ladybird/Userland/Libraries/LibCrypto/PK/RSA.h
Lenny Maiorani f1c452059c Libraries: Use default constructors/destructors in LibCrypto
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cother-other-default-operation-rules

"The compiler is more likely to get the default semantics right and
you cannot implement these functions better than the compiler."
2022-03-10 18:04:26 -08:00

228 lines
6 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Span.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibCrypto/PK/PK.h>
namespace Crypto {
namespace PK {
template<typename Integer = UnsignedBigInteger>
class RSAPublicKey {
public:
RSAPublicKey(Integer n, Integer e)
: m_modulus(move(n))
, m_public_exponent(move(e))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPublicKey()
: m_modulus(0)
, m_public_exponent(0)
{
}
const Integer& modulus() const { return m_modulus; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(Integer n, Integer e)
{
m_modulus = move(n);
m_public_exponent = move(e);
m_length = (m_modulus.trimmed_length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename Integer = UnsignedBigInteger>
class RSAPrivateKey {
public:
RSAPrivateKey(Integer n, Integer d, Integer e)
: m_modulus(move(n))
, m_private_exponent(move(d))
, m_public_exponent(move(e))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPrivateKey() = default;
const Integer& modulus() const { return m_modulus; }
const Integer& private_exponent() const { return m_private_exponent; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(Integer n, Integer d, Integer e)
{
m_modulus = move(n);
m_private_exponent = move(d);
m_public_exponent = move(e);
m_length = m_modulus.trimmed_length() * sizeof(u32);
}
private:
Integer m_modulus;
Integer m_private_exponent;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename PubKey, typename PrivKey>
struct RSAKeyPair {
PubKey public_key;
PrivKey private_key;
};
using IntegerType = UnsignedBigInteger;
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
template<typename T>
friend class RSA_EMSA_PSS;
public:
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
static KeyPairType parse_rsa_key(ReadonlyBytes der);
static KeyPairType generate_key_pair(size_t bits = 256)
{
IntegerType e { 65537 }; // :P
IntegerType p, q;
IntegerType lambda;
do {
p = NumberTheory::random_big_prime(bits / 2);
q = NumberTheory::random_big_prime(bits / 2);
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
dbgln("checking combination p={}, q={}, lambda={}", p, q, lambda.length());
} while (!(NumberTheory::GCD(e, lambda) == 1));
auto n = p.multiplied_by(q);
auto d = NumberTheory::ModularInverse(e, lambda);
dbgln("Your keys are Pub(n={}, e={}) and Priv(n={}, d={})", n, e, n, d);
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e }
};
keys.public_key.set_length(bits / 2 / 8);
keys.private_key.set_length(bits / 2 / 8);
return keys;
}
RSA(IntegerType n, IntegerType d, IntegerType e)
{
m_public_key.set(n, e);
m_private_key.set(n, d, e);
}
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
{
}
RSA(const ByteBuffer& publicKeyPEM, const ByteBuffer& privateKeyPEM)
{
import_public_key(publicKeyPEM);
import_private_key(privateKeyPEM);
}
RSA(StringView privKeyPEM)
{
import_private_key(privKeyPEM.bytes());
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
}
// create our own keys
RSA()
{
auto pair = generate_key_pair();
m_public_key = pair.public_key;
m_private_key = pair.private_key;
}
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes in, Bytes& out) override;
virtual void verify(ReadonlyBytes in, Bytes& out) override;
#ifndef KERNEL
virtual String class_name() const override
{
return "RSA";
}
#endif
virtual size_t output_size() const override
{
return m_public_key.length();
}
void import_public_key(ReadonlyBytes, bool pem = true);
void import_private_key(ReadonlyBytes, bool pem = true);
const PrivateKeyType& private_key() const { return m_private_key; }
const PublicKeyType& public_key() const { return m_public_key; }
};
template<typename HashFunction>
class RSA_EMSA_PSS {
public:
RSA_EMSA_PSS(RSA& rsa)
: m_rsa(rsa)
{
}
void sign(ReadonlyBytes in, Bytes& out);
VerificationConsistency verify(ReadonlyBytes in);
private:
EMSA_PSS<HashFunction, HashFunction::DigestSize> m_emsa_pss;
RSA m_rsa;
};
class RSA_PKCS1_EME : public RSA {
public:
// forward all constructions to RSA
template<typename... Args>
RSA_PKCS1_EME(Args... args)
: RSA(args...)
{
}
~RSA_PKCS1_EME() = default;
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes, Bytes&) override;
virtual void verify(ReadonlyBytes, Bytes&) override;
#ifndef KERNEL
virtual String class_name() const override
{
return "RSA_PKCS1-EME";
}
#endif
virtual size_t output_size() const override
{
return m_public_key.length();
}
};
}
}