ladybird/Kernel/Thread.cpp

820 lines
25 KiB
C++

#include <AK/Demangle.h>
#include <AK/StringBuilder.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibC/signal_numbers.h>
#include <LibELF/ELFLoader.h>
//#define SIGNAL_DEBUG
static FPUState s_clean_fpu_state;
u16 thread_specific_selector()
{
static u16 selector;
if (!selector) {
selector = gdt_alloc_entry();
auto& descriptor = get_gdt_entry(selector);
descriptor.dpl = 3;
descriptor.segment_present = 1;
descriptor.granularity = 0;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 1;
descriptor.type = 2;
}
return selector;
}
Descriptor& thread_specific_descriptor()
{
return get_gdt_entry(thread_specific_selector());
}
HashTable<Thread*>& thread_table()
{
ASSERT_INTERRUPTS_DISABLED();
static HashTable<Thread*>* table;
if (!table)
table = new HashTable<Thread*>;
return *table;
}
Thread::Thread(Process& process)
: m_process(process)
, m_name(process.name())
{
if (m_process.m_thread_count == 0) {
// First thread gets TID == PID
m_tid = process.pid();
} else {
m_tid = Process::allocate_pid();
}
process.m_thread_count++;
dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
set_default_signal_dispositions();
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
memcpy(m_fpu_state, &s_clean_fpu_state, sizeof(FPUState));
memset(&m_tss, 0, sizeof(m_tss));
m_tss.iomapbase = sizeof(TSS32);
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
u16 cs, ds, ss, gs;
if (m_process.is_ring0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
gs = 0;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
gs = thread_specific_selector() | 3;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = gs;
m_tss.ss = ss;
m_tss.cs = cs;
m_tss.cr3 = m_process.page_directory().cr3();
if (m_process.is_ring0()) {
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
m_kernel_stack_region->set_stack(true);
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
m_tss.esp = m_kernel_stack_top;
} else {
// Ring3 processes need a separate stack for Ring0.
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
m_kernel_stack_region->set_stack(true);
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_kernel_stack_top;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_process.pid();
m_far_ptr.offset = 0x98765432;
if (m_process.pid() != 0) {
InterruptDisabler disabler;
thread_table().set(this);
Scheduler::init_thread(*this);
}
}
Thread::~Thread()
{
dbgprintf("~Thread{%p}\n", this);
kfree_aligned(m_fpu_state);
{
InterruptDisabler disabler;
thread_table().remove(this);
}
if (selector())
gdt_free_entry(selector());
ASSERT(m_process.m_thread_count);
m_process.m_thread_count--;
}
void Thread::unblock()
{
if (current == this) {
set_state(Thread::Running);
return;
}
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
set_state(Thread::Runnable);
}
void Thread::set_should_die()
{
if (m_should_die) {
dbgprintf("Should already die (%u)\n", m_tid);
return;
}
InterruptDisabler disabler;
// Remember that we should die instead of returning to
// the userspace.
m_should_die = true;
if (is_blocked()) {
ASSERT(in_kernel());
ASSERT(m_blocker != nullptr);
// We're blocked in the kernel.
m_blocker->set_interrupted_by_death();
unblock();
} else if (!in_kernel()) {
// We're executing in userspace (and we're clearly
// not the current thread). No need to unwind, so
// set the state to dying right away. This also
// makes sure we won't be scheduled anymore.
set_state(Thread::State::Dying);
}
}
void Thread::die_if_needed()
{
ASSERT(current == this);
if (!m_should_die)
return;
m_process.big_lock().unlock_if_locked();
InterruptDisabler disabler;
set_state(Thread::State::Dying);
if (!Scheduler::is_active())
Scheduler::pick_next_and_switch_now();
}
void Thread::yield_without_holding_big_lock()
{
bool did_unlock = process().big_lock().unlock_if_locked();
Scheduler::yield();
if (did_unlock)
process().big_lock().lock();
}
bool Thread::unlock_process_if_locked()
{
return process().big_lock().unlock_if_locked();
}
void Thread::relock_process()
{
process().big_lock().lock();
}
u64 Thread::sleep(u32 ticks)
{
ASSERT(state() == Thread::Running);
u64 wakeup_time = g_uptime + ticks;
auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
if (wakeup_time > g_uptime) {
ASSERT(ret != Thread::BlockResult::WokeNormally);
}
return wakeup_time;
}
u64 Thread::sleep_until(u64 wakeup_time)
{
ASSERT(state() == Thread::Running);
auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
if (wakeup_time > g_uptime)
ASSERT(ret != Thread::BlockResult::WokeNormally);
return wakeup_time;
}
const char* Thread::state_string() const
{
switch (state()) {
case Thread::Invalid:
return "Invalid";
case Thread::Runnable:
return "Runnable";
case Thread::Running:
return "Running";
case Thread::Dying:
return "Dying";
case Thread::Dead:
return "Dead";
case Thread::Stopped:
return "Stopped";
case Thread::Skip1SchedulerPass:
return "Skip1";
case Thread::Skip0SchedulerPasses:
return "Skip0";
case Thread::Queued:
return "Queued";
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
return m_blocker->state_string();
}
kprintf("Thread::state_string(): Invalid state: %u\n", state());
ASSERT_NOT_REACHED();
return nullptr;
}
void Thread::finalize()
{
ASSERT(current == g_finalizer);
dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
set_state(Thread::State::Dead);
if (m_joiner) {
ASSERT(m_joiner->m_joinee == this);
static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_joinee_exit_value(m_exit_value);
m_joiner->m_joinee = nullptr;
// NOTE: We clear the joiner pointer here as well, to be tidy.
m_joiner = nullptr;
}
if (m_dump_backtrace_on_finalization)
dbg() << backtrace_impl();
}
void Thread::finalize_dying_threads()
{
ASSERT(current == g_finalizer);
Vector<Thread*, 32> dying_threads;
{
InterruptDisabler disabler;
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
dying_threads.append(&thread);
return IterationDecision::Continue;
});
}
dbgprintf("Finalizing %u dying threads\n", dying_threads.size());
for (auto* thread : dying_threads) {
auto& process = thread->process();
thread->finalize();
delete thread;
if (process.m_thread_count == 0)
process.finalize();
}
dbgprintf("Done\n");
}
bool Thread::tick()
{
++m_ticks;
if (tss().cs & 3)
++m_process.m_ticks_in_user;
else
++m_process.m_ticks_in_kernel;
return --m_ticks_left;
}
void Thread::send_signal(u8 signal, Process* sender)
{
ASSERT(signal < 32);
InterruptDisabler disabler;
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
if (should_ignore_signal(signal)) {
dbg() << "signal " << signal << " was ignored by " << process();
return;
}
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
m_pending_signals |= 1 << (signal - 1);
}
// Certain exceptions, such as SIGSEGV and SIGILL, put a
// thread into a state where the signal handler must be
// invoked immediately, otherwise it will continue to fault.
// This function should be used in an exception handler to
// ensure that when the thread resumes, it's executing in
// the appropriate signal handler.
void Thread::send_urgent_signal_to_self(u8 signal)
{
// FIXME: because of a bug in dispatch_signal we can't
// setup a signal while we are the current thread. Because of
// this we use a work-around where we send the signal and then
// block, allowing the scheduler to properly dispatch the signal
// before the thread is next run.
send_signal(signal, &process());
(void)block<SemiPermanentBlocker>(SemiPermanentBlocker::Reason::Signal);
}
bool Thread::has_unmasked_pending_signals() const
{
return m_pending_signals & ~m_signal_mask;
}
ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
u32 signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
u8 signal = 1;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << (signal - 1))) {
break;
}
}
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
DefaultSignalAction default_signal_action(u8 signal)
{
ASSERT(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
case SIGPWR:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
ASSERT_NOT_REACHED();
}
bool Thread::should_ignore_signal(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
if (action.handler_or_sigaction.is_null())
return default_signal_action(signal) == DefaultSignalAction::Ignore;
if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
return true;
return false;
}
bool Thread::has_signal_handler(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
return !action.handler_or_sigaction.is_null();
}
static void push_value_on_user_stack(u32* stack, u32 data)
{
*stack -= 4;
copy_to_user((u32*)*stack, &data, sizeof(u32));
}
ShouldUnblockThread Thread::dispatch_signal(u8 signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal > 0 && signal <= 32);
ASSERT(!process().is_ring0());
#ifdef SIGNAL_DEBUG
kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
#endif
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << (signal - 1));
if (signal == SIGSTOP) {
set_state(Stopped);
return ShouldUnblockThread::No;
}
if (signal == SIGCONT && state() == Stopped)
set_state(Runnable);
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
set_state(Stopped);
return ShouldUnblockThread::No;
case DefaultSignalAction::DumpCore:
process().for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
return IterationDecision::Continue;
});
[[fallthrough]];
case DefaultSignalAction::Terminate:
m_process.terminate_due_to_signal(signal);
return ShouldUnblockThread::No;
case DefaultSignalAction::Ignore:
ASSERT_NOT_REACHED();
case DefaultSignalAction::Continue:
return ShouldUnblockThread::Yes;
}
ASSERT_NOT_REACHED();
}
if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
#endif
return ShouldUnblockThread::Yes;
}
ProcessPagingScope paging_scope(m_process);
u32 old_signal_mask = m_signal_mask;
u32 new_signal_mask = action.mask;
if (action.flags & SA_NODEFER)
new_signal_mask &= ~(1 << (signal - 1));
else
new_signal_mask |= 1 << (signal - 1);
m_signal_mask |= new_signal_mask;
auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32 * stack)
{
u32 old_esp = *stack;
u32 ret_eip = state.eip;
u32 ret_eflags = state.eflags;
// Align the stack to 16 bytes.
// Note that we push 56 bytes (4 * 14) on to the stack,
// so we need to account for this here.
u32 stack_alignment = (*stack - 56) % 16;
*stack -= stack_alignment;
push_value_on_user_stack(stack, ret_eflags);
push_value_on_user_stack(stack, ret_eip);
push_value_on_user_stack(stack, state.eax);
push_value_on_user_stack(stack, state.ecx);
push_value_on_user_stack(stack, state.edx);
push_value_on_user_stack(stack, state.ebx);
push_value_on_user_stack(stack, old_esp);
push_value_on_user_stack(stack, state.ebp);
push_value_on_user_stack(stack, state.esi);
push_value_on_user_stack(stack, state.edi);
// PUSH old_signal_mask
push_value_on_user_stack(stack, old_signal_mask);
push_value_on_user_stack(stack, signal);
push_value_on_user_stack(stack, handler_vaddr.get());
push_value_on_user_stack(stack, 0); //push fake return address
ASSERT((*stack % 16) == 0);
};
// We now place the thread state on the userspace stack.
// Note that when we are in the kernel (ie. blocking) we cannot use the
// tss, as that will contain kernel state; instead, we use a RegisterDump.
// Conversely, when the thread isn't blocking the RegisterDump may not be
// valid (fork, exec etc) but the tss will, so we use that instead.
if (!in_kernel()) {
u32* stack = &m_tss.esp;
setup_stack(m_tss, stack);
Scheduler::prepare_to_modify_tss(*this);
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = thread_specific_selector() | 3;
m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
} else {
auto& regs = get_register_dump_from_stack();
u32* stack = &regs.userspace_esp;
setup_stack(regs, stack);
regs.eip = g_return_to_ring3_from_signal_trampoline.get();
}
#ifdef SIGNAL_DEBUG
kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), state_string(), m_tss.cs, m_tss.eip);
#endif
return ShouldUnblockThread::Yes;
}
void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
}
void Thread::push_value_on_stack(u32 value)
{
m_tss.esp -= 4;
u32* stack_ptr = (u32*)m_tss.esp;
copy_to_user(stack_ptr, &value, sizeof(value));
}
RegisterDump& Thread::get_register_dump_from_stack()
{
// The userspace registers should be stored at the top of the stack
// We have to subtract 2 because the processor decrements the kernel
// stack before pushing the args.
return *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump));
}
u32 Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
{
auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
ASSERT(region);
region->set_stack(true);
u32 new_esp = region->vaddr().offset(default_userspace_stack_size).get();
// FIXME: This is weird, we put the argument contents at the base of the stack,
// and the argument pointers at the top? Why?
char* stack_base = (char*)region->vaddr().get();
int argc = arguments.size();
char** argv = (char**)stack_base;
char** env = argv + arguments.size() + 1;
char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
SmapDisabler disabler;
for (int i = 0; i < arguments.size(); ++i) {
argv[i] = bufptr;
memcpy(bufptr, arguments[i].characters(), arguments[i].length());
bufptr += arguments[i].length();
*(bufptr++) = '\0';
}
argv[arguments.size()] = nullptr;
for (int i = 0; i < environment.size(); ++i) {
env[i] = bufptr;
memcpy(bufptr, environment[i].characters(), environment[i].length());
bufptr += environment[i].length();
*(bufptr++) = '\0';
}
env[environment.size()] = nullptr;
auto push_on_new_stack = [&new_esp](u32 value) {
new_esp -= 4;
u32* stack_ptr = (u32*)new_esp;
*stack_ptr = value;
};
// NOTE: The stack needs to be 16-byte aligned.
push_on_new_stack((u32)env);
push_on_new_stack((u32)argv);
push_on_new_stack((u32)argc);
push_on_new_stack(0);
return new_esp;
}
Thread* Thread::clone(Process& process)
{
auto* clone = new Thread(process);
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
clone->m_signal_mask = m_signal_mask;
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
clone->m_thread_specific_data = m_thread_specific_data;
return clone;
}
void Thread::initialize()
{
Scheduler::initialize();
asm volatile("fninit");
asm volatile("fxsave %0"
: "=m"(s_clean_fpu_state));
}
Vector<Thread*> Thread::all_threads()
{
Vector<Thread*> threads;
InterruptDisabler disabler;
threads.ensure_capacity(thread_table().size());
for (auto* thread : thread_table())
threads.unchecked_append(thread);
return threads;
}
bool Thread::is_thread(void* ptr)
{
ASSERT_INTERRUPTS_DISABLED();
return thread_table().contains((Thread*)ptr);
}
void Thread::set_state(State new_state)
{
InterruptDisabler disabler;
if (new_state == m_state)
return;
if (new_state == Blocked) {
// we should always have a Blocker while blocked
ASSERT(m_blocker != nullptr);
}
m_state = new_state;
if (m_process.pid() != 0) {
Scheduler::update_state_for_thread(*this);
}
if (new_state == Dying)
g_finalizer_wait_queue->wake_all();
}
String Thread::backtrace(ProcessInspectionHandle&) const
{
return backtrace_impl();
}
String Thread::backtrace_impl() const
{
u32 start_frame;
if (current == this) {
asm volatile("movl %%ebp, %%eax"
: "=a"(start_frame));
} else {
start_frame = frame_ptr();
}
auto& process = const_cast<Process&>(this->process());
ProcessPagingScope paging_scope(process);
struct RecognizedSymbol {
u32 address;
const KSym* ksym;
};
StringBuilder builder;
Vector<RecognizedSymbol, 128> recognized_symbols;
if (current != this)
recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
u32 stack_ptr = start_frame;
for (;;) {
if (!process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2))
break;
u32 retaddr;
copy_from_user(&retaddr, &((u32*)stack_ptr)[1]);
recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
copy_from_user(&stack_ptr, (u32*)stack_ptr);
}
bool mask_kernel_addresses = !current->process().is_superuser();
for (auto& symbol : recognized_symbols) {
if (!symbol.address)
break;
if (!symbol.ksym) {
if (!is_user_address(VirtualAddress(symbol.address))) {
builder.append("0xdeadc0de\n");
} else {
if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
builder.appendf("%p %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
else
builder.appendf("%p\n", symbol.address);
}
continue;
}
unsigned offset = symbol.address - symbol.ksym->address;
if (symbol.ksym->address == ksym_highest_address && offset > 4096) {
builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
} else {
builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.ksym->name).characters(), offset);
}
}
return builder.to_string();
}
Vector<u32> Thread::raw_backtrace(u32 ebp) const
{
auto& process = const_cast<Process&>(this->process());
ProcessPagingScope paging_scope(process);
Vector<u32> backtrace;
backtrace.append(ebp);
for (u32* stack_ptr = (u32*)ebp; process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2); stack_ptr = (u32*)*stack_ptr) {
u32 retaddr = stack_ptr[1];
backtrace.append(retaddr);
}
return backtrace;
}
void Thread::make_thread_specific_region(Badge<Process>)
{
size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
SmapDisabler disabler;
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
thread_specific_data->self = thread_specific_data;
if (process().m_master_tls_size)
memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
}
const LogStream& operator<<(const LogStream& stream, const Thread& value)
{
return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
}
void Thread::wait_on(WaitQueue& queue, Thread* beneficiary, const char* reason)
{
bool did_unlock = unlock_process_if_locked();
cli();
set_state(State::Queued);
queue.enqueue(*current);
// Yield and wait for the queue to wake us up again.
if (beneficiary)
Scheduler::donate_to(beneficiary, reason);
else
Scheduler::yield();
// We've unblocked, relock the process if needed and carry on.
if (did_unlock)
relock_process();
}
void Thread::wake_from_queue()
{
ASSERT(state() == State::Queued);
set_state(State::Runnable);
}
Thread* Thread::from_tid(int tid)
{
InterruptDisabler disabler;
Thread* found_thread = nullptr;
Thread::for_each([&](auto& thread) {
if (thread.tid() == tid) {
found_thread = &thread;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
return found_thread;
}