ladybird/Libraries/LibCore/SharedCircularQueue.h

206 lines
8.9 KiB
C++

/*
* Copyright (c) 2022, kleines Filmröllchen <filmroellchen@serenityos.org>
* Copyright (c) 2024, stasoid <stasoid@yahoo.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/BuiltinWrappers.h>
#include <AK/ByteString.h>
#include <AK/Debug.h>
#include <AK/Function.h>
#include <LibCore/AnonymousBuffer.h>
namespace Core {
// A circular lock-free queue (or a buffer) with a single producer,
// residing in shared memory and designed to be accessible to multiple processes.
// This implementation makes use of the fact that any producer-related code can be sure that
// it's the only producer-related code that is running, which simplifies a bunch of the synchronization code.
// The exclusivity and liveliness for critical sections in this class is proven to be correct
// under the assumption of correct synchronization primitives, i.e. atomics.
// In many circumstances, this is enough for cross-process queues.
// This class is designed to be transferred over IPC and mmap()ed into multiple processes' memory.
// It is a synthetic pointer to the actual shared memory, which is abstracted away from the user.
// FIXME: Make this independent of shared memory, so that we can move it to AK.
template<typename T, size_t Size = 32>
// Size must be a power of two, which speeds up the modulus operations for indexing.
requires(popcount(Size) == 1)
class SharedSingleProducerCircularQueue final {
public:
using ValueType = T;
enum class QueueStatus : u8 {
Invalid = 0,
Full,
Empty,
};
SharedSingleProducerCircularQueue() = default;
SharedSingleProducerCircularQueue(SharedSingleProducerCircularQueue<ValueType, Size>& queue) = default;
SharedSingleProducerCircularQueue(SharedSingleProducerCircularQueue&& queue) = default;
SharedSingleProducerCircularQueue& operator=(SharedSingleProducerCircularQueue&& queue) = default;
// Allocates a new circular queue in shared memory.
static ErrorOr<SharedSingleProducerCircularQueue<T, Size>> create()
{
auto anon_buf = TRY(AnonymousBuffer::create_with_size(sizeof(SharedMemorySPCQ)));
auto shared_queue = new (anon_buf.data<void>()) SharedMemorySPCQ;
return create_internal(anon_buf, shared_queue);
}
// Uses an existing circular queue from given shared memory.
static ErrorOr<SharedSingleProducerCircularQueue<T, Size>> create(int fd)
{
auto anon_buf = TRY(AnonymousBuffer::create_from_anon_fd(fd, sizeof(SharedMemorySPCQ)));
auto shared_queue = (SharedMemorySPCQ*)anon_buf.data<void>();
return create_internal(anon_buf, shared_queue);
}
constexpr size_t size() const { return Size; }
// These functions are provably inconsistent and should only be used as hints to the actual capacity and used count.
ALWAYS_INLINE size_t weak_remaining_capacity() const { return Size - weak_used(); }
ALWAYS_INLINE size_t weak_used() const
{
auto volatile head = m_queue->m_queue->m_tail.load(AK::MemoryOrder::memory_order_relaxed);
auto volatile tail = m_queue->m_queue->m_head.load(AK::MemoryOrder::memory_order_relaxed);
return head - tail;
}
ALWAYS_INLINE constexpr int fd() const { return m_queue->fd(); }
ALWAYS_INLINE constexpr bool is_valid() const { return !m_queue.is_null(); }
ALWAYS_INLINE constexpr size_t weak_head() const { return m_queue->m_queue->m_head.load(AK::MemoryOrder::memory_order_relaxed); }
ALWAYS_INLINE constexpr size_t weak_tail() const { return m_queue->m_queue->m_tail.load(AK::MemoryOrder::memory_order_relaxed); }
ErrorOr<void, QueueStatus> enqueue(ValueType to_insert)
{
VERIFY(!m_queue.is_null());
if (!can_enqueue())
return QueueStatus::Full;
auto our_tail = m_queue->m_queue->m_tail.load() % Size;
m_queue->m_queue->m_data[our_tail] = to_insert;
m_queue->m_queue->m_tail.fetch_add(1);
return {};
}
ALWAYS_INLINE bool can_enqueue() const
{
return ((head() - 1) % Size) != (m_queue->m_queue->m_tail.load() % Size);
}
// Repeatedly try to enqueue, using the wait_function to wait if it's not possible
ErrorOr<void> blocking_enqueue(ValueType to_insert, Function<void()> wait_function)
{
ErrorOr<void, QueueStatus> result;
while (true) {
result = enqueue(to_insert);
if (!result.is_error())
break;
if (result.error() != QueueStatus::Full)
return Error::from_string_literal("Unexpected error while enqueuing");
wait_function();
}
return {};
}
ErrorOr<ValueType, QueueStatus> dequeue()
{
VERIFY(!m_queue.is_null());
while (true) {
// This CAS only succeeds if nobody is currently dequeuing.
auto size_max = NumericLimits<size_t>::max();
if (m_queue->m_queue->m_head_protector.compare_exchange_strong(size_max, m_queue->m_queue->m_head.load())) {
auto old_head = m_queue->m_queue->m_head.load();
// This check looks like it's in a weird place (especially since we have to roll back the protector), but it's actually protecting against a race between multiple dequeuers.
if (old_head >= m_queue->m_queue->m_tail.load()) {
m_queue->m_queue->m_head_protector.store(NumericLimits<size_t>::max(), AK::MemoryOrder::memory_order_release);
return QueueStatus::Empty;
}
auto data = move(m_queue->m_queue->m_data[old_head % Size]);
m_queue->m_queue->m_head.fetch_add(1);
m_queue->m_queue->m_head_protector.store(NumericLimits<size_t>::max(), AK::MemoryOrder::memory_order_release);
return { move(data) };
}
}
}
// The "real" head as seen by the outside world. Don't use m_head directly unless you know what you're doing.
size_t head() const
{
return min(m_queue->m_queue->m_head.load(), m_queue->m_queue->m_head_protector.load());
}
private:
struct SharedMemorySPCQ {
SharedMemorySPCQ() = default;
SharedMemorySPCQ(SharedMemorySPCQ const&) = delete;
SharedMemorySPCQ(SharedMemorySPCQ&&) = delete;
~SharedMemorySPCQ() = default;
// Invariant: tail >= head
// Invariant: head and tail are monotonically increasing
// Invariant: tail always points to the next free location where an enqueue can happen.
// Invariant: head always points to the element to be dequeued next.
// Invariant: tail is only modified by enqueue functions.
// Invariant: head is only modified by dequeue functions.
// An empty queue is signalled with: tail = head
// A full queue is signalled with: head - 1 mod size = tail mod size (i.e. head and tail point to the same index in the data array)
// FIXME: These invariants aren't proven to be correct after each successful completion of each operation where it is relevant.
// The work could be put in but for now I think the algorithmic correctness proofs of the functions are enough.
AK_CACHE_ALIGNED Atomic<size_t, AK::MemoryOrder::memory_order_seq_cst> m_tail { 0 };
AK_CACHE_ALIGNED Atomic<size_t, AK::MemoryOrder::memory_order_seq_cst> m_head { 0 };
AK_CACHE_ALIGNED Atomic<size_t, AK::MemoryOrder::memory_order_seq_cst> m_head_protector { NumericLimits<size_t>::max() };
alignas(ValueType) Array<ValueType, Size> m_data;
};
class RefCountedSharedMemorySPCQ
: public RefCounted<RefCountedSharedMemorySPCQ>
, public AnonymousBuffer {
friend class SharedSingleProducerCircularQueue;
public:
SharedMemorySPCQ* m_queue;
~RefCountedSharedMemorySPCQ()
{
dbgln_if(SHARED_QUEUE_DEBUG, "destructed SSPCQ at {:p}, shared mem: {:p}", this, m_queue);
}
private:
RefCountedSharedMemorySPCQ(AnonymousBuffer anon_buf, SharedMemorySPCQ* shared_queue)
: AnonymousBuffer(anon_buf)
, m_queue(shared_queue)
{
}
};
static ErrorOr<SharedSingleProducerCircularQueue<T, Size>> create_internal(AnonymousBuffer anon_buf, SharedMemorySPCQ* shared_queue)
{
if (!shared_queue)
return Error::from_string_literal("Unexpected error when creating shared queue from raw memory");
auto name = ByteString::formatted("SharedSingleProducerCircularQueue@{:x}", anon_buf.fd());
dbgln_if(SHARED_QUEUE_DEBUG, "successfully mmapped {} at {:p}", name, shared_queue);
auto ref_counted = new (nothrow) RefCountedSharedMemorySPCQ(anon_buf, shared_queue);
return SharedSingleProducerCircularQueue<T, Size> { move(name), adopt_ref(*ref_counted) };
}
SharedSingleProducerCircularQueue(ByteString name, RefPtr<RefCountedSharedMemorySPCQ> queue)
: m_queue(queue)
, m_name(move(name))
{
}
RefPtr<RefCountedSharedMemorySPCQ> m_queue;
ByteString m_name {};
};
}