ladybird/Userland/Libraries/LibJIT/Assembler.h
Andreas Kling 56b4586d65 LibJIT: Factor out JO instruction from add32()
Also add a jump_if(Condition, Label) helper. This will make it easier
to add more 32-bit binary ops that branch on overflow.
2023-11-03 10:48:02 +01:00

696 lines
21 KiB
C++

/*
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Platform.h>
#include <AK/Vector.h>
#if ARCH(X86_64)
namespace JIT {
struct Assembler {
Assembler(Vector<u8>& output)
: m_output(output)
{
}
Vector<u8>& m_output;
enum class Reg {
RAX = 0,
RCX = 1,
RDX = 2,
RBX = 3,
RSP = 4,
RBP = 5,
RSI = 6,
RDI = 7,
R8 = 8,
R9 = 9,
R10 = 10,
R11 = 11,
R12 = 12,
R13 = 13,
R14 = 14,
R15 = 15,
};
struct Operand {
enum class Type {
Reg,
Imm,
Mem64BaseAndOffset,
};
Type type {};
Reg reg {};
u64 offset_or_immediate { 0 };
static Operand Register(Reg reg)
{
Operand operand;
operand.type = Type::Reg;
operand.reg = reg;
return operand;
}
static Operand Imm(u64 imm)
{
Operand operand;
operand.type = Type::Imm;
operand.offset_or_immediate = imm;
return operand;
}
static Operand Mem64BaseAndOffset(Reg base, u64 offset)
{
Operand operand;
operand.type = Type::Mem64BaseAndOffset;
operand.reg = base;
operand.offset_or_immediate = offset;
return operand;
}
bool is_register_or_memory() const
{
return type == Type::Reg || type == Type::Mem64BaseAndOffset;
}
bool fits_in_u8() const
{
VERIFY(type == Type::Imm);
return offset_or_immediate <= NumericLimits<u8>::max();
}
bool fits_in_u32() const
{
VERIFY(type == Type::Imm);
return offset_or_immediate <= NumericLimits<u32>::max();
}
bool fits_in_i8() const
{
VERIFY(type == Type::Imm);
return (offset_or_immediate <= NumericLimits<i8>::max()) || (((~offset_or_immediate) & NumericLimits<i8>::min()) == 0);
}
bool fits_in_i32() const
{
VERIFY(type == Type::Imm);
return (offset_or_immediate <= NumericLimits<i32>::max()) || (((~offset_or_immediate) & NumericLimits<i32>::min()) == 0);
}
};
enum class Condition {
Overflow = 0x0,
EqualTo = 0x4,
NotEqualTo = 0x5,
UnsignedGreaterThan = 0x7,
UnsignedGreaterThanOrEqualTo = 0x3,
UnsignedLessThan = 0x2,
UnsignedLessThanOrEqualTo = 0x6,
SignedGreaterThan = 0xF,
SignedGreaterThanOrEqualTo = 0xD,
SignedLessThan = 0xC,
SignedLessThanOrEqualTo = 0xE,
};
static constexpr u8 encode_reg(Reg reg)
{
return to_underlying(reg) & 0x7;
}
enum class Patchable {
Yes,
No,
};
union ModRM {
static constexpr u8 Mem = 0b00;
static constexpr u8 MemDisp8 = 0b01;
static constexpr u8 MemDisp32 = 0b10;
static constexpr u8 Reg = 0b11;
struct {
u8 rm : 3;
u8 reg : 3;
u8 mode : 2;
};
u8 raw;
};
void emit_modrm_slash(u8 slash, Operand rm, Patchable patchable = Patchable::No)
{
ModRM raw;
raw.rm = encode_reg(rm.reg);
raw.reg = slash;
emit_modrm(raw, rm, patchable);
}
void emit_modrm_rm(Operand dst, Operand src, Patchable patchable = Patchable::No)
{
VERIFY(dst.type == Operand::Type::Reg);
ModRM raw {};
raw.reg = encode_reg(dst.reg);
raw.rm = encode_reg(src.reg);
emit_modrm(raw, src, patchable);
}
void emit_modrm_mr(Operand dst, Operand src, Patchable patchable = Patchable::No)
{
VERIFY(src.type == Operand::Type::Reg);
ModRM raw {};
raw.reg = encode_reg(src.reg);
raw.rm = encode_reg(dst.reg);
emit_modrm(raw, dst, patchable);
}
void emit_modrm(ModRM raw, Operand rm, Patchable patchable)
{
// FIXME: rm:100 (RSP) is reserved as the SIB marker
VERIFY(rm.type != Operand::Type::Imm);
switch (rm.type) {
case Operand::Type::Reg:
// FIXME: There is mod:00,rm:101(EBP?) -> disp32, that might be something else
raw.mode = ModRM::Reg;
emit8(raw.raw);
break;
case Operand::Type::Mem64BaseAndOffset: {
auto disp = rm.offset_or_immediate;
if (patchable == Patchable::Yes) {
raw.mode = ModRM::MemDisp32;
emit8(raw.raw);
emit32(disp);
} else if (disp == 0) {
raw.mode = ModRM::Mem;
emit8(raw.raw);
} else if (static_cast<i64>(disp) >= -128 && disp <= 127) {
raw.mode = ModRM::MemDisp8;
emit8(raw.raw);
emit8(disp & 0xff);
} else {
raw.mode = ModRM::MemDisp32;
emit8(raw.raw);
emit32(disp);
}
break;
}
case Operand::Type::Imm:
VERIFY_NOT_REACHED();
}
}
union REX {
struct {
u8 B : 1; // ModRM::RM
u8 X : 1; // SIB::Index
u8 R : 1; // ModRM::Reg
u8 W : 1; // Operand size override
u8 _ : 4 { 0b0100 };
};
u8 raw;
};
enum class REX_W : bool {
No = 0,
Yes = 1
};
void emit_rex_for_OI(Operand arg, REX_W W)
{
emit_rex_for_slash(arg, W);
}
void emit_rex_for_slash(Operand arg, REX_W W)
{
VERIFY(arg.is_register_or_memory());
if (W == REX_W::No && to_underlying(arg.reg) < 8)
return;
REX rex {
.B = to_underlying(arg.reg) >= 8,
.X = 0,
.R = 0,
.W = to_underlying(W)
};
emit8(rex.raw);
}
void emit_rex_for_mr(Operand dst, Operand src, REX_W W)
{
VERIFY(dst.is_register_or_memory());
VERIFY(src.type == Operand::Type::Reg);
if (W == REX_W::No && to_underlying(dst.reg) < 8 && to_underlying(src.reg) < 8)
return;
REX rex {
.B = to_underlying(dst.reg) >= 8,
.X = 0,
.R = to_underlying(src.reg) >= 8,
.W = to_underlying(W)
};
emit8(rex.raw);
}
void emit_rex_for_rm(Operand dst, Operand src, REX_W W)
{
VERIFY(src.is_register_or_memory());
VERIFY(dst.type == Operand::Type::Reg);
if (W == REX_W::No && to_underlying(dst.reg) < 8 && to_underlying(src.reg) < 8)
return;
REX rex {
.B = to_underlying(src.reg) >= 8,
.X = 0,
.R = to_underlying(dst.reg) >= 8,
.W = to_underlying(W)
};
emit8(rex.raw);
}
void shift_right(Operand dst, Operand count)
{
VERIFY(dst.type == Operand::Type::Reg);
VERIFY(count.type == Operand::Type::Imm);
VERIFY(count.fits_in_u8());
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0xc1);
emit_modrm_slash(5, dst);
emit8(count.offset_or_immediate);
}
void mov(Operand dst, Operand src, Patchable patchable = Patchable::No)
{
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
if (src.type == Operand::Type::Reg && src.reg == dst.reg)
return;
emit_rex_for_mr(dst, src, REX_W::Yes);
emit8(0x89);
emit_modrm_mr(dst, src, patchable);
return;
}
if (dst.type == Operand::Type::Reg && src.type == Operand::Type::Imm) {
if (patchable == Patchable::No) {
if (src.offset_or_immediate == 0) {
// xor dst, dst
// Note: Operand size does not matter here, as the result is 0-extended to 64 bit,
// so we don't have to set the W flag in the REX prefix,
// or use it at all in case we dont use REX addressed registers (elision is implemented in the helper)
emit_rex_for_mr(dst, dst, REX_W::No);
emit8(0x31);
emit_modrm_mr(dst, dst, patchable);
return;
}
if (src.fits_in_u32()) {
emit_rex_for_OI(dst, REX_W::No);
emit8(0xb8 | encode_reg(dst.reg));
emit32(src.offset_or_immediate);
return;
}
}
emit_rex_for_OI(dst, REX_W::Yes);
emit8(0xb8 | encode_reg(dst.reg));
emit64(src.offset_or_immediate);
return;
}
if (dst.type == Operand::Type::Reg && src.is_register_or_memory()) {
emit_rex_for_rm(dst, src, REX_W::Yes);
emit8(0x8b);
emit_modrm_rm(dst, src, patchable);
return;
}
VERIFY_NOT_REACHED();
}
void emit8(u8 value)
{
m_output.append(value);
}
void emit32(u32 value)
{
m_output.append((value >> 0) & 0xff);
m_output.append((value >> 8) & 0xff);
m_output.append((value >> 16) & 0xff);
m_output.append((value >> 24) & 0xff);
}
void emit64(u64 value)
{
m_output.append((value >> 0) & 0xff);
m_output.append((value >> 8) & 0xff);
m_output.append((value >> 16) & 0xff);
m_output.append((value >> 24) & 0xff);
m_output.append((value >> 32) & 0xff);
m_output.append((value >> 40) & 0xff);
m_output.append((value >> 48) & 0xff);
m_output.append((value >> 56) & 0xff);
}
struct Label {
Optional<size_t> offset_of_label_in_instruction_stream;
Vector<size_t> jump_slot_offsets_in_instruction_stream;
void add_jump(Assembler& assembler, size_t offset)
{
jump_slot_offsets_in_instruction_stream.append(offset);
if (offset_of_label_in_instruction_stream.has_value())
link_jump(assembler, offset);
}
void link(Assembler& assembler)
{
link_to(assembler, assembler.m_output.size());
}
void link_to(Assembler& assembler, size_t link_offset)
{
VERIFY(!offset_of_label_in_instruction_stream.has_value());
offset_of_label_in_instruction_stream = link_offset;
for (auto offset_in_instruction_stream : jump_slot_offsets_in_instruction_stream)
link_jump(assembler, offset_in_instruction_stream);
}
private:
void link_jump(Assembler& assembler, size_t offset_in_instruction_stream)
{
auto offset = offset_of_label_in_instruction_stream.value() - offset_in_instruction_stream;
auto jump_slot = offset_in_instruction_stream - 4;
assembler.m_output[jump_slot + 0] = (offset >> 0) & 0xff;
assembler.m_output[jump_slot + 1] = (offset >> 8) & 0xff;
assembler.m_output[jump_slot + 2] = (offset >> 16) & 0xff;
assembler.m_output[jump_slot + 3] = (offset >> 24) & 0xff;
}
};
[[nodiscard]] Label jump()
{
// jmp target (RIP-relative 32-bit offset)
emit8(0xe9);
emit32(0xdeadbeef);
Assembler::Label label {};
label.add_jump(*this, m_output.size());
return label;
}
void jump(Label& label)
{
// jmp target (RIP-relative 32-bit offset)
emit8(0xe9);
emit32(0xdeadbeef);
label.add_jump(*this, m_output.size());
}
void jump(Operand op)
{
emit_rex_for_slash(op, REX_W::No);
emit8(0xff);
emit_modrm_slash(4, op);
}
void verify_not_reached()
{
// ud2
emit8(0x0f);
emit8(0x0b);
}
void cmp(Operand lhs, Operand rhs)
{
if (lhs.type == Operand::Type::Reg && rhs.type == Operand::Type::Imm && rhs.offset_or_immediate == 0) {
test(lhs, lhs);
} else if (lhs.is_register_or_memory() && rhs.type == Operand::Type::Reg) {
emit_rex_for_mr(lhs, rhs, REX_W::Yes);
emit8(0x39);
emit_modrm_mr(lhs, rhs);
} else if (lhs.is_register_or_memory() && rhs.type == Operand::Type::Imm && rhs.fits_in_i8()) {
emit_rex_for_slash(lhs, REX_W::Yes);
emit8(0x83);
emit_modrm_slash(7, lhs);
emit8(rhs.offset_or_immediate);
} else if (lhs.is_register_or_memory() && rhs.type == Operand::Type::Imm && rhs.fits_in_i32()) {
emit_rex_for_slash(lhs, REX_W::Yes);
emit8(0x81);
emit_modrm_slash(7, lhs);
emit32(rhs.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
void test(Operand lhs, Operand rhs)
{
if (lhs.is_register_or_memory() && rhs.type == Operand::Type::Reg) {
emit_rex_for_mr(lhs, rhs, REX_W::Yes);
emit8(0x85);
emit_modrm_mr(lhs, rhs);
} else if (lhs.type != Operand::Type::Imm && rhs.type == Operand::Type::Imm) {
VERIFY(rhs.fits_in_i32());
emit_rex_for_slash(lhs, REX_W::Yes);
emit8(0xf7);
emit_modrm_slash(0, lhs);
emit32(rhs.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
void jump_if(Condition condition, Label& label)
{
emit8(0x0F);
emit8(0x80 | to_underlying(condition));
emit32(0xdeadbeef);
label.add_jump(*this, m_output.size());
}
void jump_if(Operand lhs, Condition condition, Operand rhs, Label& label)
{
cmp(lhs, rhs);
jump_if(condition, label);
}
void sign_extend_32_to_64_bits(Reg reg)
{
// movsxd (reg as 64-bit), (reg as 32-bit)
emit_rex_for_rm(Operand::Register(reg), Operand::Register(reg), REX_W::Yes);
emit8(0x63);
emit_modrm_rm(Operand::Register(reg), Operand::Register(reg));
}
void bitwise_and(Operand dst, Operand src)
{
// and dst,src
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
emit_rex_for_mr(dst, src, REX_W::Yes);
emit8(0x21);
emit_modrm_mr(dst, src);
} else if (dst.type == Operand::Type::Reg && src.type == Operand::Type::Imm && src.fits_in_i8()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x83);
emit_modrm_slash(4, dst);
emit8(src.offset_or_immediate);
} else if (dst.type == Operand::Type::Reg && src.type == Operand::Type::Imm && src.fits_in_i32()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x81);
emit_modrm_slash(4, dst);
emit32(src.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
void bitwise_or(Operand dst, Operand src)
{
// or dst,src
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
emit_rex_for_mr(dst, src, REX_W::Yes);
emit8(0x09);
emit_modrm_mr(dst, src);
} else if (dst.type == Operand::Type::Reg && src.type == Operand::Type::Imm && src.fits_in_i8()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x83);
emit_modrm_slash(1, dst);
emit8(src.offset_or_immediate);
} else if (dst.type == Operand::Type::Reg && src.type == Operand::Type::Imm && src.fits_in_i32()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x81);
emit_modrm_slash(1, dst);
emit32(src.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
void enter()
{
push(Operand::Register(Reg::RBP));
mov(Operand::Register(Reg::RBP), Operand::Register(Reg::RSP));
push_callee_saved_registers();
}
void exit()
{
pop_callee_saved_registers();
// leave
emit8(0xc9);
// ret
emit8(0xc3);
}
void push_callee_saved_registers()
{
// FIXME: Don't push RBX twice :^)
push(Operand::Register(Reg::RBX));
push(Operand::Register(Reg::RBX));
push(Operand::Register(Reg::R12));
push(Operand::Register(Reg::R13));
push(Operand::Register(Reg::R14));
push(Operand::Register(Reg::R15));
}
void pop_callee_saved_registers()
{
pop(Operand::Register(Reg::R15));
pop(Operand::Register(Reg::R14));
pop(Operand::Register(Reg::R13));
pop(Operand::Register(Reg::R12));
// FIXME: Don't pop RBX twice :^)
pop(Operand::Register(Reg::RBX));
pop(Operand::Register(Reg::RBX));
}
void push(Operand op)
{
if (op.type == Operand::Type::Reg) {
emit_rex_for_OI(op, REX_W::No);
emit8(0x50 | encode_reg(op.reg));
} else if (op.type == Operand::Type::Imm) {
if (op.fits_in_i8()) {
emit8(0x6a);
emit8(op.offset_or_immediate);
} else if (op.fits_in_i32()) {
emit8(0x68);
emit32(op.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
} else {
VERIFY_NOT_REACHED();
}
}
void pop(Operand op)
{
if (op.type == Operand::Type::Reg) {
emit_rex_for_OI(op, REX_W::No);
emit8(0x58 | encode_reg(op.reg));
} else {
VERIFY_NOT_REACHED();
}
}
void add(Operand dst, Operand src)
{
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
emit_rex_for_mr(dst, src, REX_W::Yes);
emit8(0x01);
emit_modrm_mr(dst, src);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i8()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x83);
emit_modrm_slash(0, dst);
emit8(src.offset_or_immediate);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i32()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x81);
emit_modrm_slash(0, dst);
emit32(src.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
void add32(Operand dst, Operand src, Optional<Label&> overflow_label)
{
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
emit_rex_for_mr(dst, src, REX_W::No);
emit8(0x01);
emit_modrm_mr(dst, src);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i8()) {
emit_rex_for_slash(dst, REX_W::No);
emit8(0x83);
emit_modrm_slash(0, dst);
emit8(src.offset_or_immediate);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i32()) {
emit_rex_for_slash(dst, REX_W::No);
emit8(0x81);
emit_modrm_slash(0, dst);
emit32(src.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
if (overflow_label.has_value()) {
jump_if(Condition::Overflow, *overflow_label);
}
}
void sub(Operand dst, Operand src)
{
if (dst.is_register_or_memory() && src.type == Operand::Type::Reg) {
emit_rex_for_mr(dst, src, REX_W::Yes);
emit8(0x29);
emit_modrm_mr(dst, src);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i8()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x83);
emit_modrm_slash(5, dst);
emit8(src.offset_or_immediate);
} else if (dst.is_register_or_memory() && src.type == Operand::Type::Imm && src.fits_in_i32()) {
emit_rex_for_slash(dst, REX_W::Yes);
emit8(0x81);
emit_modrm_slash(5, dst);
emit32(src.offset_or_immediate);
} else {
VERIFY_NOT_REACHED();
}
}
// NOTE: It's up to the caller of this function to preserve registers as needed.
void native_call(void* callee, Vector<Operand> const& stack_arguments = {})
{
// Preserve 16-byte stack alignment for non-even amount of stack-passed arguments
if ((stack_arguments.size() % 2) == 1)
push(Operand::Imm(0));
for (auto const& stack_argument : stack_arguments.in_reverse())
push(stack_argument);
// load callee into RAX
mov(Operand::Register(Reg::RAX), Operand::Imm(bit_cast<u64>(callee)));
// call RAX
emit8(0xff);
emit_modrm_slash(2, Operand::Register(Reg::RAX));
if (!stack_arguments.is_empty())
add(Operand::Register(Reg::RSP), Operand::Imm(align_up_to(stack_arguments.size(), 2) * sizeof(void*)));
}
void trap()
{
// int3
emit8(0xcc);
}
};
}
#endif