ladybird/Kernel/Net/TCPSocket.cpp
Andreas Kling 9026598999 Kernel: Add a more expressive API for getting random bytes
We now have these API's in <Kernel/Random.h>:

    - get_fast_random_bytes(u8* buffer, size_t buffer_size)
    - get_good_random_bytes(u8* buffer, size_t buffer_size)
    - get_fast_random<T>()
    - get_good_random<T>()

Internally they both use x86 RDRAND if available, otherwise they fall
back to the same LCG we had in RandomDevice all along.

The main purpose of this patch is to give kernel code a way to better
express its needs for random data.

Randomness is something that will require a lot more work, but this is
hopefully a step in the right direction.
2020-01-03 12:43:07 +01:00

397 lines
12 KiB
C++

#include <AK/Time.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/Net/Routing.h>
#include <Kernel/Net/TCP.h>
#include <Kernel/Net/TCPSocket.h>
#include <Kernel/Process.h>
#include <Kernel/Random.h>
//#define TCP_SOCKET_DEBUG
void TCPSocket::for_each(Function<void(TCPSocket&)> callback)
{
LOCKER(sockets_by_tuple().lock());
for (auto& it : sockets_by_tuple().resource())
callback(*it.value);
}
void TCPSocket::set_state(State new_state)
{
#ifdef TCP_SOCKET_DEBUG
kprintf("%s(%u) TCPSocket{%p} state moving from %s to %s\n",
current->process().name().characters(), current->pid(), this,
to_string(m_state), to_string(new_state));
#endif
m_state = new_state;
if (new_state == State::Established && m_direction == Direction::Outgoing)
m_role = Role::Connected;
}
Lockable<HashMap<IPv4SocketTuple, TCPSocket*>>& TCPSocket::sockets_by_tuple()
{
static Lockable<HashMap<IPv4SocketTuple, TCPSocket*>>* s_map;
if (!s_map)
s_map = new Lockable<HashMap<IPv4SocketTuple, TCPSocket*>>;
return *s_map;
}
RefPtr<TCPSocket> TCPSocket::from_tuple(const IPv4SocketTuple& tuple)
{
LOCKER(sockets_by_tuple().lock());
auto exact_match = sockets_by_tuple().resource().get(tuple);
if (exact_match.has_value())
return { *exact_match.value() };
auto address_tuple = IPv4SocketTuple(tuple.local_address(), tuple.local_port(), IPv4Address(), 0);
auto address_match = sockets_by_tuple().resource().get(address_tuple);
if (address_match.has_value())
return { *address_match.value() };
auto wildcard_tuple = IPv4SocketTuple(IPv4Address(), tuple.local_port(), IPv4Address(), 0);
auto wildcard_match = sockets_by_tuple().resource().get(wildcard_tuple);
if (wildcard_match.has_value())
return { *wildcard_match.value() };
return {};
}
RefPtr<TCPSocket> TCPSocket::from_endpoints(const IPv4Address& local_address, u16 local_port, const IPv4Address& peer_address, u16 peer_port)
{
return from_tuple(IPv4SocketTuple(local_address, local_port, peer_address, peer_port));
}
RefPtr<TCPSocket> TCPSocket::create_client(const IPv4Address& new_local_address, u16 new_local_port, const IPv4Address& new_peer_address, u16 new_peer_port)
{
auto tuple = IPv4SocketTuple(new_local_address, new_local_port, new_peer_address, new_peer_port);
LOCKER(sockets_by_tuple().lock());
if (sockets_by_tuple().resource().contains(tuple))
return {};
auto client = TCPSocket::create(protocol());
client->set_setup_state(SetupState::InProgress);
client->set_local_address(new_local_address);
client->set_local_port(new_local_port);
client->set_peer_address(new_peer_address);
client->set_peer_port(new_peer_port);
client->set_direction(Direction::Incoming);
client->set_originator(*this);
m_pending_release_for_accept.set(tuple, client);
sockets_by_tuple().resource().set(tuple, client);
return from_tuple(tuple);
}
void TCPSocket::release_to_originator()
{
ASSERT(!!m_originator);
m_originator->release_for_accept(this);
}
void TCPSocket::release_for_accept(RefPtr<TCPSocket> socket)
{
ASSERT(m_pending_release_for_accept.contains(socket->tuple()));
m_pending_release_for_accept.remove(socket->tuple());
queue_connection_from(*socket);
}
TCPSocket::TCPSocket(int protocol)
: IPv4Socket(SOCK_STREAM, protocol)
{
}
TCPSocket::~TCPSocket()
{
LOCKER(sockets_by_tuple().lock());
sockets_by_tuple().resource().remove(tuple());
}
NonnullRefPtr<TCPSocket> TCPSocket::create(int protocol)
{
return adopt(*new TCPSocket(protocol));
}
int TCPSocket::protocol_receive(const KBuffer& packet_buffer, void* buffer, size_t buffer_size, int flags)
{
(void)flags;
auto& ipv4_packet = *(const IPv4Packet*)(packet_buffer.data());
auto& tcp_packet = *static_cast<const TCPPacket*>(ipv4_packet.payload());
size_t payload_size = packet_buffer.size() - sizeof(IPv4Packet) - tcp_packet.header_size();
#ifdef TCP_SOCKET_DEBUG
kprintf("payload_size %u, will it fit in %u?\n", payload_size, buffer_size);
#endif
ASSERT(buffer_size >= payload_size);
memcpy(buffer, tcp_packet.payload(), payload_size);
return payload_size;
}
int TCPSocket::protocol_send(const void* data, int data_length)
{
send_tcp_packet(TCPFlags::PUSH | TCPFlags::ACK, data, data_length);
return data_length;
}
void TCPSocket::send_tcp_packet(u16 flags, const void* payload, int payload_size)
{
auto buffer = ByteBuffer::create_zeroed(sizeof(TCPPacket) + payload_size);
auto& tcp_packet = *(TCPPacket*)(buffer.data());
ASSERT(local_port());
tcp_packet.set_source_port(local_port());
tcp_packet.set_destination_port(peer_port());
tcp_packet.set_window_size(1024);
tcp_packet.set_sequence_number(m_sequence_number);
tcp_packet.set_data_offset(sizeof(TCPPacket) / sizeof(u32));
tcp_packet.set_flags(flags);
if (flags & TCPFlags::ACK)
tcp_packet.set_ack_number(m_ack_number);
if (flags & TCPFlags::SYN) {
++m_sequence_number;
} else {
m_sequence_number += payload_size;
}
memcpy(tcp_packet.payload(), payload, payload_size);
tcp_packet.set_checksum(compute_tcp_checksum(local_address(), peer_address(), tcp_packet, payload_size));
if (tcp_packet.has_syn() || payload_size > 0) {
LOCKER(m_not_acked_lock);
m_not_acked.append({ m_sequence_number, move(buffer), 0, {} });
send_outgoing_packets();
return;
}
auto routing_decision = route_to(peer_address(), local_address());
ASSERT(!routing_decision.is_zero());
routing_decision.adapter->send_ipv4(
routing_decision.next_hop, peer_address(), IPv4Protocol::TCP,
buffer.data(), buffer.size(), ttl());
m_packets_out++;
m_bytes_out += buffer.size();
}
void TCPSocket::send_outgoing_packets()
{
auto routing_decision = route_to(peer_address(), local_address());
ASSERT(!routing_decision.is_zero());
auto now = kgettimeofday();
LOCKER(m_not_acked_lock);
for (auto& packet : m_not_acked) {
timeval diff;
timeval_sub(packet.tx_time, now, diff);
if (diff.tv_sec < 1 && diff.tv_usec <= 500000)
continue;
packet.tx_time = now;
packet.tx_counter++;
#ifdef TCP_SOCKET_DEBUG
auto& tcp_packet = *(TCPPacket*)(packet.buffer.data());
kprintf("sending tcp packet from %s:%u to %s:%u with (%s%s%s%s) seq_no=%u, ack_no=%u, tx_counter=%u\n",
local_address().to_string().characters(),
local_port(),
peer_address().to_string().characters(),
peer_port(),
tcp_packet.has_syn() ? "SYN " : "",
tcp_packet.has_ack() ? "ACK " : "",
tcp_packet.has_fin() ? "FIN " : "",
tcp_packet.has_rst() ? "RST " : "",
tcp_packet.sequence_number(),
tcp_packet.ack_number(),
packet.tx_counter);
#endif
routing_decision.adapter->send_ipv4(
routing_decision.next_hop, peer_address(), IPv4Protocol::TCP,
packet.buffer.data(), packet.buffer.size(), ttl());
m_packets_out++;
m_bytes_out += packet.buffer.size();
}
}
void TCPSocket::receive_tcp_packet(const TCPPacket& packet, u16 size)
{
if (packet.has_ack()) {
u32 ack_number = packet.ack_number();
#ifdef TCP_SOCKET_DEBUG
dbg() << "TCPSocket: receive_tcp_packet: " << ack_number;
#endif
int removed = 0;
LOCKER(m_not_acked_lock);
while (!m_not_acked.is_empty()) {
auto& packet = m_not_acked.first();
#ifdef TCP_SOCKET_DEBUG
dbg() << "TCPSocket: iterate: " << packet.ack_number;
#endif
if (packet.ack_number <= ack_number) {
m_not_acked.take_first();
removed++;
} else {
break;
}
}
#ifdef TCP_SOCKET_DEBUG
dbg() << "TCPSocket: receive_tcp_packet acknowledged " << removed << " packets";
#endif
}
m_packets_in++;
m_bytes_in += packet.header_size() + size;
}
NetworkOrdered<u16> TCPSocket::compute_tcp_checksum(const IPv4Address& source, const IPv4Address& destination, const TCPPacket& packet, u16 payload_size)
{
struct [[gnu::packed]] PseudoHeader
{
IPv4Address source;
IPv4Address destination;
u8 zero;
u8 protocol;
NetworkOrdered<u16> payload_size;
};
PseudoHeader pseudo_header { source, destination, 0, (u8)IPv4Protocol::TCP, sizeof(TCPPacket) + payload_size };
u32 checksum = 0;
auto* w = (const NetworkOrdered<u16>*)&pseudo_header;
for (size_t i = 0; i < sizeof(pseudo_header) / sizeof(u16); ++i) {
checksum += w[i];
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
w = (const NetworkOrdered<u16>*)&packet;
for (size_t i = 0; i < sizeof(packet) / sizeof(u16); ++i) {
checksum += w[i];
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
ASSERT(packet.data_offset() * 4 == sizeof(TCPPacket));
w = (const NetworkOrdered<u16>*)packet.payload();
for (size_t i = 0; i < payload_size / sizeof(u16); ++i) {
checksum += w[i];
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
if (payload_size & 1) {
u16 expanded_byte = ((const u8*)packet.payload())[payload_size - 1] << 8;
checksum += expanded_byte;
if (checksum > 0xffff)
checksum = (checksum >> 16) + (checksum & 0xffff);
}
return ~(checksum & 0xffff);
}
KResult TCPSocket::protocol_bind()
{
if (has_specific_local_address() && !m_adapter) {
m_adapter = NetworkAdapter::from_ipv4_address(local_address());
if (!m_adapter)
return KResult(-EADDRNOTAVAIL);
}
return KSuccess;
}
KResult TCPSocket::protocol_listen()
{
LOCKER(sockets_by_tuple().lock());
if (sockets_by_tuple().resource().contains(tuple()))
return KResult(-EADDRINUSE);
sockets_by_tuple().resource().set(tuple(), this);
set_direction(Direction::Passive);
set_state(State::Listen);
set_setup_state(SetupState::Completed);
return KSuccess;
}
KResult TCPSocket::protocol_connect(FileDescription& description, ShouldBlock should_block)
{
auto routing_decision = route_to(peer_address(), local_address());
if (routing_decision.is_zero())
return KResult(-EHOSTUNREACH);
if (!has_specific_local_address())
set_local_address(routing_decision.adapter->ipv4_address());
allocate_local_port_if_needed();
m_sequence_number = 0;
m_ack_number = 0;
set_setup_state(SetupState::InProgress);
send_tcp_packet(TCPFlags::SYN);
m_state = State::SynSent;
m_role = Role::Connecting;
m_direction = Direction::Outgoing;
if (should_block == ShouldBlock::Yes) {
if (current->block<Thread::ConnectBlocker>(description) == Thread::BlockResult::InterruptedBySignal)
return KResult(-EINTR);
ASSERT(setup_state() == SetupState::Completed);
if (has_error()) {
m_role = Role::None;
return KResult(-ECONNREFUSED);
}
return KSuccess;
}
return KResult(-EINPROGRESS);
}
int TCPSocket::protocol_allocate_local_port()
{
static const u16 first_ephemeral_port = 32768;
static const u16 last_ephemeral_port = 60999;
static const u16 ephemeral_port_range_size = last_ephemeral_port - first_ephemeral_port;
u16 first_scan_port = first_ephemeral_port + get_good_random<u16>() % ephemeral_port_range_size;
LOCKER(sockets_by_tuple().lock());
for (u16 port = first_scan_port;;) {
IPv4SocketTuple proposed_tuple(local_address(), port, peer_address(), peer_port());
auto it = sockets_by_tuple().resource().find(proposed_tuple);
if (it == sockets_by_tuple().resource().end()) {
set_local_port(port);
sockets_by_tuple().resource().set(proposed_tuple, this);
return port;
}
++port;
if (port > last_ephemeral_port)
port = first_ephemeral_port;
if (port == first_scan_port)
break;
}
return -EADDRINUSE;
}
bool TCPSocket::protocol_is_disconnected() const
{
switch (m_state) {
case State::Closed:
case State::CloseWait:
case State::LastAck:
case State::FinWait1:
case State::FinWait2:
case State::Closing:
case State::TimeWait:
return true;
default:
return false;
}
}