ladybird/Kernel/Devices/FloppyDiskDevice.cpp
2020-02-16 01:50:32 +01:00

564 lines
17 KiB
C++

/*
* Copyright (c) 2019-2020, Jesse Buhagiar <jooster669@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/Devices/FloppyDiskDevice.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibBareMetal/IO.h>
namespace Kernel {
// Uncomment me for a LOT of output
//#define FLOPPY_DEBUG
// THESE ARE OFFSETS!
#define FLOPPY_STATUS_A 0x00 // ro
#define FLOPPY_STATUS_B 0x01 // ro
#define FLOPPY_DOR 0x02 // rw
#define FLOPPY_TDR 0x03 // rw
#define FLOPPY_MSR 0x04 // ro
#define FLOPPY_DSR 0x04 // wo
#define FLOPPY_FIFO 0x05
#define FLOPPY_RSVD 0x06
#define FLOPPY_DIR 0x07 // ro
#define FLOPPY_CCR 0x07 // wo
#define FLOPPY_STATUS_DIR 0x01
#define FLOPPY_STATUS_WP 0x02
#define FLOPPY_STATUS_INDX 0x04
#define FLOPPY_STATUS_HDSEL 0x08
#define FLOPPY_STATUS_TRK0 0x10
#define FLOPPY_STATUS_STEP 0x20
#define FLOPPY_STATUS_DRV2 0x40
#define FLOPPY_STATUS_INTW 0x80 // A.K.A INT_PENDING
#define FLOPPY_DOR_DRVSEL0 0x01
#define FLOPPY_DOR_DRVSEL1 0x02
#define FLOPPY_DOR_RESET 0x04
#define FLOPPY_DOR_DMAGATE 0x08
#define FLOPPY_DOR_MOTEN0 0x10
#define FLOPPY_DOR_MOTEN1 0x20
#define FLOPPY_DOR_MOTEN2 0x40
#define FLOPPY_DOR_MOTEN3 0x80
// Preset values to activate drive select and motor enable for each drive
#define FLOPPY_DOR_DRV0 0x1C
#define FLOPPY_DOR_DRV1 0x2D
#define FLOPPY_DOR_DRV2 0x4E
#define FLOPPY_DOR_DRV3 0x8F
#define FLOPPY_MSR_FDD0BSY 0x01
#define FLOPPY_MSR_FDD1BSY 0x02
#define FLOPPY_MSR_FDD2BSY 0x04
#define FLOPPY_MSR_FDD3BSY 0x08
#define FLOPPY_MSR_FDCBSY 0x10
#define FLOPPY_MSR_MODE 0x20 // 0 in DMA mode, 1 in PIO mode
#define FLOPPY_MSR_DIO 0x40 // 0 FDC is expecting data from the CPU, 1 if FDC has data for CPU
#define FLOPPY_MSR_RQM 0x80 // 0 Data register not ready, 1 data register ready
#define FLOPPY_CCR_DRTESEL0 0x01
#define FLOPPY_CCR_DRTESEL1 0x02
#define FLOPPY_MT 0x80 // Multi-track selector. The controller treats 2 tracks (on side 0 and side 1) as a single track instead
#define FLOPPY_MFM 0x40 // 1 Means this disk is double density (double sided??)
#define FLOPPY_SK 0x20 // Skip flag. Skips sectors containing deleted data automatically for us :)
#define SR0_OKAY (0x00) << 6
#define SR0_ABORMAL_TERMINATION (0x01) << 6
#define SR0_INVALID_CMD (0x02) << 6
#define SR0_ABNORMAL_TERM_POLL (0x03) << 6
#define FLOPPY_DMA_CHANNEL 2 // All FDCs are DMA channel 2
#define IRQ_FLOPPY_DRIVE 6
NonnullRefPtr<FloppyDiskDevice> FloppyDiskDevice::create(DriveType type)
{
return adopt(*new FloppyDiskDevice(type));
}
const char* FloppyDiskDevice::class_name() const
{
if (m_controller_version == 0x90)
return "Intel 82078 Floppy Disk Controller";
else if (m_controller_version == 0x80)
return "NEC uPD765";
return "Generic Floppy Disk Controller";
}
FloppyDiskDevice::FloppyDiskDevice(FloppyDiskDevice::DriveType type)
: IRQHandler(IRQ_FLOPPY_DRIVE)
, BlockDevice(89, (type == FloppyDiskDevice::DriveType::Master) ? 0 : 1, BYTES_PER_SECTOR)
, m_io_base_addr((type == FloppyDiskDevice::DriveType::Master) ? 0x3F0 : 0x370)
{
initialize();
}
FloppyDiskDevice::~FloppyDiskDevice()
{
}
bool FloppyDiskDevice::read_blocks(unsigned index, u16 count, u8* data)
{
return read_sectors_with_dma(index, count, data);
}
bool FloppyDiskDevice::write_blocks(unsigned index, u16 count, const u8* data)
{
return write_sectors_with_dma(index, count, data);
;
}
bool FloppyDiskDevice::read_sectors_with_dma(u16 lba, u16 count, u8* outbuf)
{
LOCKER(m_lock); // Acquire lock
#ifdef FLOPPY_DEBUG
kprintf("fdc: read_sectors_with_dma lba = %d count = %d\n", lba, count);
#endif
motor_enable(is_slave()); // Should I bother casting this?!
write_ccr(0);
recalibrate();
if (!seek(lba)) {
kprintf("fdc: failed to seek to lba = %d!\n", lba);
return false;
}
// We have to wait for about 300ms for the drive to spin up, because of
// the inertia of the motor and diskette. This is only
// important on real hardware
// TODO: Fix this if you want to get it running on real hardware. This code doesn't allow
// time for the disk to spin up.
//u32 start = PIT::seconds_since_boot();
//while(start < PIT::seconds_since_boot() + 1)
// ;
disable_irq();
IO::out8(0xA, FLOPPY_DMA_CHANNEL | 0x4); // Channel 2 SEL, MASK_ON = 1
IO::out8(0x0B, 0x56); // Begin DMA, Single Transfer, Increment, Auto, FDC -> RAM, Channel 2
IO::out8(0xA, 0x2); // Unmask channel 2. The transfer will now begin
// Translate the LBA address into something the FDC understands.
u16 cylinder = lba2cylinder(lba);
u16 head = lba2head(lba);
u16 sector = lba2sector(lba);
#ifdef FLOPPY_DEBUG
kprintf("fdc: addr = 0x%x c = %d h = %d s = %d\n", lba * BYTES_PER_SECTOR, cylinder, head, sector);
#endif
// Intel recommends 3 attempts for a read/write
for (int i = 0; i < 3; i++) {
// Now actually send the command to the drive. This is a big one!
send_byte(FLOPPY_MFM | FLOPPY_MT | FLOPPY_SK | static_cast<u8>(FloppyCommand::ReadData));
send_byte((head << 2) | is_slave());
send_byte(cylinder);
send_byte(head);
send_byte(sector);
send_byte(SECTORS_PER_CYLINDER >> 8); // Yikes!
send_byte(((sector + 1) >= SECTORS_PER_CYLINDER) ? SECTORS_PER_CYLINDER : sector + 1);
send_byte(0x1b); // GPL3 value. The Datasheet doesn't really specify the values for this properly...
send_byte(0xff);
enable_irq();
wait_for_irq(); // TODO: See if there was a lockup here via some "timeout counter"
m_interrupted = false;
// Flush FIFO
// Let's check the value of Status Register 1 to ensure that
// the command executed correctly
u8 cmd_st0 = read_byte();
if ((cmd_st0 & 0xc0) != 0) {
kprintf("fdc: read failed with error code (st0) 0x%x\n", cmd_st0 >> 6);
return false;
}
u8 cmd_st1 = read_byte();
if (cmd_st1 != 0) {
kprintf("fdc: read failed with error code (st1) 0x%x\n", cmd_st1);
return false;
}
read_byte();
u8 cyl = read_byte();
read_byte();
read_byte();
read_byte();
if (cyl != cylinder) {
#ifdef FLOPPY_DEBUG
kprintf("fdc: cyl != cylinder (cyl = %d cylinder = %d)! Retrying...\n", cyl, cylinder);
#endif
continue;
}
// Let the controller know we handled the interrupt
send_byte(FloppyCommand::SenseInterrupt);
u8 st0 = read_byte();
u8 pcn = read_byte();
static_cast<void>(st0);
static_cast<void>(pcn);
memcpy(outbuf, m_dma_buffer_page->paddr().as_ptr(), 512 * count);
return true;
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: out of read attempts (check your hardware maybe!?)\n");
#endif
return false;
}
bool FloppyDiskDevice::write_sectors_with_dma(u16 lba, u16 count, const u8* inbuf)
{
LOCKER(m_lock); // Acquire lock
#ifdef FLOPPY_DEBUG
kprintf("fdc: write_sectors_with_dma lba = %d count = %d\n", lba, count);
#endif
motor_enable(is_slave() ? 1 : 0); // Should I bother casting this?!
write_ccr(0);
recalibrate(); // Recalibrate the drive
if (!seek(lba)) {
kprintf("fdc: failed to seek to lba = %d!\n", lba);
return false;
}
// We have to wait for about 300ms for the drive to spin up, because of
// the inertia of the motor and diskette.
// TODO: Fix this abomination please!
//u32 start = PIT::seconds_since_boot();
//while(start < PIT::seconds_since_boot() + 1)
// ;
disable_irq();
IO::out8(0xA, FLOPPY_DMA_CHANNEL | 0x4); // Channel 2 SEL, MASK_ON = 1
IO::out8(0x0B, 0x5A); // Begin DMA, Single Transfer, Increment, Auto, RAM -> FDC, Channel 2
IO::out8(0xA, 0x2); // Unmask channel 2. The transfer will now begin
u16 cylinder = lba2cylinder(lba);
u16 head = lba2head(lba);
u16 sector = lba2sector(lba);
#ifdef FLOPPY_DEBUG
kprintf("fdc: addr = 0x%x c = %d h = %d s = %d\n", lba * BYTES_PER_SECTOR, cylinder, head, sector);
#endif
for (int i = 0; i < 3; i++) {
// Now actually send the command to the drive. This is a big one!
send_byte(FLOPPY_MFM | FLOPPY_MT | static_cast<u8>(FloppyCommand::WriteData));
send_byte(head << 2 | is_slave());
send_byte(cylinder);
send_byte(head);
send_byte(sector);
send_byte(SECTORS_PER_CYLINDER >> 8); // Yikes!
send_byte((sector + 1) >= SECTORS_PER_CYLINDER ? SECTORS_PER_CYLINDER : sector + 1);
send_byte(0x1b); // GPL3 value. The Datasheet doesn't really specify the values for this properly...
send_byte(0xff);
enable_irq();
wait_for_irq(); // TODO: See if there was a lockup here via some "timeout counter"
m_interrupted = false;
// Flush FIFO
u8 cmd_st0 = read_byte();
if ((cmd_st0 & 0xc0) != 0) {
kprintf("fdc: write failed! Error code 0x%x\n", cmd_st0 >> 6);
return false;
}
u8 cmd_st1 = read_byte();
if (cmd_st1 != 0) {
kprintf("fdc: write failed with error code (st1) 0x%x\n", cmd_st1);
return false;
}
read_byte();
u8 cyl = read_byte();
read_byte();
read_byte();
read_byte();
if (cyl != cylinder) {
#ifdef FLOPPY_DEBUG
kprintf("fdc: cyl != cylinder (cyl = %d cylinder = %d)! Retrying...\n", cyl, cylinder);
#endif
continue;
}
// Let the controller know we handled the interrupt
send_byte(FloppyCommand::SenseInterrupt);
u8 st0 = read_byte();
u8 pcn = read_byte();
static_cast<void>(st0);
static_cast<void>(pcn);
memcpy(m_dma_buffer_page->paddr().as_ptr(), inbuf, 512 * count);
return true;
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: out of read attempts (check your hardware maybe!?)\n");
#endif
return false;
}
bool FloppyDiskDevice::wait_for_irq()
{
#ifdef FLOPPY_DEBUG
kprintf("fdc: Waiting for interrupt...\n");
#endif
while (!m_interrupted) {
Scheduler::yield();
}
memory_barrier();
return true;
}
void FloppyDiskDevice::handle_irq()
{
// The only thing we need to do is acknowledge the IRQ happened
m_interrupted = true;
#ifdef FLOPPY_DEBUG
kprintf("fdc: Received IRQ!\n");
#endif
}
void FloppyDiskDevice::send_byte(u8 value) const
{
for (int i = 0; i < 1024; i++) {
if (read_msr() & FLOPPY_MSR_RQM) {
IO::out8(m_io_base_addr + FLOPPY_FIFO, value);
return;
}
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: FIFO write timed out!\n");
#endif
}
void FloppyDiskDevice::send_byte(FloppyCommand value) const
{
for (int i = 0; i < 1024; i++) {
if (read_msr() & FLOPPY_MSR_RQM) {
IO::out8(m_io_base_addr + FLOPPY_FIFO, static_cast<u8>(value));
return;
}
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: FIFO write timed out!\n");
#endif
}
u8 FloppyDiskDevice::read_byte() const
{
for (int i = 0; i < 1024; i++) {
if (read_msr() & (FLOPPY_MSR_RQM | FLOPPY_MSR_DIO)) {
return IO::in8(m_io_base_addr + FLOPPY_FIFO);
}
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: FIFO read timed out!\n");
#endif
return 0xff;
}
void FloppyDiskDevice::write_dor(u8 value) const
{
IO::out8(m_io_base_addr + FLOPPY_DOR, value);
}
void FloppyDiskDevice::write_ccr(u8 value) const
{
IO::out8(m_io_base_addr + FLOPPY_CCR, value);
}
u8 FloppyDiskDevice::read_msr() const
{
return IO::in8(m_io_base_addr + FLOPPY_MSR);
}
void FloppyDiskDevice::motor_enable(bool slave) const
{
u8 val = slave ? 0x2D : 0x1C;
write_dor(val);
}
bool FloppyDiskDevice::is_busy() const
{
return read_msr() & FLOPPY_MSR;
}
bool FloppyDiskDevice::recalibrate()
{
#ifdef FLOPPY_DEBUG
kprintf("fdc: recalibrating drive...\n");
#endif
u8 slave = is_slave();
motor_enable(slave);
for (int i = 0; i < 16; i++) {
send_byte(FloppyCommand::Recalibrate);
send_byte(slave);
wait_for_irq();
m_interrupted = false;
send_byte(FloppyCommand::SenseInterrupt);
u8 st0 = read_byte();
u8 pcn = read_byte();
static_cast<void>(st0);
if (pcn == 0)
return true;
}
#ifdef FLOPPY_DEBUG
kprintf("fdc: failed to calibrate drive (check your hardware!)\n");
#endif
return false;
}
bool FloppyDiskDevice::seek(u16 lba)
{
u8 head = lba2head(lba) & 0x01;
u8 cylinder = lba2cylinder(lba) & 0xff;
u8 slave = is_slave();
// First, we need to enable the correct drive motor
motor_enable(slave);
#ifdef FLOPPY_DEBUG
kprintf("fdc: seeking to cylinder %d on side %d on drive %d\n", cylinder, head, slave);
#endif
// Try at most 5 times to seek to the desired cylinder
for (int attempt = 0; attempt < 5; attempt++) {
send_byte(FloppyCommand::Seek);
send_byte((head << 2) | slave);
send_byte(cylinder);
wait_for_irq();
m_interrupted = false;
send_byte(FloppyCommand::SenseInterrupt);
u8 st0 = read_byte();
u8 pcn = read_byte();
if ((st0 >> 5) != 1 || pcn != cylinder || (st0 & 0x01)) {
#ifdef FLOPPY_DEBUG
kprintf("fdc: failed to seek to cylinder %d on attempt %d!\n", cylinder, attempt);
#endif
continue;
}
return true;
}
kprintf("fdc: failed to seek after 3 attempts! Aborting...\n");
return false;
}
// This is following Intel's datasheet for the 82077, page 41
void FloppyDiskDevice::initialize()
{
#ifdef FLOPPY_DEBUG
kprintf("fdc: m_io_base = 0x%x IRQn = %d\n", m_io_base_addr, IRQ_FLOPPY_DRIVE);
#endif
enable_irq();
// Get the version of the Floppy Disk Controller
send_byte(FloppyCommand::Version);
m_controller_version = read_byte();
kprintf("fdc: Version = 0x%x\n", m_controller_version);
// Reset
write_dor(0);
write_dor(FLOPPY_DOR_RESET | FLOPPY_DOR_DMAGATE);
write_ccr(0);
wait_for_irq();
m_interrupted = false;
// "If (and only if) drive polling mode is turned on, send 4 Sense Interrupt commands (required). "
// Sorry OSDev, but the Intel Manual states otherwise. This ALWAYS needs to be performed.
for (int i = 0; i < 4; i++) {
send_byte(FloppyCommand::SenseInterrupt);
u8 sr0 = read_byte();
u8 trk = read_byte();
kprintf("sr0 = 0x%x, cyl = 0x%x\n", sr0, trk);
}
// This is hardcoded for a 3.5" floppy disk drive
send_byte(FloppyCommand::Specify);
send_byte(0x08); // (SRT << 4) | HUT
send_byte(0x0A); // (HLT << 1) | NDMA
// Allocate a buffer page for us to read into. This only needs to be one sector in size.
m_dma_buffer_page = MM.allocate_supervisor_physical_page();
#ifdef FLOPPY_DEBUG
kprintf("fdc: allocated supervisor page at paddr 0x%x\n", m_dma_buffer_page->paddr());
#endif
// Now, let's initialise channel 2 of the DMA controller!
// This only needs to be done here, then we can just change the direction of
// the transfer
IO::out8(0xA, FLOPPY_DMA_CHANNEL | 0x4); // Channel 2 SEL, MASK_ON = 1
IO::out8(0xC, 0xFF); // Reset Master Flip Flop
// Set the buffer page address (the lower 16-bits)
IO::out8(0x4, m_dma_buffer_page->paddr().get() & 0xff);
IO::out8(0x4, (m_dma_buffer_page->paddr().get() >> 8) & 0xff);
IO::out8(0xC, 0xFF); // Reset Master Flip Flop again
IO::out8(0x05, (SECTORS_PER_CYLINDER * BYTES_PER_SECTOR) & 0xff);
IO::out8(0x05, (SECTORS_PER_CYLINDER * BYTES_PER_SECTOR) >> 8);
IO::out8(0x81, (m_dma_buffer_page->paddr().get() >> 16) & 0xff); // Supervisor page could be a 24-bit address, so set the External Page R/W register
IO::out8(0xA, 0x2); // Unmask Channel 2
#ifdef FLOPPY_DEBUG
kprintf("fdc: fd%d initialised succesfully!\n", is_slave() ? 1 : 0);
#endif
}
}