ladybird/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
2020-10-30 23:42:03 +01:00

359 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibCrypto/NumberTheory/ModularFunctions.h>
namespace Crypto {
namespace NumberTheory {
UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
{
if (b == 1)
return { 1 };
UnsignedBigInteger one { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_plus;
UnsignedBigInteger temp_minus;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger d;
auto a = a_;
auto u = a;
if (a.words()[0] % 2 == 0) {
// u += b
UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
u.set_to(temp_plus);
}
auto v = b;
UnsignedBigInteger x { 0 };
// d = b - 1
UnsignedBigInteger::subtract_without_allocation(b, one, d);
while (!(v == 1)) {
while (v < u) {
// u -= v
UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
u.set_to(temp_minus);
// d += x
UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
d.set_to(temp_plus);
while (u.words()[0] % 2 == 0) {
if (d.words()[0] % 2 == 1) {
// d += b
UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
d.set_to(temp_plus);
}
// u /= 2
UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
u.set_to(temp_quotient);
// d /= 2
UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
d.set_to(temp_quotient);
}
}
// v -= u
UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
v.set_to(temp_minus);
// x += d
UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
x.set_to(temp_plus);
while (v.words()[0] % 2 == 0) {
if (x.words()[0] % 2 == 1) {
// x += b
UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
x.set_to(temp_plus);
}
// v /= 2
UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
v.set_to(temp_quotient);
// x /= 2
UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
x.set_to(temp_quotient);
}
}
// x % b
UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
return temp_remainder;
}
UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
{
if (m == 1)
return 0;
UnsignedBigInteger ep { e };
UnsignedBigInteger base { b };
UnsignedBigInteger exp { 1 };
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_multiply;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
while (!(ep < 1)) {
if (ep.words()[0] % 2 == 1) {
// exp = (exp * base) % m;
UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
exp.set_to(temp_remainder);
}
// ep = ep / 2;
UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
ep.set_to(temp_quotient);
// base = (base * base) % m;
UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
base.set_to(temp_remainder);
}
return exp;
}
static void GCD_without_allocation(
const UnsignedBigInteger& a,
const UnsignedBigInteger& b,
UnsignedBigInteger& temp_a,
UnsignedBigInteger& temp_b,
UnsignedBigInteger& temp_1,
UnsignedBigInteger& temp_2,
UnsignedBigInteger& temp_3,
UnsignedBigInteger& temp_4,
UnsignedBigInteger& temp_quotient,
UnsignedBigInteger& temp_remainder,
UnsignedBigInteger& output)
{
temp_a.set_to(a);
temp_b.set_to(b);
for (;;) {
if (temp_a == 0) {
output.set_to(temp_b);
return;
}
// temp_b %= temp_a
UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
temp_b.set_to(temp_remainder);
if (temp_b == 0) {
output.set_to(temp_a);
return;
}
// temp_a %= temp_b
UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
temp_a.set_to(temp_remainder);
}
}
UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a;
UnsignedBigInteger temp_b;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger output;
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
return output;
}
UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
UnsignedBigInteger temp_a;
UnsignedBigInteger temp_b;
UnsignedBigInteger temp_1;
UnsignedBigInteger temp_2;
UnsignedBigInteger temp_3;
UnsignedBigInteger temp_4;
UnsignedBigInteger temp_quotient;
UnsignedBigInteger temp_remainder;
UnsignedBigInteger gcd_output;
UnsignedBigInteger output { 0 };
GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
if (gcd_output == 0) {
#ifdef NT_DEBUG
dbg() << "GCD is zero";
#endif
return output;
}
// output = (a / gcd_output) * b
UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);
#ifdef NT_DEBUG
dbg() << "quot: " << temp_quotient << " rem: " << temp_remainder << " out: " << output;
#endif
return output;
}
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
{
// Written using Wikipedia:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
ASSERT(!(n < 4));
auto predecessor = n.minus({ 1 });
auto d = predecessor;
size_t r = 0;
{
auto div_result = d.divided_by(2);
while (div_result.remainder == 0) {
d = div_result.quotient;
div_result = d.divided_by(2);
++r;
}
}
if (r == 0) {
// n - 1 is odd, so n was even. But there is only one even prime:
return n == 2;
}
for (auto a : tests) {
// Technically: ASSERT(2 <= a && a <= n - 2)
ASSERT(a < n);
auto x = ModularPower(a, d, n);
if (x == 1 || x == predecessor)
continue;
bool skip_this_witness = false;
// r 1 iterations.
for (size_t i = 0; i < r - 1; ++i) {
x = ModularPower(x, 2, n);
if (x == predecessor) {
skip_this_witness = true;
break;
}
}
if (skip_this_witness)
continue;
return false; // "composite"
}
return true; // "probably prime"
}
UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
{
ASSERT(min < max_excluded);
auto range = max_excluded.minus(min);
UnsignedBigInteger base;
auto size = range.trimmed_length() * sizeof(u32) + 2;
// "+2" is intentional (see below).
// Also, if we're about to crash anyway, at least produce a nice error:
ASSERT(size < 8 * MiB);
u8 buf[size];
AK::fill_with_random(buf, size);
UnsignedBigInteger random { buf, size };
// At this point, `random` is a large number, in the range [0, 256^size).
// To get down to the actual range, we could just compute random % range.
// This introduces "modulo bias". However, since we added 2 to `size`,
// we know that the generated range is at least 65536 times as large as the
// required range! This means that the modulo bias is only 0.0015%, if all
// inputs are chosen adversarially. Let's hope this is good enough.
auto divmod = random.divided_by(range);
// The proper way to fix this is to restart if `divmod.quotient` is maximal.
return divmod.remainder.plus(min);
}
bool is_probably_prime(const UnsignedBigInteger& p)
{
// Is it a small number?
if (p < 49) {
u32 p_value = p.words()[0];
// Is it a very small prime?
if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
return true;
// Is it the multiple of a very small prime?
if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
return false;
// Then it must be a prime, but not a very small prime, like 37.
return true;
}
Vector<UnsignedBigInteger, 256> tests;
// Make some good initial guesses that are guaranteed to find all primes < 2^64.
tests.append(UnsignedBigInteger(2));
tests.append(UnsignedBigInteger(3));
tests.append(UnsignedBigInteger(5));
tests.append(UnsignedBigInteger(7));
tests.append(UnsignedBigInteger(11));
tests.append(UnsignedBigInteger(13));
UnsignedBigInteger seventeen { 17 };
for (size_t i = tests.size(); i < 256; ++i) {
tests.append(random_number(seventeen, p.minus(2)));
}
// Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
// With 200 random numbers, this would mean an error of about 2^-400.
// So we don't need to worry too much about the quality of the random numbers.
return MR_primality_test(p, tests);
}
UnsignedBigInteger random_big_prime(size_t bits)
{
ASSERT(bits >= 33);
UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
for (;;) {
auto p = random_number(min, max);
if ((p.words()[0] & 1) == 0) {
// An even number is definitely not a large prime.
continue;
}
if (is_probably_prime(p))
return p;
}
}
}
}