ladybird/Kernel/Bus/VirtIO/Queue.h
Liav A d61c23569e Kernel/VirtIO: Introduce the concept of transport options
The VirtIO specification defines many types of devices with different
purposes, and it also defines 3 possible transport mediums where devices
could be connected to the host machine.

We only care about the PCIe transport, but this commit puts the actual
foundations for supporting the lean MMIO transport too in the future.

To ensure things are kept abstracted but still functional, the VirtIO
transport code is responsible for what is deemed as related to an actual
transport type - allocation of interrupt handlers and tinkering with low
level transport-related registers, etc.
2023-09-16 14:04:17 -06:00

190 lines
5.3 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/ScatterGatherList.h>
namespace Kernel::VirtIO {
class Device;
class QueueChain;
#define VIRTQ_DESC_F_NEXT 1
#define VIRTQ_DESC_F_INDIRECT 4
#define VIRTQ_AVAIL_F_NO_INTERRUPT 1
#define VIRTQ_USED_F_NO_NOTIFY 1
enum class BufferType {
DeviceReadable = 0,
DeviceWritable = 2
};
class Queue {
public:
static ErrorOr<NonnullOwnPtr<Queue>> try_create(u16 queue_size, u16 notify_offset);
~Queue();
u16 notify_offset() const { return m_notify_offset; }
void enable_interrupts();
void disable_interrupts();
PhysicalAddress descriptor_area() const { return to_physical(m_descriptors); }
PhysicalAddress driver_area() const { return to_physical(m_driver); }
PhysicalAddress device_area() const { return to_physical(m_device); }
bool new_data_available() const;
bool has_free_slots() const;
Optional<u16> take_free_slot();
QueueChain pop_used_buffer_chain(size_t& used);
void discard_used_buffers();
Spinlock<LockRank::None>& lock() { return m_lock; }
bool should_notify() const;
u16 size() const { return m_queue_size; }
private:
Queue(NonnullOwnPtr<Memory::Region> queue_region, u16 queue_size, u16 notify_offset);
void reclaim_buffer_chain(u16 chain_start_index, u16 chain_end_index, size_t length_of_chain);
PhysicalAddress to_physical(void const* ptr) const
{
auto offset = FlatPtr(ptr) - m_queue_region->vaddr().get();
return m_queue_region->physical_page(0)->paddr().offset(offset);
}
struct [[gnu::packed]] QueueDescriptor {
u64 address;
u32 length;
u16 flags;
u16 next;
};
struct [[gnu::packed]] QueueDriver {
u16 flags;
u16 index;
u16 rings[];
};
struct [[gnu::packed]] QueueDeviceItem {
u32 index;
u32 length;
};
struct [[gnu::packed]] QueueDevice {
u16 flags;
u16 index;
QueueDeviceItem rings[];
};
const u16 m_queue_size;
const u16 m_notify_offset;
u16 m_free_buffers;
u16 m_free_head { 0 };
u16 m_used_tail { 0 };
u16 m_driver_index_shadow { 0 };
QueueDescriptor* m_descriptors { nullptr };
QueueDriver* m_driver { nullptr };
QueueDevice* m_device { nullptr };
NonnullOwnPtr<Memory::Region> m_queue_region;
Spinlock<LockRank::None> m_lock {};
friend class QueueChain;
};
class QueueChain {
public:
QueueChain(Queue& queue)
: m_queue(queue)
{
}
QueueChain(Queue& queue, u16 start_index, u16 end_index, size_t chain_length)
: m_queue(queue)
, m_start_of_chain_index(start_index)
, m_end_of_chain_index(end_index)
, m_chain_length(chain_length)
{
}
QueueChain(QueueChain&& other)
: m_queue(other.m_queue)
, m_start_of_chain_index(move(other.m_start_of_chain_index))
, m_end_of_chain_index(move(other.m_end_of_chain_index))
, m_chain_length(other.m_chain_length)
, m_chain_has_writable_pages(other.m_chain_has_writable_pages)
{
other.m_start_of_chain_index = {};
other.m_end_of_chain_index = {};
other.m_chain_length = 0;
other.m_chain_has_writable_pages = false;
}
QueueChain& operator=(QueueChain&& other)
{
VERIFY(&m_queue == &other.m_queue);
ensure_chain_is_empty();
m_start_of_chain_index = other.m_start_of_chain_index;
m_end_of_chain_index = other.m_end_of_chain_index;
m_chain_length = other.m_chain_length;
m_chain_has_writable_pages = other.m_chain_has_writable_pages;
other.m_start_of_chain_index = {};
other.m_end_of_chain_index = {};
other.m_chain_length = 0;
other.m_chain_has_writable_pages = false;
return *this;
}
~QueueChain()
{
ensure_chain_is_empty();
}
[[nodiscard]] Queue& queue() const { return m_queue; }
[[nodiscard]] bool is_empty() const { return m_chain_length == 0; }
[[nodiscard]] size_t length() const { return m_chain_length; }
bool add_buffer_to_chain(PhysicalAddress buffer_start, size_t buffer_length, BufferType buffer_type);
void submit_to_queue();
void release_buffer_slots_to_queue();
void for_each(Function<void(PhysicalAddress, size_t)> callback)
{
VERIFY(m_queue.lock().is_locked());
if (!m_start_of_chain_index.has_value())
return;
auto index = m_start_of_chain_index.value();
for (size_t i = 0; i < m_chain_length; ++i) {
auto addr = m_queue.m_descriptors[index].address;
auto length = m_queue.m_descriptors[index].length;
callback(PhysicalAddress(addr), length);
index = m_queue.m_descriptors[index].next;
}
}
private:
void ensure_chain_is_empty() const
{
VERIFY(!m_start_of_chain_index.has_value());
VERIFY(!m_end_of_chain_index.has_value());
VERIFY(m_chain_length == 0);
}
Queue& m_queue;
Optional<u16> m_start_of_chain_index {};
Optional<u16> m_end_of_chain_index {};
size_t m_chain_length {};
bool m_chain_has_writable_pages { false };
};
}