ladybird/Libraries/LibWeb/TreeNode.h
Andreas Kling eaf7e68408 LibWeb: Move tree iteration helpers from Node/LayoutNode to TreeNode
Since these are generally useful in our trees, let's just keep them
in TreeNode instead of duplicating the helpers in subclasses.
2020-08-10 15:21:23 +02:00

427 lines
13 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/NonnullRefPtr.h>
#include <AK/TypeCasts.h>
#include <AK/Weakable.h>
namespace Web {
template<typename T>
class TreeNode : public Weakable<T> {
public:
void ref()
{
ASSERT(m_ref_count);
++m_ref_count;
}
void unref()
{
ASSERT(m_ref_count);
if (!--m_ref_count) {
if (m_next_sibling)
m_next_sibling->m_previous_sibling = m_previous_sibling;
if (m_previous_sibling)
m_previous_sibling->m_next_sibling = m_next_sibling;
T* next_child;
for (auto* child = m_first_child; child; child = next_child) {
next_child = child->m_next_sibling;
child->m_parent = nullptr;
child->unref();
}
delete static_cast<T*>(this);
}
}
int ref_count() const { return m_ref_count; }
T* parent() { return m_parent; }
const T* parent() const { return m_parent; }
bool has_children() const { return m_first_child; }
T* next_sibling() { return m_next_sibling; }
T* previous_sibling() { return m_previous_sibling; }
T* first_child() { return m_first_child; }
T* last_child() { return m_last_child; }
const T* next_sibling() const { return m_next_sibling; }
const T* previous_sibling() const { return m_previous_sibling; }
const T* first_child() const { return m_first_child; }
const T* last_child() const { return m_last_child; }
int child_count() const
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling())
++count;
return count;
}
T* child_at_index(int index)
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (count == index)
return child;
++count;
}
return nullptr;
}
const T* child_at_index(int index) const
{
return const_cast<TreeNode*>(this)->child_at_index(index);
}
bool is_ancestor_of(const TreeNode&) const;
void prepend_child(NonnullRefPtr<T> node);
void append_child(NonnullRefPtr<T> node, bool notify = true);
void insert_before(NonnullRefPtr<T> node, RefPtr<T> child, bool notify = true);
NonnullRefPtr<T> remove_child(NonnullRefPtr<T> node);
void donate_all_children_to(T& node);
bool is_child_allowed(const T&) const { return true; }
T* next_in_pre_order()
{
if (first_child())
return first_child();
T* node;
if (!(node = next_sibling())) {
node = parent();
while (node && !node->next_sibling())
node = node->parent();
if (node)
node = node->next_sibling();
}
return node;
}
const T* next_in_pre_order() const
{
return const_cast<TreeNode*>(this)->next_in_pre_order();
}
bool is_before(const T& other) const
{
if (this == &other)
return false;
for (auto* node = this; node; node = node->next_in_pre_order()) {
if (node == &other)
return true;
}
return false;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback) const
{
if (callback(static_cast<const T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback)
{
if (callback(static_cast<T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback)
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback) const
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<const U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
void for_each_child(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child(move(callback));
}
template<typename Callback>
void for_each_child(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling())
callback(*node);
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling()) {
if (is<U>(node))
callback(downcast<U>(*node));
}
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child_of_type<U>(move(callback));
}
template<typename U>
const U* next_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template next_sibling_of_type<U>();
}
template<typename U>
inline U* next_sibling_of_type()
{
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* previous_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template previous_sibling_of_type<U>();
}
template<typename U>
U* previous_sibling_of_type()
{
for (auto* sibling = previous_sibling(); sibling; sibling = sibling->previous_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* first_child_of_type() const
{
return const_cast<TreeNode*>(this)->template first_child_of_type<U>();
}
template<typename U>
U* first_child_of_type()
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (is<U>(*child))
return &downcast<U>(*child);
}
return nullptr;
}
template<typename U>
const U* first_ancestor_of_type() const
{
return const_cast<TreeNode*>(this)->template first_ancestor_of_type<U>();
}
template<typename U>
U* first_ancestor_of_type()
{
for (auto* ancestor = parent(); ancestor; ancestor = ancestor->parent()) {
if (is<U>(*ancestor))
return &downcast<U>(*ancestor);
}
return nullptr;
}
protected:
TreeNode() { }
private:
int m_ref_count { 1 };
T* m_parent { nullptr };
T* m_first_child { nullptr };
T* m_last_child { nullptr };
T* m_next_sibling { nullptr };
T* m_previous_sibling { nullptr };
};
template<typename T>
inline NonnullRefPtr<T> TreeNode<T>::remove_child(NonnullRefPtr<T> node)
{
ASSERT(node->m_parent == this);
if (m_first_child == node)
m_first_child = node->m_next_sibling;
if (m_last_child == node)
m_last_child = node->m_previous_sibling;
if (node->m_next_sibling)
node->m_next_sibling->m_previous_sibling = node->m_previous_sibling;
if (node->m_previous_sibling)
node->m_previous_sibling->m_next_sibling = node->m_next_sibling;
node->m_next_sibling = nullptr;
node->m_previous_sibling = nullptr;
node->m_parent = nullptr;
node->removed_from(static_cast<T&>(*this));
node->unref();
static_cast<T*>(this)->children_changed();
return node;
}
template<typename T>
inline void TreeNode<T>::append_child(NonnullRefPtr<T> node, bool notify)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_last_child)
m_last_child->m_next_sibling = node.ptr();
node->m_previous_sibling = m_last_child;
node->m_parent = static_cast<T*>(this);
m_last_child = node.ptr();
if (!m_first_child)
m_first_child = m_last_child;
if (notify)
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
if (notify)
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::insert_before(NonnullRefPtr<T> node, RefPtr<T> child, bool notify)
{
if (!child)
return append_child(move(node), notify);
ASSERT(!node->m_parent);
ASSERT(child->parent() == this);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
node->m_previous_sibling = child->m_previous_sibling;
node->m_next_sibling = child;
if (m_first_child == child)
m_first_child = node;
node->m_parent = static_cast<T*>(this);
if (notify)
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
if (notify)
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::prepend_child(NonnullRefPtr<T> node)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_first_child)
m_first_child->m_previous_sibling = node.ptr();
node->m_next_sibling = m_first_child;
node->m_parent = static_cast<T*>(this);
m_first_child = node.ptr();
if (!m_last_child)
m_last_child = m_first_child;
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::donate_all_children_to(T& node)
{
for (T* child = m_first_child; child != nullptr;) {
T* next_child = child->m_next_sibling;
child->m_parent = nullptr;
child->m_next_sibling = nullptr;
child->m_previous_sibling = nullptr;
node.append_child(adopt(*child));
child = next_child;
}
m_first_child = nullptr;
m_last_child = nullptr;
}
template<typename T>
inline bool TreeNode<T>::is_ancestor_of(const TreeNode<T>& other) const
{
for (auto* ancestor = other.parent(); ancestor; ancestor = ancestor->parent()) {
if (ancestor == this)
return true;
}
return false;
}
}