mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 01:32:14 -05:00
18e0ff6537
Assuming all calculations produce `<length-percentage>` is a very bad assumption, and was causing crashes on https://ai.cloudflare.com/
662 lines
31 KiB
C++
662 lines
31 KiB
C++
/*
|
|
* Copyright (c) 2018-2023, Andreas Kling <andreas@ladybird.org>
|
|
* Copyright (c) 2021, the SerenityOS developers.
|
|
* Copyright (c) 2021-2024, Sam Atkins <sam@ladybird.org>
|
|
* Copyright (c) 2024, Matthew Olsson <mattco@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "Interpolation.h"
|
|
#include <LibWeb/CSS/PropertyID.h>
|
|
#include <LibWeb/CSS/StyleValues/AngleStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/CSSColorValue.h>
|
|
#include <LibWeb/CSS/StyleValues/CSSKeywordValue.h>
|
|
#include <LibWeb/CSS/StyleValues/CalculatedStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/FrequencyStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/IntegerStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/LengthStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/NumberStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/PercentageStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/RatioStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/RectStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/StyleValueList.h>
|
|
#include <LibWeb/CSS/StyleValues/TimeStyleValue.h>
|
|
#include <LibWeb/CSS/StyleValues/TransformationStyleValue.h>
|
|
#include <LibWeb/CSS/Transformation.h>
|
|
#include <LibWeb/DOM/Element.h>
|
|
#include <LibWeb/Layout/Node.h>
|
|
#include <LibWeb/Painting/PaintableBox.h>
|
|
|
|
namespace Web::CSS {
|
|
|
|
template<typename T>
|
|
static T interpolate_raw(T from, T to, float delta)
|
|
{
|
|
if constexpr (AK::Detail::IsSame<T, double>) {
|
|
return from + (to - from) * static_cast<double>(delta);
|
|
} else {
|
|
return static_cast<AK::Detail::RemoveCVReference<T>>(from + (to - from) * delta);
|
|
}
|
|
}
|
|
|
|
static NonnullRefPtr<CSSStyleValue const> with_keyword_values_resolved(DOM::Element& element, PropertyID property_id, CSSStyleValue const& value)
|
|
{
|
|
if (!value.is_keyword())
|
|
return value;
|
|
switch (value.as_keyword().keyword()) {
|
|
case CSS::Keyword::Initial:
|
|
case CSS::Keyword::Unset:
|
|
return property_initial_value(property_id);
|
|
case CSS::Keyword::Inherit:
|
|
return CSS::StyleComputer::get_inherit_value(property_id, &element);
|
|
default:
|
|
break;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
ValueComparingRefPtr<CSSStyleValue const> interpolate_property(DOM::Element& element, PropertyID property_id, CSSStyleValue const& a_from, CSSStyleValue const& a_to, float delta)
|
|
{
|
|
auto from = with_keyword_values_resolved(element, property_id, a_from);
|
|
auto to = with_keyword_values_resolved(element, property_id, a_to);
|
|
|
|
CalculationContext calculation_context {
|
|
.percentages_resolve_as = property_resolves_percentages_relative_to(property_id),
|
|
};
|
|
|
|
auto animation_type = animation_type_from_longhand_property(property_id);
|
|
switch (animation_type) {
|
|
case AnimationType::ByComputedValue:
|
|
return interpolate_value(element, calculation_context, from, to, delta);
|
|
case AnimationType::None:
|
|
return to;
|
|
case AnimationType::Custom: {
|
|
if (property_id == PropertyID::Transform) {
|
|
if (auto interpolated_transform = interpolate_transform(element, from, to, delta))
|
|
return *interpolated_transform;
|
|
|
|
// https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
|
|
// In some cases, an animation might cause a transformation matrix to be singular or non-invertible.
|
|
// For example, an animation in which scale moves from 1 to -1. At the time when the matrix is in
|
|
// such a state, the transformed element is not rendered.
|
|
return {};
|
|
}
|
|
if (property_id == PropertyID::BoxShadow)
|
|
return interpolate_box_shadow(element, calculation_context, from, to, delta);
|
|
|
|
// FIXME: Handle all custom animatable properties
|
|
[[fallthrough]];
|
|
}
|
|
// FIXME: Handle repeatable-list animatable properties
|
|
case AnimationType::RepeatableList:
|
|
case AnimationType::Discrete:
|
|
default:
|
|
return delta >= 0.5f ? to : from;
|
|
}
|
|
}
|
|
|
|
// https://drafts.csswg.org/css-transitions/#transitionable
|
|
bool property_values_are_transitionable(PropertyID property_id, CSSStyleValue const& old_value, CSSStyleValue const& new_value)
|
|
{
|
|
// When comparing the before-change style and after-change style for a given property,
|
|
// the property values are transitionable if they have an animation type that is neither not animatable nor discrete.
|
|
|
|
auto animation_type = animation_type_from_longhand_property(property_id);
|
|
if (animation_type == AnimationType::None || animation_type == AnimationType::Discrete)
|
|
return false;
|
|
|
|
// FIXME: Even when a property is transitionable, the two values may not be. The spec uses the example of inset/non-inset shadows.
|
|
(void)old_value;
|
|
(void)new_value;
|
|
return true;
|
|
}
|
|
|
|
// A null return value means the interpolated matrix was not invertible or otherwise invalid
|
|
RefPtr<CSSStyleValue const> interpolate_transform(DOM::Element& element, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
|
|
{
|
|
// Note that the spec uses column-major notation, so all the matrix indexing is reversed.
|
|
|
|
static constexpr auto make_transformation = [](TransformationStyleValue const& transformation) -> Optional<Transformation> {
|
|
Vector<TransformValue> values;
|
|
|
|
for (auto const& value : transformation.values()) {
|
|
switch (value->type()) {
|
|
case CSSStyleValue::Type::Angle:
|
|
values.append(AngleOrCalculated { value->as_angle().angle() });
|
|
break;
|
|
case CSSStyleValue::Type::Calculated: {
|
|
auto& calculated = value->as_calculated();
|
|
if (calculated.resolves_to_angle()) {
|
|
values.append(AngleOrCalculated { calculated });
|
|
} else if (calculated.resolves_to_length_percentage()) {
|
|
values.append(LengthPercentage { calculated });
|
|
} else if (calculated.resolves_to_number()) {
|
|
values.append(NumberPercentage { calculated });
|
|
} else {
|
|
dbgln("Calculation `{}` inside {} transform-function is not a recognized type", calculated.to_string(CSSStyleValue::SerializationMode::Normal), to_string(transformation.transform_function()));
|
|
return {};
|
|
}
|
|
break;
|
|
}
|
|
case CSSStyleValue::Type::Length:
|
|
values.append(LengthPercentage { value->as_length().length() });
|
|
break;
|
|
case CSSStyleValue::Type::Percentage:
|
|
values.append(LengthPercentage { value->as_percentage().percentage() });
|
|
break;
|
|
case CSSStyleValue::Type::Number:
|
|
values.append(NumberPercentage { Number(Number::Type::Number, value->as_number().number()) });
|
|
break;
|
|
default:
|
|
return {};
|
|
}
|
|
}
|
|
|
|
return Transformation { transformation.transform_function(), move(values) };
|
|
};
|
|
|
|
static constexpr auto transformation_style_value_to_matrix = [](DOM::Element& element, TransformationStyleValue const& value) -> Optional<FloatMatrix4x4> {
|
|
auto transformation = make_transformation(value);
|
|
if (!transformation.has_value())
|
|
return {};
|
|
Optional<Painting::PaintableBox const&> paintable_box;
|
|
if (auto layout_node = element.layout_node()) {
|
|
if (auto paintable = layout_node->first_paintable(); paintable && is<Painting::PaintableBox>(paintable))
|
|
paintable_box = *static_cast<Painting::PaintableBox*>(paintable);
|
|
}
|
|
if (auto matrix = transformation->to_matrix(paintable_box); !matrix.is_error())
|
|
return matrix.value();
|
|
return {};
|
|
};
|
|
|
|
static constexpr auto style_value_to_matrix = [](DOM::Element& element, CSSStyleValue const& value) -> FloatMatrix4x4 {
|
|
if (value.is_transformation())
|
|
return transformation_style_value_to_matrix(element, value.as_transformation()).value_or(FloatMatrix4x4::identity());
|
|
|
|
// This encompasses both the allowed value "none" and any invalid values
|
|
if (!value.is_value_list())
|
|
return FloatMatrix4x4::identity();
|
|
|
|
auto matrix = FloatMatrix4x4::identity();
|
|
for (auto const& value_element : value.as_value_list().values()) {
|
|
if (value_element->is_transformation()) {
|
|
if (auto value_matrix = transformation_style_value_to_matrix(element, value_element->as_transformation()); value_matrix.has_value())
|
|
matrix = matrix * value_matrix.value();
|
|
}
|
|
}
|
|
|
|
return matrix;
|
|
};
|
|
|
|
struct DecomposedValues {
|
|
FloatVector3 translation;
|
|
FloatVector3 scale;
|
|
FloatVector3 skew;
|
|
FloatVector4 rotation;
|
|
FloatVector4 perspective;
|
|
};
|
|
// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
|
|
static constexpr auto decompose = [](FloatMatrix4x4 matrix) -> Optional<DecomposedValues> {
|
|
// https://drafts.csswg.org/css-transforms-1/#supporting-functions
|
|
static constexpr auto combine = [](auto a, auto b, float ascl, float bscl) {
|
|
return FloatVector3 {
|
|
ascl * a[0] + bscl * b[0],
|
|
ascl * a[1] + bscl * b[1],
|
|
ascl * a[2] + bscl * b[2],
|
|
};
|
|
};
|
|
|
|
// Normalize the matrix.
|
|
if (matrix(3, 3) == 0.f)
|
|
return {};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
matrix(i, j) /= matrix(3, 3);
|
|
|
|
// perspectiveMatrix is used to solve for perspective, but it also provides
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
auto perspective_matrix = matrix;
|
|
for (int i = 0; i < 3; i++)
|
|
perspective_matrix(3, i) = 0.f;
|
|
perspective_matrix(3, 3) = 1.f;
|
|
|
|
if (!perspective_matrix.is_invertible())
|
|
return {};
|
|
|
|
DecomposedValues values;
|
|
|
|
// First, isolate perspective.
|
|
if (matrix(3, 0) != 0.f || matrix(3, 1) != 0.f || matrix(3, 2) != 0.f) {
|
|
// rightHandSide is the right hand side of the equation.
|
|
// Note: It is the bottom side in a row-major matrix
|
|
FloatVector4 bottom_side = {
|
|
matrix(3, 0),
|
|
matrix(3, 1),
|
|
matrix(3, 2),
|
|
matrix(3, 3),
|
|
};
|
|
|
|
// Solve the equation by inverting perspectiveMatrix and multiplying
|
|
// rightHandSide by the inverse.
|
|
auto inverse_perspective_matrix = perspective_matrix.inverse();
|
|
auto transposed_inverse_perspective_matrix = inverse_perspective_matrix.transpose();
|
|
values.perspective = transposed_inverse_perspective_matrix * bottom_side;
|
|
} else {
|
|
// No perspective.
|
|
values.perspective = { 0.0, 0.0, 0.0, 1.0 };
|
|
}
|
|
|
|
// Next take care of translation
|
|
for (int i = 0; i < 3; i++)
|
|
values.translation[i] = matrix(i, 3);
|
|
|
|
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
|
|
FloatVector3 row[3];
|
|
for (int i = 0; i < 3; i++)
|
|
row[i] = { matrix(0, i), matrix(1, i), matrix(2, i) };
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
values.scale[0] = row[0].length();
|
|
row[0].normalize();
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
values.skew[0] = row[0].dot(row[1]);
|
|
row[1] = combine(row[1], row[0], 1.f, -values.skew[0]);
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
values.scale[1] = row[1].length();
|
|
row[1].normalize();
|
|
values.skew[0] /= values.scale[1];
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row
|
|
values.skew[1] = row[0].dot(row[2]);
|
|
row[2] = combine(row[2], row[0], 1.f, -values.skew[1]);
|
|
values.skew[2] = row[1].dot(row[2]);
|
|
row[2] = combine(row[2], row[1], 1.f, -values.skew[2]);
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
values.scale[2] = row[2].length();
|
|
row[2].normalize();
|
|
values.skew[1] /= values.scale[2];
|
|
values.skew[2] /= values.scale[2];
|
|
|
|
// At this point, the matrix (in rows) is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
auto pdum3 = row[1].cross(row[2]);
|
|
if (row[0].dot(pdum3) < 0.f) {
|
|
for (int i = 0; i < 3; i++) {
|
|
values.scale[i] *= -1.f;
|
|
row[i][0] *= -1.f;
|
|
row[i][1] *= -1.f;
|
|
row[i][2] *= -1.f;
|
|
}
|
|
}
|
|
|
|
// Now, get the rotations out
|
|
values.rotation[0] = 0.5f * sqrt(max(1.f + row[0][0] - row[1][1] - row[2][2], 0.f));
|
|
values.rotation[1] = 0.5f * sqrt(max(1.f - row[0][0] + row[1][1] - row[2][2], 0.f));
|
|
values.rotation[2] = 0.5f * sqrt(max(1.f - row[0][0] - row[1][1] + row[2][2], 0.f));
|
|
values.rotation[3] = 0.5f * sqrt(max(1.f + row[0][0] + row[1][1] + row[2][2], 0.f));
|
|
|
|
if (row[2][1] > row[1][2])
|
|
values.rotation[0] = -values.rotation[0];
|
|
if (row[0][2] > row[2][0])
|
|
values.rotation[1] = -values.rotation[1];
|
|
if (row[1][0] > row[0][1])
|
|
values.rotation[2] = -values.rotation[2];
|
|
|
|
// FIXME: This accounts for the fact that the browser coordinate system is left-handed instead of right-handed.
|
|
// The reason for this is that the positive Y-axis direction points down instead of up. To fix this, we
|
|
// invert the Y axis. However, it feels like the spec pseudo-code above should have taken something like
|
|
// this into account, so we're probably doing something else wrong.
|
|
values.rotation[2] *= -1;
|
|
|
|
return values;
|
|
};
|
|
|
|
// https://drafts.csswg.org/css-transforms-2/#recomposing-to-a-3d-matrix
|
|
static constexpr auto recompose = [](DecomposedValues const& values) -> FloatMatrix4x4 {
|
|
auto matrix = FloatMatrix4x4::identity();
|
|
|
|
// apply perspective
|
|
for (int i = 0; i < 4; i++)
|
|
matrix(3, i) = values.perspective[i];
|
|
|
|
// apply translation
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 3; j++)
|
|
matrix(i, 3) += values.translation[j] * matrix(i, j);
|
|
}
|
|
|
|
// apply rotation
|
|
auto x = values.rotation[0];
|
|
auto y = values.rotation[1];
|
|
auto z = values.rotation[2];
|
|
auto w = values.rotation[3];
|
|
|
|
// Construct a composite rotation matrix from the quaternion values
|
|
// rotationMatrix is a identity 4x4 matrix initially
|
|
auto rotation_matrix = FloatMatrix4x4::identity();
|
|
rotation_matrix(0, 0) = 1.f - 2.f * (y * y + z * z);
|
|
rotation_matrix(1, 0) = 2.f * (x * y - z * w);
|
|
rotation_matrix(2, 0) = 2.f * (x * z + y * w);
|
|
rotation_matrix(0, 1) = 2.f * (x * y + z * w);
|
|
rotation_matrix(1, 1) = 1.f - 2.f * (x * x + z * z);
|
|
rotation_matrix(2, 1) = 2.f * (y * z - x * w);
|
|
rotation_matrix(0, 2) = 2.f * (x * z - y * w);
|
|
rotation_matrix(1, 2) = 2.f * (y * z + x * w);
|
|
rotation_matrix(2, 2) = 1.f - 2.f * (x * x + y * y);
|
|
|
|
matrix = matrix * rotation_matrix;
|
|
|
|
// apply skew
|
|
// temp is a identity 4x4 matrix initially
|
|
auto temp = FloatMatrix4x4::identity();
|
|
if (values.skew[2] != 0.f) {
|
|
temp(1, 2) = values.skew[2];
|
|
matrix = matrix * temp;
|
|
}
|
|
|
|
if (values.skew[1] != 0.f) {
|
|
temp(1, 2) = 0.f;
|
|
temp(0, 2) = values.skew[1];
|
|
matrix = matrix * temp;
|
|
}
|
|
|
|
if (values.skew[0] != 0.f) {
|
|
temp(0, 2) = 0.f;
|
|
temp(0, 1) = values.skew[0];
|
|
matrix = matrix * temp;
|
|
}
|
|
|
|
// apply scale
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 4; j++)
|
|
matrix(j, i) *= values.scale[i];
|
|
}
|
|
|
|
return matrix;
|
|
};
|
|
|
|
// https://drafts.csswg.org/css-transforms-2/#interpolation-of-decomposed-3d-matrix-values
|
|
static constexpr auto interpolate = [](DecomposedValues& from, DecomposedValues& to, float delta) -> DecomposedValues {
|
|
auto product = clamp(from.rotation.dot(to.rotation), -1.0f, 1.0f);
|
|
FloatVector4 interpolated_rotation;
|
|
if (fabsf(product) == 1.0f) {
|
|
interpolated_rotation = from.rotation;
|
|
} else {
|
|
auto theta = acos(product);
|
|
auto w = sin(delta * theta) / sqrtf(1.0f - product * product);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
from.rotation[i] *= cos(delta * theta) - product * w;
|
|
to.rotation[i] *= w;
|
|
interpolated_rotation[i] = from.rotation[i] + to.rotation[i];
|
|
}
|
|
}
|
|
|
|
return {
|
|
interpolate_raw(from.translation, to.translation, delta),
|
|
interpolate_raw(from.scale, to.scale, delta),
|
|
interpolate_raw(from.skew, to.skew, delta),
|
|
interpolated_rotation,
|
|
interpolate_raw(from.perspective, to.perspective, delta),
|
|
};
|
|
};
|
|
|
|
auto from_matrix = style_value_to_matrix(element, from);
|
|
auto to_matrix = style_value_to_matrix(element, to);
|
|
auto from_decomposed = decompose(from_matrix);
|
|
auto to_decomposed = decompose(to_matrix);
|
|
if (!from_decomposed.has_value() || !to_decomposed.has_value())
|
|
return {};
|
|
auto interpolated_decomposed = interpolate(from_decomposed.value(), to_decomposed.value(), delta);
|
|
auto interpolated = recompose(interpolated_decomposed);
|
|
|
|
StyleValueVector values;
|
|
values.ensure_capacity(16);
|
|
for (int i = 0; i < 16; i++)
|
|
values.append(NumberStyleValue::create(static_cast<double>(interpolated(i % 4, i / 4))));
|
|
return StyleValueList::create({ TransformationStyleValue::create(TransformFunction::Matrix3d, move(values)) }, StyleValueList::Separator::Comma);
|
|
}
|
|
|
|
Color interpolate_color(Color from, Color to, float delta)
|
|
{
|
|
// https://drafts.csswg.org/css-color/#interpolation-space
|
|
// If the host syntax does not define what color space interpolation should take place in, it defaults to Oklab.
|
|
auto from_oklab = from.to_oklab();
|
|
auto to_oklab = to.to_oklab();
|
|
|
|
auto color = Color::from_oklab(
|
|
interpolate_raw(from_oklab.L, to_oklab.L, delta),
|
|
interpolate_raw(from_oklab.a, to_oklab.a, delta),
|
|
interpolate_raw(from_oklab.b, to_oklab.b, delta));
|
|
color.set_alpha(interpolate_raw(from.alpha(), to.alpha(), delta));
|
|
return color;
|
|
}
|
|
|
|
NonnullRefPtr<CSSStyleValue const> interpolate_box_shadow(DOM::Element& element, CalculationContext const& calculation_context, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
|
|
{
|
|
// https://drafts.csswg.org/css-backgrounds/#box-shadow
|
|
// Animation type: by computed value, treating none as a zero-item list and appending blank shadows
|
|
// (transparent 0 0 0 0) with a corresponding inset keyword as needed to match the longer list if
|
|
// the shorter list is otherwise compatible with the longer one
|
|
|
|
static constexpr auto process_list = [](CSSStyleValue const& value) {
|
|
StyleValueVector shadows;
|
|
if (value.is_value_list()) {
|
|
for (auto const& element : value.as_value_list().values()) {
|
|
if (element->is_shadow())
|
|
shadows.append(element);
|
|
}
|
|
} else if (value.is_shadow()) {
|
|
shadows.append(value);
|
|
} else if (!value.is_keyword() || value.as_keyword().keyword() != Keyword::None) {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
return shadows;
|
|
};
|
|
|
|
static constexpr auto extend_list_if_necessary = [](StyleValueVector& values, StyleValueVector const& other) {
|
|
values.ensure_capacity(other.size());
|
|
for (size_t i = values.size(); i < other.size(); i++) {
|
|
values.unchecked_append(ShadowStyleValue::create(
|
|
CSSColorValue::create_from_color(Color::Transparent),
|
|
LengthStyleValue::create(Length::make_px(0)),
|
|
LengthStyleValue::create(Length::make_px(0)),
|
|
LengthStyleValue::create(Length::make_px(0)),
|
|
LengthStyleValue::create(Length::make_px(0)),
|
|
other[i]->as_shadow().placement()));
|
|
}
|
|
};
|
|
|
|
StyleValueVector from_shadows = process_list(from);
|
|
StyleValueVector to_shadows = process_list(to);
|
|
|
|
extend_list_if_necessary(from_shadows, to_shadows);
|
|
extend_list_if_necessary(to_shadows, from_shadows);
|
|
|
|
VERIFY(from_shadows.size() == to_shadows.size());
|
|
StyleValueVector result_shadows;
|
|
result_shadows.ensure_capacity(from_shadows.size());
|
|
|
|
for (size_t i = 0; i < from_shadows.size(); i++) {
|
|
auto const& from_shadow = from_shadows[i]->as_shadow();
|
|
auto const& to_shadow = to_shadows[i]->as_shadow();
|
|
auto result_shadow = ShadowStyleValue::create(
|
|
CSSColorValue::create_from_color(interpolate_color(from_shadow.color()->to_color({}), to_shadow.color()->to_color({}), delta)),
|
|
interpolate_value(element, calculation_context, from_shadow.offset_x(), to_shadow.offset_x(), delta),
|
|
interpolate_value(element, calculation_context, from_shadow.offset_y(), to_shadow.offset_y(), delta),
|
|
interpolate_value(element, calculation_context, from_shadow.blur_radius(), to_shadow.blur_radius(), delta),
|
|
interpolate_value(element, calculation_context, from_shadow.spread_distance(), to_shadow.spread_distance(), delta),
|
|
delta >= 0.5f ? to_shadow.placement() : from_shadow.placement());
|
|
result_shadows.unchecked_append(result_shadow);
|
|
}
|
|
|
|
return StyleValueList::create(move(result_shadows), StyleValueList::Separator::Comma);
|
|
}
|
|
|
|
NonnullRefPtr<CSSStyleValue const> interpolate_value(DOM::Element& element, CalculationContext const& calculation_context, CSSStyleValue const& from, CSSStyleValue const& to, float delta)
|
|
{
|
|
if (from.type() != to.type()) {
|
|
// Handle mixed percentage and dimension types
|
|
// https://www.w3.org/TR/css-values-4/#mixed-percentages
|
|
|
|
struct NumericBaseTypeAndDefault {
|
|
CSSNumericType::BaseType base_type;
|
|
ValueComparingNonnullRefPtr<CSSStyleValue> default_value;
|
|
};
|
|
static constexpr auto numeric_base_type_and_default = [](CSSStyleValue const& value) -> Optional<NumericBaseTypeAndDefault> {
|
|
switch (value.type()) {
|
|
case CSSStyleValue::Type::Angle: {
|
|
static auto default_angle_value = AngleStyleValue::create(Angle::make_degrees(0));
|
|
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Angle, default_angle_value };
|
|
}
|
|
case CSSStyleValue::Type::Frequency: {
|
|
static auto default_frequency_value = FrequencyStyleValue::create(Frequency::make_hertz(0));
|
|
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Frequency, default_frequency_value };
|
|
}
|
|
case CSSStyleValue::Type::Length: {
|
|
static auto default_length_value = LengthStyleValue::create(Length::make_px(0));
|
|
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Length, default_length_value };
|
|
}
|
|
case CSSStyleValue::Type::Percentage: {
|
|
static auto default_percentage_value = PercentageStyleValue::create(Percentage { 0.0 });
|
|
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Percent, default_percentage_value };
|
|
}
|
|
case CSSStyleValue::Type::Time: {
|
|
static auto default_time_value = TimeStyleValue::create(Time::make_seconds(0));
|
|
return NumericBaseTypeAndDefault { CSSNumericType::BaseType::Time, default_time_value };
|
|
}
|
|
default:
|
|
return {};
|
|
}
|
|
};
|
|
|
|
static auto to_calculation_node = [calculation_context](CSSStyleValue const& value) -> NonnullOwnPtr<CalculationNode> {
|
|
switch (value.type()) {
|
|
case CSSStyleValue::Type::Angle:
|
|
return NumericCalculationNode::create(value.as_angle().angle(), calculation_context);
|
|
case CSSStyleValue::Type::Frequency:
|
|
return NumericCalculationNode::create(value.as_frequency().frequency(), calculation_context);
|
|
case CSSStyleValue::Type::Length:
|
|
return NumericCalculationNode::create(value.as_length().length(), calculation_context);
|
|
case CSSStyleValue::Type::Percentage:
|
|
return NumericCalculationNode::create(value.as_percentage().percentage(), calculation_context);
|
|
case CSSStyleValue::Type::Time:
|
|
return NumericCalculationNode::create(value.as_time().time(), calculation_context);
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
};
|
|
|
|
auto from_base_type_and_default = numeric_base_type_and_default(from);
|
|
auto to_base_type_and_default = numeric_base_type_and_default(to);
|
|
|
|
if (from_base_type_and_default.has_value() && to_base_type_and_default.has_value() && (from_base_type_and_default->base_type == CSSNumericType::BaseType::Percent || to_base_type_and_default->base_type == CSSNumericType::BaseType::Percent)) {
|
|
// This is an interpolation from a numeric unit to a percentage, or vice versa. The trick here is to
|
|
// interpolate two separate values. For example, consider an interpolation from 30px to 80%. It's quite
|
|
// hard to understand how this interpolation works, but if instead we rewrite the values as "30px + 0%" and
|
|
// "0px + 80%", then it is very simple to understand; we just interpolate each component separately.
|
|
|
|
auto interpolated_from = interpolate_value(element, calculation_context, from, from_base_type_and_default->default_value, delta);
|
|
auto interpolated_to = interpolate_value(element, calculation_context, to_base_type_and_default->default_value, to, delta);
|
|
|
|
Vector<NonnullOwnPtr<CalculationNode>> values;
|
|
values.ensure_capacity(2);
|
|
values.unchecked_append(to_calculation_node(interpolated_from));
|
|
values.unchecked_append(to_calculation_node(interpolated_to));
|
|
auto calc_node = SumCalculationNode::create(move(values));
|
|
return CalculatedStyleValue::create(move(calc_node), CSSNumericType { to_base_type_and_default->base_type, 1 }, calculation_context);
|
|
}
|
|
|
|
return delta >= 0.5f ? to : from;
|
|
}
|
|
|
|
switch (from.type()) {
|
|
case CSSStyleValue::Type::Angle:
|
|
return AngleStyleValue::create(Angle::make_degrees(interpolate_raw(from.as_angle().angle().to_degrees(), to.as_angle().angle().to_degrees(), delta)));
|
|
case CSSStyleValue::Type::Color: {
|
|
Optional<Layout::NodeWithStyle const&> layout_node;
|
|
if (auto node = element.layout_node())
|
|
layout_node = *node;
|
|
return CSSColorValue::create_from_color(interpolate_color(from.to_color(layout_node), to.to_color(layout_node), delta));
|
|
}
|
|
case CSSStyleValue::Type::Integer:
|
|
return IntegerStyleValue::create(interpolate_raw(from.as_integer().integer(), to.as_integer().integer(), delta));
|
|
case CSSStyleValue::Type::Length: {
|
|
// FIXME: Absolutize values
|
|
auto const& from_length = from.as_length().length();
|
|
auto const& to_length = to.as_length().length();
|
|
return LengthStyleValue::create(Length(interpolate_raw(from_length.raw_value(), to_length.raw_value(), delta), from_length.type()));
|
|
}
|
|
case CSSStyleValue::Type::Number:
|
|
return NumberStyleValue::create(interpolate_raw(from.as_number().number(), to.as_number().number(), delta));
|
|
case CSSStyleValue::Type::Percentage:
|
|
return PercentageStyleValue::create(Percentage(interpolate_raw(from.as_percentage().percentage().value(), to.as_percentage().percentage().value(), delta)));
|
|
case CSSStyleValue::Type::Position: {
|
|
// https://www.w3.org/TR/css-values-4/#combine-positions
|
|
// FIXME: Interpolation of <position> is defined as the independent interpolation of each component (x, y) normalized as an offset from the top left corner as a <length-percentage>.
|
|
auto const& from_position = from.as_position();
|
|
auto const& to_position = to.as_position();
|
|
return PositionStyleValue::create(
|
|
interpolate_value(element, calculation_context, from_position.edge_x(), to_position.edge_x(), delta)->as_edge(),
|
|
interpolate_value(element, calculation_context, from_position.edge_y(), to_position.edge_y(), delta)->as_edge());
|
|
}
|
|
case CSSStyleValue::Type::Ratio: {
|
|
auto from_ratio = from.as_ratio().ratio();
|
|
auto to_ratio = to.as_ratio().ratio();
|
|
|
|
// The interpolation of a <ratio> is defined by converting each <ratio> to a number by dividing the first value
|
|
// by the second (so a ratio of 3 / 2 would become 1.5), taking the logarithm of that result (so the 1.5 would
|
|
// become approximately 0.176), then interpolating those values. The result during the interpolation is
|
|
// converted back to a <ratio> by inverting the logarithm, then interpreting the result as a <ratio> with the
|
|
// result as the first value and 1 as the second value.
|
|
auto from_number = log(from_ratio.value());
|
|
auto to_number = log(to_ratio.value());
|
|
auto interp_number = interpolate_raw(from_number, to_number, delta);
|
|
return RatioStyleValue::create(Ratio(pow(M_E, interp_number)));
|
|
}
|
|
case CSSStyleValue::Type::Rect: {
|
|
auto from_rect = from.as_rect().rect();
|
|
auto to_rect = to.as_rect().rect();
|
|
|
|
if (from_rect.top_edge.is_auto() != to_rect.top_edge.is_auto() || from_rect.right_edge.is_auto() != to_rect.right_edge.is_auto() || from_rect.bottom_edge.is_auto() != to_rect.bottom_edge.is_auto() || from_rect.left_edge.is_auto() != to_rect.left_edge.is_auto()) {
|
|
return delta >= 0.5f ? to : from;
|
|
}
|
|
|
|
// FIXME: Absolutize values
|
|
return RectStyleValue::create({
|
|
Length(interpolate_raw(from_rect.top_edge.raw_value(), to_rect.top_edge.raw_value(), delta), from_rect.top_edge.type()),
|
|
Length(interpolate_raw(from_rect.right_edge.raw_value(), to_rect.right_edge.raw_value(), delta), from_rect.right_edge.type()),
|
|
Length(interpolate_raw(from_rect.bottom_edge.raw_value(), to_rect.bottom_edge.raw_value(), delta), from_rect.bottom_edge.type()),
|
|
Length(interpolate_raw(from_rect.left_edge.raw_value(), to_rect.left_edge.raw_value(), delta), from_rect.left_edge.type()),
|
|
});
|
|
}
|
|
case CSSStyleValue::Type::Transformation:
|
|
VERIFY_NOT_REACHED();
|
|
case CSSStyleValue::Type::ValueList: {
|
|
auto const& from_list = from.as_value_list();
|
|
auto const& to_list = to.as_value_list();
|
|
if (from_list.size() != to_list.size())
|
|
return delta >= 0.5f ? to : from;
|
|
|
|
// FIXME: If the number of components or the types of corresponding components do not match,
|
|
// or if any component value uses discrete animation and the two corresponding values do not match,
|
|
// then the property values combine as discrete.
|
|
StyleValueVector interpolated_values;
|
|
interpolated_values.ensure_capacity(from_list.size());
|
|
for (size_t i = 0; i < from_list.size(); ++i)
|
|
interpolated_values.append(interpolate_value(element, calculation_context, from_list.values()[i], to_list.values()[i], delta));
|
|
|
|
return StyleValueList::create(move(interpolated_values), from_list.separator());
|
|
}
|
|
default:
|
|
return delta >= 0.5f ? to : from;
|
|
}
|
|
}
|
|
|
|
}
|