mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 17:52:26 -05:00
94ca55cefd
As suggested by Joshua, this commit adds the 2-clause BSD license as a comment block to the top of every source file. For the first pass, I've just added myself for simplicity. I encourage everyone to add themselves as copyright holders of any file they've added or modified in some significant way. If I've added myself in error somewhere, feel free to replace it with the appropriate copyright holder instead. Going forward, all new source files should include a license header.
354 lines
8.7 KiB
C++
354 lines
8.7 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <LibC/assert.h>
|
|
#include <LibM/math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
template<size_t>
|
|
constexpr double e_to_power();
|
|
template<>
|
|
constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent>
|
|
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t factorial();
|
|
template<>
|
|
constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_even();
|
|
template<>
|
|
constexpr size_t product_even<2>() { return 2; }
|
|
template<size_t value>
|
|
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_odd();
|
|
template<>
|
|
constexpr size_t product_odd<1>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
|
|
|
extern "C" {
|
|
|
|
double trunc(double x)
|
|
{
|
|
return (int64_t)x;
|
|
}
|
|
|
|
double cos(double angle)
|
|
{
|
|
return sin(angle + M_PI_2);
|
|
}
|
|
|
|
// This can also be done with a taylor expansion, but for
|
|
// now this works pretty well (and doesn't mess anything up
|
|
// in quake in particular, which is very Floating-Point precision
|
|
// heavy)
|
|
double sin(double angle)
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fsin"
|
|
: "=t"(ret)
|
|
: "0"(angle));
|
|
|
|
return ret;
|
|
}
|
|
|
|
double pow(double x, double y)
|
|
{
|
|
//FIXME: Extremely unlikely to be standards compliant.
|
|
return exp(y * log(x));
|
|
}
|
|
|
|
double ldexp(double x, int exp)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
double val = pow(2, exp);
|
|
return x * val;
|
|
}
|
|
|
|
double tanh(double x)
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(2 * x);
|
|
return (exponentiated - 1) / (exponentiated + 1);
|
|
}
|
|
double plusX = exp(x);
|
|
double minusX = 1 / plusX;
|
|
return (plusX - minusX) / (plusX + minusX);
|
|
}
|
|
|
|
double ampsin(double angle)
|
|
{
|
|
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
|
|
double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
double tan(double angle)
|
|
{
|
|
return ampsin(angle) / ampsin(M_PI_2 + angle);
|
|
}
|
|
|
|
double sqrt(double x)
|
|
{
|
|
double res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
double sinh(double x)
|
|
{
|
|
double exponentiated = exp(x);
|
|
if (x > 0)
|
|
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
|
return (exponentiated - 1 / exponentiated) / 2;
|
|
}
|
|
|
|
double log10(double x)
|
|
{
|
|
return log(x) / M_LN10;
|
|
}
|
|
|
|
double log(double x)
|
|
{
|
|
if (x < 0)
|
|
return __builtin_nan("");
|
|
if (x == 0)
|
|
return -__builtin_huge_val();
|
|
double y = 1 + 2 * (x - 1) / (x + 1);
|
|
double exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
exponentiated = exp(y);
|
|
return y + 2 * (x - exponentiated) / (x + exponentiated);
|
|
}
|
|
|
|
double fmod(double index, double period)
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
double exp(double exponent)
|
|
{
|
|
double result = 1;
|
|
if (exponent >= 1) {
|
|
size_t integer_part = (size_t)exponent;
|
|
if (integer_part & 1)
|
|
result *= e_to_power<1>();
|
|
if (integer_part & 2)
|
|
result *= e_to_power<2>();
|
|
if (integer_part > 3) {
|
|
if (integer_part & 4)
|
|
result *= e_to_power<4>();
|
|
if (integer_part & 8)
|
|
result *= e_to_power<8>();
|
|
if (integer_part & 16)
|
|
result *= e_to_power<16>();
|
|
if (integer_part & 32)
|
|
result *= e_to_power<32>();
|
|
if (integer_part >= 64)
|
|
return __builtin_huge_val();
|
|
}
|
|
exponent -= integer_part;
|
|
} else if (exponent < 0)
|
|
return 1 / exp(-exponent);
|
|
double taylor_series_result = 1 + exponent;
|
|
double taylor_series_numerator = exponent * exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<2>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<3>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<4>();
|
|
taylor_series_numerator *= exponent;
|
|
taylor_series_result += taylor_series_numerator / factorial<5>();
|
|
return result * taylor_series_result;
|
|
}
|
|
|
|
double cosh(double x)
|
|
{
|
|
double exponentiated = exp(-x);
|
|
if (x < 0)
|
|
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
|
return (1 / exponentiated + exponentiated) / 2;
|
|
}
|
|
|
|
double atan2(double y, double x)
|
|
{
|
|
if (x > 0)
|
|
return atan(y / x);
|
|
if (x == 0) {
|
|
if (y > 0)
|
|
return M_PI_2;
|
|
if (y < 0)
|
|
return -M_PI_2;
|
|
return 0;
|
|
}
|
|
if (y >= 0)
|
|
return atan(y / x) + M_PI;
|
|
return atan(y / x) - M_PI;
|
|
}
|
|
|
|
double atan(double x)
|
|
{
|
|
if (x < 0)
|
|
return -atan(-x);
|
|
if (x > 1)
|
|
return M_PI_2 - atan(1 / x);
|
|
double squared = x * x;
|
|
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
|
|
}
|
|
|
|
double asin(double x)
|
|
{
|
|
if (x > 1 || x < -1)
|
|
return __builtin_nan("");
|
|
if (x > 0.5 || x < -0.5)
|
|
return 2 * atan(x / (1 + sqrt(1 - x * x)));
|
|
double squared = x * x;
|
|
double value = x;
|
|
double i = x * squared;
|
|
value += i * product_odd<1>() / product_even<2>() / 3;
|
|
i *= squared;
|
|
value += i * product_odd<3>() / product_even<4>() / 5;
|
|
i *= squared;
|
|
value += i * product_odd<5>() / product_even<6>() / 7;
|
|
i *= squared;
|
|
value += i * product_odd<7>() / product_even<8>() / 9;
|
|
i *= squared;
|
|
value += i * product_odd<9>() / product_even<10>() / 11;
|
|
i *= squared;
|
|
value += i * product_odd<11>() / product_even<12>() / 13;
|
|
return value;
|
|
}
|
|
|
|
double acos(double x)
|
|
{
|
|
return M_PI_2 - asin(x);
|
|
}
|
|
|
|
double fabs(double value)
|
|
{
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
double log2(double x)
|
|
{
|
|
return log(x) / M_LN2;
|
|
}
|
|
|
|
float log2f(float x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
long double log2l(long double x)
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
double frexp(double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float frexpf(float, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double frexpl(long double, int*)
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float roundf(float value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (value >= 0.0f)
|
|
return (float)(int)(value + 0.5f);
|
|
return (float)(int)(value - 0.5f);
|
|
}
|
|
|
|
double floor(double value)
|
|
{
|
|
return (int)value;
|
|
}
|
|
|
|
double rint(double value)
|
|
{
|
|
return (int)roundf(value);
|
|
}
|
|
|
|
float ceilf(float value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
int as_int = (int)value;
|
|
if (value == (float)as_int) {
|
|
return (float)as_int;
|
|
}
|
|
return as_int + 1;
|
|
}
|
|
|
|
double ceil(double value)
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
int as_int = (int)value;
|
|
if (value == (double)as_int) {
|
|
return (double)as_int;
|
|
}
|
|
return as_int + 1;
|
|
}
|
|
|
|
double modf(double x, double* intpart)
|
|
{
|
|
*intpart = (double)((int)(x));
|
|
return x - (int)x;
|
|
}
|
|
}
|