool() const { return !!m_description; }
FileDescription* description() { return m_description; }
const FileDescription* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
void clear();
void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
private:
RefPtr<FileDescription> m_description;
u32 m_flags { 0 };
};
Vector<FileDescriptionAndFlags> m_fds;
RingLevel m_ring { Ring0 };
u8 m_termination_status { 0 };
u8 m_termination_signal { 0 };
Atomic<u32> m_thread_count { 0 };
bool m_dead { false };
bool m_profiling { false };
RefPtr<Custody> m_executable;
RefPtr<Custody> m_cwd;
RefPtr<Custody> m_root_directory;
RefPtr<Custody> m_root_directory_relative_to_global_root;
RefPtr<TTY> m_tty;
Region* find_region_from_range(const Range&);
Region* find_region_containing(const Range&);
NonnullOwnPtrVector<Region> m_regions;
struct RegionLookupCache {
Range range;
WeakPtr<Region> region;
};
RegionLookupCache m_region_lookup_cache;
ProcessID m_ppid { 0 };
mode_t m_umask { 022 };
FixedArray<gid_t> m_extra_gids;
WeakPtr<Region> m_master_tls_region;
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Lock m_big_lock { "Process" };
mutable SpinLock<u32> m_lock;
u64 m_alarm_deadline { 0 };
int m_icon_id { -1 };
u32 m_priority_boost { 0 };
u32 m_promises { 0 };
u32 m_execpromises { 0 };
VeilState m_veil_state { VeilState::None };
Vector<UnveiledPath> m_unveiled_paths;
WaitQueue& futex_queue(Userspace<const i32*>);
HashMap<u32, OwnPtr<WaitQueue>> m_futex_queues;
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
};
extern InlineLinkedList<Process>* g_processes;
extern RecursiveSpinLock g_processes_lock;
template<typename Callback>
inline void Process::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (callback(*process) == IterationDecision::Break)
break;
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_child(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ProcessID my_pid = pid();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->ppid() == my_pid || process->has_tracee_thread(m_pid)) {
if (callback(*process) == IterationDecision::Break)
break;
}
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_thread(Callback callback) const
{
InterruptDisabler disabler;
ProcessID my_pid = pid();
if (my_pid == 0) {
// NOTE: Special case the colonel process, since its main thread is not in the global thread table.
Processor::for_each(
[&](Processor& proc) -> IterationDecision {
auto idle_thread = proc.idle_thread();
if (idle_thread != nullptr)
return callback(*idle_thread);
return IterationDecision::Continue;
});
return;
}
Thread::for_each([callback, my_pid](Thread& thread) -> IterationDecision {
if (thread.pid() == my_pid)
return callback(thread);
return IterationDecision::Continue;
});
}
template<typename Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (!process->is_dead() && process->pgid() == pgid) {
if (callback(*process) == IterationDecision::Break)
break;
}
process = next_process;
}
}
inline bool InodeMetadata::may_read(const Process& process) const
{
return may_read(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_write(const Process& process) const
{
return may_write(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_execute(const Process& process) const
{
return may_execute(process.euid(), process.egid(), process.extra_gids());
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
inline const LogStream& operator<<(const LogStream& stream, const Process& process)
{
return stream << process.name() << '(' << process.pid().value() << ')';
}
inline u32 Thread::effective_priority() const
{
return m_priority + m_process->priority_boost() + m_priority_boost + m_extra_priority;
}
#define REQUIRE_NO_PROMISES \
do { \
if (Process::current()->has_promises()) { \
dbg() << "Has made a promise"; \
cli(); \
Process::current()->crash(SIGABRT, 0); \
ASSERT_NOT_REACHED(); \
} \
} while (0)
#define REQUIRE_PROMISE(promise) \
do { \
if (Process::current()->has_promises() \
&& !Process::current()->has_promised(Pledge::promise)) { \
dbg() << "Has not pledged " << #promise; \
cli(); \
Process::current()->crash(SIGABRT, 0); \
ASSERT_NOT_REACHED(); \
} \
} while (0)
}