mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-24 10:12:25 -05:00
6f0d7245d7
DOM::Document has some special lifetime rules to support the DOM lifetime semantics expected on the web. Any DOM node will keep its document alive as well, even after the document's ref-count has reached zero. This is achieved by the Document::m_referencing_node_count counter. Because of this mechanism, we can't VERIFY(m_ref_count) in TreeNode where T may be a DOM::Document.
554 lines
16 KiB
C++
554 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/NonnullRefPtr.h>
|
|
#include <AK/TypeCasts.h>
|
|
#include <AK/Weakable.h>
|
|
#include <LibWeb/Forward.h>
|
|
|
|
namespace Web {
|
|
|
|
template<typename T>
|
|
class TreeNode : public Weakable<T> {
|
|
public:
|
|
void ref()
|
|
{
|
|
VERIFY(!m_in_removed_last_ref);
|
|
if constexpr (!IsBaseOf<DOM::Node, T>) {
|
|
// NOTE: DOM::Document is allowed to survive with 0 ref count, if one of its descendant nodes are alive.
|
|
VERIFY(m_ref_count);
|
|
}
|
|
++m_ref_count;
|
|
}
|
|
|
|
void unref()
|
|
{
|
|
VERIFY(!m_in_removed_last_ref);
|
|
VERIFY(m_ref_count);
|
|
if (!--m_ref_count) {
|
|
if constexpr (IsBaseOf<DOM::Node, T>) {
|
|
m_in_removed_last_ref = true;
|
|
static_cast<T*>(this)->removed_last_ref();
|
|
} else {
|
|
delete static_cast<T*>(this);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
int ref_count() const { return m_ref_count; }
|
|
|
|
T* parent() { return m_parent; }
|
|
const T* parent() const { return m_parent; }
|
|
|
|
bool has_children() const { return m_first_child; }
|
|
T* next_sibling() { return m_next_sibling; }
|
|
T* previous_sibling() { return m_previous_sibling; }
|
|
T* first_child() { return m_first_child; }
|
|
T* last_child() { return m_last_child; }
|
|
const T* next_sibling() const { return m_next_sibling; }
|
|
const T* previous_sibling() const { return m_previous_sibling; }
|
|
const T* first_child() const { return m_first_child; }
|
|
const T* last_child() const { return m_last_child; }
|
|
|
|
int child_count() const
|
|
{
|
|
int count = 0;
|
|
for (auto* child = first_child(); child; child = child->next_sibling())
|
|
++count;
|
|
return count;
|
|
}
|
|
|
|
T* child_at_index(int index)
|
|
{
|
|
int count = 0;
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (count == index)
|
|
return child;
|
|
++count;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const T* child_at_index(int index) const
|
|
{
|
|
return const_cast<TreeNode*>(this)->child_at_index(index);
|
|
}
|
|
|
|
Optional<size_t> index_of_child(const T& search_child)
|
|
{
|
|
VERIFY(search_child.parent() == this);
|
|
size_t index = 0;
|
|
auto* child = first_child();
|
|
VERIFY(child);
|
|
|
|
do {
|
|
if (child == &search_child)
|
|
return index;
|
|
index++;
|
|
} while (child && (child = child->next_sibling()));
|
|
return {};
|
|
}
|
|
|
|
template<typename ChildType>
|
|
Optional<size_t> index_of_child(const T& search_child)
|
|
{
|
|
VERIFY(search_child.parent() == this);
|
|
size_t index = 0;
|
|
auto* child = first_child();
|
|
VERIFY(child);
|
|
|
|
do {
|
|
if (!is<ChildType>(child))
|
|
continue;
|
|
if (child == &search_child)
|
|
return index;
|
|
index++;
|
|
} while (child && (child = child->next_sibling()));
|
|
return {};
|
|
}
|
|
|
|
bool is_ancestor_of(const TreeNode&) const;
|
|
bool is_inclusive_ancestor_of(const TreeNode&) const;
|
|
bool is_descendant_of(const TreeNode&) const;
|
|
bool is_inclusive_descendant_of(const TreeNode&) const;
|
|
|
|
void append_child(NonnullRefPtr<T> node);
|
|
void prepend_child(NonnullRefPtr<T> node);
|
|
void insert_before(NonnullRefPtr<T> node, RefPtr<T> child);
|
|
void remove_child(NonnullRefPtr<T> node);
|
|
|
|
bool is_child_allowed(const T&) const { return true; }
|
|
|
|
T* next_in_pre_order()
|
|
{
|
|
if (first_child())
|
|
return first_child();
|
|
T* node;
|
|
if (!(node = next_sibling())) {
|
|
node = parent();
|
|
while (node && !node->next_sibling())
|
|
node = node->parent();
|
|
if (node)
|
|
node = node->next_sibling();
|
|
}
|
|
return node;
|
|
}
|
|
|
|
T const* next_in_pre_order() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->next_in_pre_order();
|
|
}
|
|
|
|
T* previous_in_pre_order()
|
|
{
|
|
if (auto* node = previous_sibling()) {
|
|
while (node->last_child())
|
|
node = node->last_child();
|
|
|
|
return node;
|
|
}
|
|
|
|
return parent();
|
|
}
|
|
|
|
T const* previous_in_pre_order() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->previous_in_pre_order();
|
|
}
|
|
|
|
bool is_before(T const& other) const
|
|
{
|
|
if (this == &other)
|
|
return false;
|
|
for (auto* node = this; node; node = node->next_in_pre_order()) {
|
|
if (node == &other)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// https://dom.spec.whatwg.org/#concept-tree-preceding (Object A is 'typename U' and Object B is 'this')
|
|
template<typename U>
|
|
bool has_preceding_node_of_type_in_tree_order() const
|
|
{
|
|
for (auto* node = previous_in_pre_order(); node; node = node->previous_in_pre_order()) {
|
|
if (is<U>(node))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// https://dom.spec.whatwg.org/#concept-tree-following (Object A is 'typename U' and Object B is 'this')
|
|
template<typename U>
|
|
bool has_following_node_of_type_in_tree_order() const
|
|
{
|
|
for (auto* node = next_in_pre_order(); node; node = node->next_in_pre_order()) {
|
|
if (is<U>(node))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename Callback>
|
|
IterationDecision for_each_in_inclusive_subtree(Callback callback) const
|
|
{
|
|
if (callback(static_cast<const T&>(*this)) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename Callback>
|
|
IterationDecision for_each_in_inclusive_subtree(Callback callback)
|
|
{
|
|
if (callback(static_cast<T&>(*this)) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
IterationDecision for_each_in_inclusive_subtree_of_type(Callback callback)
|
|
{
|
|
if (is<U>(static_cast<const T&>(*this))) {
|
|
if (callback(static_cast<U&>(*this)) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
IterationDecision for_each_in_inclusive_subtree_of_type(Callback callback) const
|
|
{
|
|
if (is<U>(static_cast<const T&>(*this))) {
|
|
if (callback(static_cast<const U&>(*this)) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename Callback>
|
|
IterationDecision for_each_in_subtree(Callback callback) const
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename Callback>
|
|
IterationDecision for_each_in_subtree(Callback callback)
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
IterationDecision for_each_in_subtree_of_type(Callback callback)
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
IterationDecision for_each_in_subtree_of_type(Callback callback) const
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
template<typename Callback>
|
|
void for_each_child(Callback callback) const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template for_each_child(move(callback));
|
|
}
|
|
|
|
template<typename Callback>
|
|
void for_each_child(Callback callback)
|
|
{
|
|
for (auto* node = first_child(); node; node = node->next_sibling())
|
|
callback(*node);
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
void for_each_child_of_type(Callback callback)
|
|
{
|
|
for (auto* node = first_child(); node; node = node->next_sibling()) {
|
|
if (is<U>(node))
|
|
callback(verify_cast<U>(*node));
|
|
}
|
|
}
|
|
|
|
template<typename U, typename Callback>
|
|
void for_each_child_of_type(Callback callback) const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template for_each_child_of_type<U>(move(callback));
|
|
}
|
|
|
|
template<typename U>
|
|
const U* next_sibling_of_type() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template next_sibling_of_type<U>();
|
|
}
|
|
|
|
template<typename U>
|
|
inline U* next_sibling_of_type()
|
|
{
|
|
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
|
|
if (is<U>(*sibling))
|
|
return &verify_cast<U>(*sibling);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
const U* previous_sibling_of_type() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template previous_sibling_of_type<U>();
|
|
}
|
|
|
|
template<typename U>
|
|
U* previous_sibling_of_type()
|
|
{
|
|
for (auto* sibling = previous_sibling(); sibling; sibling = sibling->previous_sibling()) {
|
|
if (is<U>(*sibling))
|
|
return &verify_cast<U>(*sibling);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
const U* first_child_of_type() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template first_child_of_type<U>();
|
|
}
|
|
|
|
template<typename U>
|
|
const U* last_child_of_type() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template last_child_of_type<U>();
|
|
}
|
|
|
|
template<typename U>
|
|
U* first_child_of_type()
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (is<U>(*child))
|
|
return &verify_cast<U>(*child);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
U* last_child_of_type()
|
|
{
|
|
for (auto* child = last_child(); child; child = child->previous_sibling()) {
|
|
if (is<U>(*child))
|
|
return &verify_cast<U>(*child);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
bool has_child_of_type() const
|
|
{
|
|
return first_child_of_type<U>() != nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
const U* first_ancestor_of_type() const
|
|
{
|
|
return const_cast<TreeNode*>(this)->template first_ancestor_of_type<U>();
|
|
}
|
|
|
|
template<typename U>
|
|
U* first_ancestor_of_type()
|
|
{
|
|
for (auto* ancestor = parent(); ancestor; ancestor = ancestor->parent()) {
|
|
if (is<U>(*ancestor))
|
|
return &verify_cast<U>(*ancestor);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool is_parent_of(T const& other) const
|
|
{
|
|
for (auto* child = first_child(); child; child = child->next_sibling()) {
|
|
if (&other == child)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
~TreeNode()
|
|
{
|
|
VERIFY(!m_parent);
|
|
T* next_child = nullptr;
|
|
for (auto* child = m_first_child; child; child = next_child) {
|
|
next_child = child->m_next_sibling;
|
|
child->m_parent = nullptr;
|
|
child->unref();
|
|
}
|
|
}
|
|
|
|
protected:
|
|
TreeNode() = default;
|
|
|
|
bool m_deletion_has_begun { false };
|
|
bool m_in_removed_last_ref { false };
|
|
|
|
private:
|
|
int m_ref_count { 1 };
|
|
T* m_parent { nullptr };
|
|
T* m_first_child { nullptr };
|
|
T* m_last_child { nullptr };
|
|
T* m_next_sibling { nullptr };
|
|
T* m_previous_sibling { nullptr };
|
|
};
|
|
|
|
template<typename T>
|
|
inline void TreeNode<T>::remove_child(NonnullRefPtr<T> node)
|
|
{
|
|
VERIFY(node->m_parent == this);
|
|
|
|
if (m_first_child == node)
|
|
m_first_child = node->m_next_sibling;
|
|
|
|
if (m_last_child == node)
|
|
m_last_child = node->m_previous_sibling;
|
|
|
|
if (node->m_next_sibling)
|
|
node->m_next_sibling->m_previous_sibling = node->m_previous_sibling;
|
|
|
|
if (node->m_previous_sibling)
|
|
node->m_previous_sibling->m_next_sibling = node->m_next_sibling;
|
|
|
|
node->m_next_sibling = nullptr;
|
|
node->m_previous_sibling = nullptr;
|
|
node->m_parent = nullptr;
|
|
|
|
node->unref();
|
|
}
|
|
|
|
template<typename T>
|
|
inline void TreeNode<T>::append_child(NonnullRefPtr<T> node)
|
|
{
|
|
VERIFY(!node->m_parent);
|
|
|
|
if (!static_cast<T*>(this)->is_child_allowed(*node))
|
|
return;
|
|
|
|
if (m_last_child)
|
|
m_last_child->m_next_sibling = node.ptr();
|
|
node->m_previous_sibling = m_last_child;
|
|
node->m_parent = static_cast<T*>(this);
|
|
m_last_child = node.ptr();
|
|
if (!m_first_child)
|
|
m_first_child = m_last_child;
|
|
[[maybe_unused]] auto& rc = node.leak_ref();
|
|
}
|
|
|
|
template<typename T>
|
|
inline void TreeNode<T>::insert_before(NonnullRefPtr<T> node, RefPtr<T> child)
|
|
{
|
|
if (!child)
|
|
return append_child(move(node));
|
|
|
|
VERIFY(!node->m_parent);
|
|
VERIFY(child->parent() == this);
|
|
|
|
node->m_previous_sibling = child->m_previous_sibling;
|
|
node->m_next_sibling = child;
|
|
|
|
if (child->m_previous_sibling)
|
|
child->m_previous_sibling->m_next_sibling = node;
|
|
|
|
if (m_first_child == child)
|
|
m_first_child = node;
|
|
|
|
child->m_previous_sibling = node;
|
|
|
|
node->m_parent = static_cast<T*>(this);
|
|
[[maybe_unused]] auto& rc = node.leak_ref();
|
|
}
|
|
|
|
template<typename T>
|
|
inline void TreeNode<T>::prepend_child(NonnullRefPtr<T> node)
|
|
{
|
|
VERIFY(!node->m_parent);
|
|
|
|
if (!static_cast<T*>(this)->is_child_allowed(*node))
|
|
return;
|
|
|
|
if (m_first_child)
|
|
m_first_child->m_previous_sibling = node.ptr();
|
|
node->m_next_sibling = m_first_child;
|
|
node->m_parent = static_cast<T*>(this);
|
|
m_first_child = node.ptr();
|
|
if (!m_last_child)
|
|
m_last_child = m_first_child;
|
|
node->inserted_into(static_cast<T&>(*this));
|
|
[[maybe_unused]] auto& rc = node.leak_ref();
|
|
|
|
static_cast<T*>(this)->children_changed();
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool TreeNode<T>::is_ancestor_of(const TreeNode<T>& other) const
|
|
{
|
|
for (auto* ancestor = other.parent(); ancestor; ancestor = ancestor->parent()) {
|
|
if (ancestor == this)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool TreeNode<T>::is_inclusive_ancestor_of(const TreeNode<T>& other) const
|
|
{
|
|
return &other == this || is_ancestor_of(other);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool TreeNode<T>::is_descendant_of(const TreeNode<T>& other) const
|
|
{
|
|
return other.is_ancestor_of(*this);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool TreeNode<T>::is_inclusive_descendant_of(const TreeNode<T>& other) const
|
|
{
|
|
return other.is_inclusive_ancestor_of(*this);
|
|
}
|
|
|
|
}
|