mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-22 17:24:48 -05:00
f61e54b10c
No longer needed after switching to Skia.
1299 lines
52 KiB
C++
1299 lines
52 KiB
C++
/*
|
|
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
|
|
* Copyright (c) 2021, Mustafa Quraish <mustafa@serenityos.org>
|
|
* Copyright (c) 2021, Sam Atkins <atkinssj@serenityos.org>
|
|
* Copyright (c) 2022, Tobias Christiansen <tobyase@serenityos.org>
|
|
* Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
|
|
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "Painter.h"
|
|
#include "Bitmap.h"
|
|
#include "Font/Font.h"
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Function.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/Memory.h>
|
|
#include <AK/Stack.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Utf8View.h>
|
|
#include <LibGfx/Palette.h>
|
|
#include <LibGfx/Path.h>
|
|
#include <LibGfx/Quad.h>
|
|
#include <LibGfx/TextLayout.h>
|
|
#include <stdio.h>
|
|
|
|
#if defined(AK_COMPILER_GCC)
|
|
# pragma GCC optimize("O3")
|
|
#endif
|
|
|
|
namespace Gfx {
|
|
|
|
template<BitmapFormat format = BitmapFormat::Invalid>
|
|
ALWAYS_INLINE Color get_pixel(Gfx::Bitmap const& bitmap, int x, int y)
|
|
{
|
|
if constexpr (format == BitmapFormat::BGRx8888)
|
|
return Color::from_rgb(bitmap.scanline(y)[x]);
|
|
if constexpr (format == BitmapFormat::BGRA8888)
|
|
return Color::from_argb(bitmap.scanline(y)[x]);
|
|
return bitmap.get_pixel(x, y);
|
|
}
|
|
|
|
Painter::Painter(Gfx::Bitmap& bitmap)
|
|
: m_target(bitmap)
|
|
{
|
|
VERIFY(bitmap.format() == Gfx::BitmapFormat::BGRx8888 || bitmap.format() == Gfx::BitmapFormat::BGRA8888);
|
|
m_state_stack.append(State());
|
|
state().clip_rect = { { 0, 0 }, bitmap.size() };
|
|
m_clip_origin = state().clip_rect;
|
|
}
|
|
|
|
void Painter::clear_rect(IntRect const& a_rect, Color color)
|
|
{
|
|
auto rect = a_rect.translated(translation()).intersected(clip_rect());
|
|
if (rect.is_empty())
|
|
return;
|
|
|
|
VERIFY(target().rect().contains(rect));
|
|
|
|
ARGB32* dst = target().scanline(rect.top()) + rect.left();
|
|
size_t const dst_skip = target().pitch() / sizeof(ARGB32);
|
|
|
|
for (int i = rect.height() - 1; i >= 0; --i) {
|
|
fast_u32_fill(dst, color.value(), rect.width());
|
|
dst += dst_skip;
|
|
}
|
|
}
|
|
|
|
void Painter::fill_physical_rect(IntRect const& physical_rect, Color color)
|
|
{
|
|
// Callers must do clipping.
|
|
ARGB32* dst = target().scanline(physical_rect.top()) + physical_rect.left();
|
|
size_t const dst_skip = target().pitch() / sizeof(ARGB32);
|
|
|
|
auto dst_format = target().format();
|
|
for (int i = physical_rect.height() - 1; i >= 0; --i) {
|
|
for (int j = 0; j < physical_rect.width(); ++j)
|
|
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
|
|
dst += dst_skip;
|
|
}
|
|
}
|
|
|
|
void Painter::fill_rect(IntRect const& a_rect, Color color)
|
|
{
|
|
if (color.alpha() == 0)
|
|
return;
|
|
|
|
if (color.alpha() == 0xff) {
|
|
clear_rect(a_rect, color);
|
|
return;
|
|
}
|
|
|
|
auto rect = a_rect.translated(translation()).intersected(clip_rect());
|
|
if (rect.is_empty())
|
|
return;
|
|
VERIFY(target().rect().contains(rect));
|
|
|
|
fill_physical_rect(rect, color);
|
|
}
|
|
|
|
void Painter::fill_rect(IntRect const& rect, PaintStyle const& paint_style)
|
|
{
|
|
auto a_rect = rect.translated(translation());
|
|
auto clipped_rect = a_rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
auto start_offset = clipped_rect.location() - a_rect.location();
|
|
paint_style.paint(a_rect, [&](PaintStyle::SamplerFunction sample) {
|
|
for (int y = 0; y < clipped_rect.height(); ++y) {
|
|
for (int x = 0; x < clipped_rect.width(); ++x) {
|
|
IntPoint point(x, y);
|
|
set_physical_pixel(point + clipped_rect.location(), sample(point + start_offset), true);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
void Painter::fill_rect_with_gradient(Orientation orientation, IntRect const& a_rect, Color gradient_start, Color gradient_end)
|
|
{
|
|
if (gradient_start == gradient_end) {
|
|
fill_rect(a_rect, gradient_start);
|
|
return;
|
|
}
|
|
return fill_rect_with_linear_gradient(a_rect, Array { ColorStop { gradient_start, 0 }, ColorStop { gradient_end, 1 } }, orientation == Orientation::Horizontal ? 90.0f : 0.0f);
|
|
}
|
|
|
|
void Painter::fill_rect_with_gradient(IntRect const& a_rect, Color gradient_start, Color gradient_end)
|
|
{
|
|
return fill_rect_with_gradient(Orientation::Horizontal, a_rect, gradient_start, gradient_end);
|
|
}
|
|
|
|
void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
|
|
{
|
|
return fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
|
|
}
|
|
|
|
void Painter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
|
|
{
|
|
// Fasttrack for rects without any border radii
|
|
if (!top_left_radius && !top_right_radius && !bottom_right_radius && !bottom_left_radius)
|
|
return fill_rect(a_rect, color);
|
|
|
|
// Fully transparent, dont care.
|
|
if (color.alpha() == 0)
|
|
return;
|
|
|
|
// FIXME: Allow for elliptically rounded corners
|
|
IntRect top_left_corner = {
|
|
a_rect.x(),
|
|
a_rect.y(),
|
|
top_left_radius,
|
|
top_left_radius
|
|
};
|
|
IntRect top_right_corner = {
|
|
a_rect.x() + a_rect.width() - top_right_radius,
|
|
a_rect.y(),
|
|
top_right_radius,
|
|
top_right_radius
|
|
};
|
|
IntRect bottom_right_corner = {
|
|
a_rect.x() + a_rect.width() - bottom_right_radius,
|
|
a_rect.y() + a_rect.height() - bottom_right_radius,
|
|
bottom_right_radius,
|
|
bottom_right_radius
|
|
};
|
|
IntRect bottom_left_corner = {
|
|
a_rect.x(),
|
|
a_rect.y() + a_rect.height() - bottom_left_radius,
|
|
bottom_left_radius,
|
|
bottom_left_radius
|
|
};
|
|
|
|
IntRect top_rect = {
|
|
a_rect.x() + top_left_radius,
|
|
a_rect.y(),
|
|
a_rect.width() - top_left_radius - top_right_radius, top_left_radius
|
|
};
|
|
IntRect right_rect = {
|
|
a_rect.x() + a_rect.width() - top_right_radius,
|
|
a_rect.y() + top_right_radius,
|
|
top_right_radius,
|
|
a_rect.height() - top_right_radius - bottom_right_radius
|
|
};
|
|
IntRect bottom_rect = {
|
|
a_rect.x() + bottom_left_radius,
|
|
a_rect.y() + a_rect.height() - bottom_right_radius,
|
|
a_rect.width() - bottom_left_radius - bottom_right_radius,
|
|
bottom_right_radius
|
|
};
|
|
IntRect left_rect = {
|
|
a_rect.x(),
|
|
a_rect.y() + top_left_radius,
|
|
bottom_left_radius,
|
|
a_rect.height() - top_left_radius - bottom_left_radius
|
|
};
|
|
|
|
IntRect inner = {
|
|
left_rect.x() + left_rect.width(),
|
|
left_rect.y(),
|
|
a_rect.width() - left_rect.width() - right_rect.width(),
|
|
a_rect.height() - top_rect.height() - bottom_rect.height()
|
|
};
|
|
|
|
fill_rect(top_rect, color);
|
|
fill_rect(right_rect, color);
|
|
fill_rect(bottom_rect, color);
|
|
fill_rect(left_rect, color);
|
|
|
|
fill_rect(inner, color);
|
|
|
|
if (top_left_radius)
|
|
fill_rounded_corner(top_left_corner, top_left_radius, color, CornerOrientation::TopLeft);
|
|
if (top_right_radius)
|
|
fill_rounded_corner(top_right_corner, top_right_radius, color, CornerOrientation::TopRight);
|
|
if (bottom_left_radius)
|
|
fill_rounded_corner(bottom_left_corner, bottom_left_radius, color, CornerOrientation::BottomLeft);
|
|
if (bottom_right_radius)
|
|
fill_rounded_corner(bottom_right_corner, bottom_right_radius, color, CornerOrientation::BottomRight);
|
|
}
|
|
|
|
void Painter::fill_rounded_corner(IntRect const& a_rect, int radius, Color color, CornerOrientation orientation)
|
|
{
|
|
// Care about clipping
|
|
auto translated_a_rect = a_rect.translated(translation());
|
|
auto rect = translated_a_rect.intersected(clip_rect());
|
|
|
|
if (rect.is_empty())
|
|
return;
|
|
VERIFY(target().rect().contains(rect));
|
|
|
|
// We got cut on the top!
|
|
// FIXME: Also account for clipping on the x-axis
|
|
int clip_offset = 0;
|
|
if (translated_a_rect.y() < rect.y())
|
|
clip_offset = rect.y() - translated_a_rect.y();
|
|
|
|
ARGB32* dst = target().scanline(rect.top()) + rect.left();
|
|
size_t const dst_skip = target().pitch() / sizeof(ARGB32);
|
|
|
|
IntPoint circle_center;
|
|
switch (orientation) {
|
|
case CornerOrientation::TopLeft:
|
|
circle_center = { radius, radius + 1 };
|
|
break;
|
|
case CornerOrientation::TopRight:
|
|
circle_center = { -1, radius + 1 };
|
|
break;
|
|
case CornerOrientation::BottomRight:
|
|
circle_center = { -1, 0 };
|
|
break;
|
|
case CornerOrientation::BottomLeft:
|
|
circle_center = { radius, 0 };
|
|
break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
int radius2 = radius * radius;
|
|
auto is_in_circle = [&](int x, int y) {
|
|
int distance2 = (circle_center.x() - x) * (circle_center.x() - x) + (circle_center.y() - y) * (circle_center.y() - y);
|
|
// To reflect the grid and be compatible with the draw_circle_arc_intersecting algorithm
|
|
// add 1/2 to the radius
|
|
return distance2 <= (radius2 + radius + 0.25);
|
|
};
|
|
|
|
auto dst_format = target().format();
|
|
for (int i = rect.height() - 1; i >= 0; --i) {
|
|
for (int j = 0; j < rect.width(); ++j)
|
|
if (is_in_circle(j, rect.height() - i + clip_offset))
|
|
dst[j] = color_for_format(dst_format, dst[j]).blend(color).value();
|
|
dst += dst_skip;
|
|
}
|
|
}
|
|
|
|
// The callback will only be called for a quarter of the ellipse, the user is intended to deduce other points.
|
|
// As the coordinate space is relative to the center of the rectangle, it's simply (x, y), (x, -y), (-x, y) and (-x, -y).
|
|
static void on_each_ellipse_point(IntRect const& rect, Function<void(IntPoint)>&& callback)
|
|
{
|
|
// Note: This is an implementation of the Midpoint Ellipse Algorithm.
|
|
double const a = rect.width() / 2;
|
|
double const a_square = a * a;
|
|
double const b = rect.height() / 2;
|
|
double const b_square = b * b;
|
|
|
|
int x = 0;
|
|
auto y = static_cast<int>(b);
|
|
|
|
double dx = 2 * b_square * x;
|
|
double dy = 2 * a_square * y;
|
|
|
|
// For region 1:
|
|
auto decision_parameter = b_square - a_square * b + .25 * a_square;
|
|
|
|
while (dx < dy) {
|
|
callback({ x, y });
|
|
|
|
if (decision_parameter >= 0) {
|
|
y--;
|
|
dy -= 2 * a_square;
|
|
decision_parameter -= dy;
|
|
}
|
|
x++;
|
|
dx += 2 * b_square;
|
|
decision_parameter += dx + b_square;
|
|
}
|
|
|
|
// For region 2:
|
|
decision_parameter = b_square * ((x + 0.5) * (x + 0.5)) + a_square * ((y - 1) * (y - 1)) - a_square * b_square;
|
|
|
|
while (y >= 0) {
|
|
callback({ x, y });
|
|
|
|
if (decision_parameter <= 0) {
|
|
x++;
|
|
dx += 2 * b_square;
|
|
decision_parameter += dx;
|
|
}
|
|
y--;
|
|
dy -= 2 * a_square;
|
|
decision_parameter += a_square - dy;
|
|
}
|
|
}
|
|
|
|
void Painter::fill_ellipse(IntRect const& a_rect, Color color)
|
|
{
|
|
auto rect = a_rect.translated(translation()).intersected(clip_rect());
|
|
if (rect.is_empty())
|
|
return;
|
|
|
|
VERIFY(target().rect().contains(rect));
|
|
|
|
auto const center = a_rect.center();
|
|
|
|
on_each_ellipse_point(rect, [this, &color, center](IntPoint position) {
|
|
IntPoint const directions[4] = { { position.x(), position.y() }, { -position.x(), position.y() }, { position.x(), -position.y() }, { -position.x(), -position.y() } };
|
|
|
|
draw_line(center + directions[0], center + directions[1], color);
|
|
draw_line(center + directions[2], center + directions[3], color);
|
|
});
|
|
}
|
|
|
|
template<typename RectType, typename Callback>
|
|
static void for_each_pixel_around_rect_clockwise(RectType const& rect, Callback callback)
|
|
{
|
|
if (rect.is_empty())
|
|
return;
|
|
for (auto x = rect.left(); x < rect.right(); ++x)
|
|
callback(x, rect.top());
|
|
for (auto y = rect.top() + 1; y < rect.bottom(); ++y)
|
|
callback(rect.right() - 1, y);
|
|
for (auto x = rect.right() - 2; x >= rect.left(); --x)
|
|
callback(x, rect.bottom() - 1);
|
|
for (auto y = rect.bottom() - 2; y > rect.top(); --y)
|
|
callback(rect.left(), y);
|
|
}
|
|
|
|
void Painter::draw_rect(IntRect const& a_rect, Color color, bool rough)
|
|
{
|
|
IntRect rect = a_rect.translated(translation());
|
|
auto clipped_rect = rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
|
|
int min_y = clipped_rect.top();
|
|
int max_y = clipped_rect.bottom() - 1;
|
|
|
|
if (rect.top() >= clipped_rect.top() && rect.top() < clipped_rect.bottom()) {
|
|
int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width();
|
|
if (width > 0) {
|
|
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
|
|
fill_physical_scanline(rect.top(), start_x, width, color);
|
|
}
|
|
++min_y;
|
|
}
|
|
if (rect.bottom() > clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) {
|
|
int width = rough ? max(0, min(rect.width() - 2, clipped_rect.width())) : clipped_rect.width();
|
|
if (width > 0) {
|
|
int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x();
|
|
fill_physical_scanline(max_y, start_x, width, color);
|
|
}
|
|
--max_y;
|
|
}
|
|
|
|
bool draw_left_side = rect.left() >= clipped_rect.left();
|
|
bool draw_right_side = rect.right() == clipped_rect.right();
|
|
|
|
if (draw_left_side && draw_right_side) {
|
|
// Specialized loop when drawing both sides.
|
|
for (int y = min_y; y <= max_y; ++y) {
|
|
auto* bits = target().scanline(y);
|
|
set_physical_pixel(bits[rect.left()], color);
|
|
set_physical_pixel(bits[(rect.right() - 1)], color);
|
|
}
|
|
} else {
|
|
for (int y = min_y; y <= max_y; ++y) {
|
|
auto* bits = target().scanline(y);
|
|
if (draw_left_side)
|
|
set_physical_pixel(bits[rect.left()], color);
|
|
if (draw_right_side)
|
|
set_physical_pixel(bits[(rect.right() - 1)], color);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct BlitState {
|
|
enum AlphaState {
|
|
NoAlpha = 0,
|
|
SrcAlpha = 1,
|
|
DstAlpha = 2,
|
|
BothAlpha = SrcAlpha | DstAlpha
|
|
};
|
|
|
|
ARGB32 const* src;
|
|
ARGB32* dst;
|
|
size_t src_pitch;
|
|
size_t dst_pitch;
|
|
int row_count;
|
|
int column_count;
|
|
float opacity;
|
|
BitmapFormat src_format;
|
|
};
|
|
|
|
// FIXME: This is a hack to support blit_with_opacity() with RGBA8888 source.
|
|
// Ideally we'd have a more generic solution that allows any source format.
|
|
static void swap_red_and_blue_channels(Color& color)
|
|
{
|
|
u32 rgba = color.value();
|
|
u32 bgra = (rgba & 0xff00ff00)
|
|
| ((rgba & 0x000000ff) << 16)
|
|
| ((rgba & 0x00ff0000) >> 16);
|
|
color = Color::from_argb(bgra);
|
|
}
|
|
|
|
// FIXME: This function is very unoptimized.
|
|
template<BlitState::AlphaState has_alpha>
|
|
static void do_blit_with_opacity(BlitState& state)
|
|
{
|
|
for (int row = 0; row < state.row_count; ++row) {
|
|
for (int x = 0; x < state.column_count; ++x) {
|
|
Color dest_color = (has_alpha & BlitState::DstAlpha) ? Color::from_argb(state.dst[x]) : Color::from_rgb(state.dst[x]);
|
|
if constexpr (has_alpha & BlitState::SrcAlpha) {
|
|
Color src_color_with_alpha = Color::from_argb(state.src[x]);
|
|
if (state.src_format == BitmapFormat::RGBA8888)
|
|
swap_red_and_blue_channels(src_color_with_alpha);
|
|
float pixel_opacity = src_color_with_alpha.alpha() / 255.0;
|
|
src_color_with_alpha.set_alpha(255 * (state.opacity * pixel_opacity));
|
|
state.dst[x] = dest_color.blend(src_color_with_alpha).value();
|
|
} else {
|
|
Color src_color_with_alpha = Color::from_rgb(state.src[x]);
|
|
if (state.src_format == BitmapFormat::RGBA8888)
|
|
swap_red_and_blue_channels(src_color_with_alpha);
|
|
src_color_with_alpha.set_alpha(state.opacity * 255);
|
|
state.dst[x] = dest_color.blend(src_color_with_alpha).value();
|
|
}
|
|
}
|
|
state.dst += state.dst_pitch;
|
|
state.src += state.src_pitch;
|
|
}
|
|
}
|
|
|
|
void Painter::blit_with_opacity(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, float opacity, bool apply_alpha)
|
|
{
|
|
if (opacity >= 1.0f && !(source.has_alpha_channel() && apply_alpha))
|
|
return blit(position, source, src_rect);
|
|
|
|
IntRect safe_src_rect = IntRect::intersection(src_rect, source.rect());
|
|
|
|
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
|
|
auto clipped_rect = dst_rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
|
|
int const first_row = clipped_rect.top() - dst_rect.top();
|
|
int const last_row = clipped_rect.bottom() - dst_rect.top();
|
|
int const first_column = clipped_rect.left() - dst_rect.left();
|
|
int const last_column = clipped_rect.right() - dst_rect.left();
|
|
|
|
BlitState blit_state {
|
|
.src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column,
|
|
.dst = target().scanline(clipped_rect.y()) + clipped_rect.x(),
|
|
.src_pitch = source.pitch() / sizeof(ARGB32),
|
|
.dst_pitch = target().pitch() / sizeof(ARGB32),
|
|
.row_count = last_row - first_row,
|
|
.column_count = last_column - first_column,
|
|
.opacity = opacity,
|
|
.src_format = source.format(),
|
|
};
|
|
|
|
if (source.has_alpha_channel() && apply_alpha) {
|
|
if (target().has_alpha_channel())
|
|
do_blit_with_opacity<BlitState::BothAlpha>(blit_state);
|
|
else
|
|
do_blit_with_opacity<BlitState::SrcAlpha>(blit_state);
|
|
} else {
|
|
if (target().has_alpha_channel())
|
|
do_blit_with_opacity<BlitState::DstAlpha>(blit_state);
|
|
else
|
|
do_blit_with_opacity<BlitState::NoAlpha>(blit_state);
|
|
}
|
|
}
|
|
|
|
void Painter::blit_filtered(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, Function<Color(Color)> const& filter, bool apply_alpha)
|
|
{
|
|
IntRect safe_src_rect = src_rect.intersected(source.rect());
|
|
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
|
|
auto clipped_rect = dst_rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
|
|
int const first_row = clipped_rect.top() - dst_rect.top();
|
|
int const last_row = clipped_rect.bottom() - dst_rect.top();
|
|
int const first_column = clipped_rect.left() - dst_rect.left();
|
|
int const last_column = clipped_rect.right() - dst_rect.left();
|
|
ARGB32* dst = target().scanline(clipped_rect.y()) + clipped_rect.x();
|
|
size_t const dst_skip = target().pitch() / sizeof(ARGB32);
|
|
auto dst_format = target().format();
|
|
auto src_format = source.format();
|
|
|
|
ARGB32 const* src = source.scanline(safe_src_rect.top() + first_row) + safe_src_rect.left() + first_column;
|
|
size_t const src_skip = source.pitch() / sizeof(ARGB32);
|
|
|
|
for (int row = first_row; row < last_row; ++row) {
|
|
for (int x = 0; x < (last_column - first_column); ++x) {
|
|
auto source_color = color_for_format(src_format, src[x]);
|
|
if (source_color.alpha() == 0)
|
|
continue;
|
|
auto filtered_color = filter(source_color);
|
|
if (!apply_alpha || filtered_color.alpha() == 0xff)
|
|
dst[x] = filtered_color.value();
|
|
else
|
|
dst[x] = color_for_format(dst_format, dst[x]).blend(filtered_color).value();
|
|
}
|
|
dst += dst_skip;
|
|
src += src_skip;
|
|
}
|
|
}
|
|
|
|
void Painter::blit(IntPoint position, Gfx::Bitmap const& source, IntRect const& src_rect, float opacity, bool apply_alpha)
|
|
{
|
|
if (opacity < 1.0f || (source.has_alpha_channel() && apply_alpha))
|
|
return blit_with_opacity(position, source, src_rect, opacity, apply_alpha);
|
|
|
|
auto safe_src_rect = src_rect.intersected(source.rect());
|
|
|
|
// If we get here, the Painter might have a scale factor, but the source bitmap has the same scale factor.
|
|
// We need to transform from logical to physical coordinates, but we can just copy pixels without resampling.
|
|
auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation());
|
|
auto clipped_rect = dst_rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
|
|
int const first_row = clipped_rect.top() - dst_rect.top();
|
|
int const last_row = clipped_rect.bottom() - dst_rect.top();
|
|
int const first_column = clipped_rect.left() - dst_rect.left();
|
|
ARGB32* dst = target().scanline(clipped_rect.y()) + clipped_rect.x();
|
|
size_t const dst_skip = target().pitch() / sizeof(ARGB32);
|
|
|
|
if (source.format() == BitmapFormat::BGRx8888 || source.format() == BitmapFormat::BGRA8888) {
|
|
ARGB32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
|
|
size_t const src_skip = source.pitch() / sizeof(ARGB32);
|
|
for (int row = first_row; row < last_row; ++row) {
|
|
memcpy(dst, src, sizeof(ARGB32) * clipped_rect.width());
|
|
dst += dst_skip;
|
|
src += src_skip;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (source.format() == BitmapFormat::RGBA8888) {
|
|
u32 const* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column;
|
|
size_t const src_skip = source.pitch() / sizeof(u32);
|
|
for (int row = first_row; row < last_row; ++row) {
|
|
for (int i = 0; i < clipped_rect.width(); ++i) {
|
|
u32 rgba = src[i];
|
|
u32 bgra = (rgba & 0xff00ff00)
|
|
| ((rgba & 0x000000ff) << 16)
|
|
| ((rgba & 0x00ff0000) >> 16);
|
|
dst[i] = bgra;
|
|
}
|
|
dst += dst_skip;
|
|
src += src_skip;
|
|
}
|
|
return;
|
|
}
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
template<bool has_alpha_channel, typename GetPixel>
|
|
ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& src_rect, Gfx::Bitmap const& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity)
|
|
{
|
|
bool has_opacity = opacity != 1.0f;
|
|
for (int y = 0; y < src_rect.height(); ++y) {
|
|
int dst_y = dst_rect.y() + y * vfactor;
|
|
for (int x = 0; x < src_rect.width(); ++x) {
|
|
auto src_pixel = get_pixel(source, x + src_rect.left(), y + src_rect.top());
|
|
if (has_opacity)
|
|
src_pixel.set_alpha(src_pixel.alpha() * opacity);
|
|
for (int yo = 0; yo < vfactor; ++yo) {
|
|
auto* scanline = (Color*)target.scanline(dst_y + yo);
|
|
int dst_x = dst_rect.x() + x * hfactor;
|
|
for (int xo = 0; xo < hfactor; ++xo) {
|
|
if constexpr (has_alpha_channel)
|
|
scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel);
|
|
else
|
|
scanline[dst_x + xo] = src_pixel;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<bool has_alpha_channel, typename GetPixel>
|
|
ALWAYS_INLINE static void do_draw_box_sampled_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity)
|
|
{
|
|
float source_pixel_width = src_rect.width() / dst_rect.width();
|
|
float source_pixel_height = src_rect.height() / dst_rect.height();
|
|
float source_pixel_area = source_pixel_width * source_pixel_height;
|
|
FloatRect const pixel_box = { 0.f, 0.f, 1.f, 1.f };
|
|
|
|
for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) {
|
|
auto* scanline = reinterpret_cast<Color*>(target.scanline(y));
|
|
for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) {
|
|
// Project the destination pixel in the source image
|
|
FloatRect const source_box = {
|
|
src_rect.left() + (x - dst_rect.x()) * source_pixel_width,
|
|
src_rect.top() + (y - dst_rect.y()) * source_pixel_height,
|
|
source_pixel_width,
|
|
source_pixel_height,
|
|
};
|
|
IntRect enclosing_source_box = enclosing_int_rect(source_box).intersected(source.rect());
|
|
|
|
// Sum the contribution of all source pixels inside the projected pixel
|
|
float red_accumulator = 0.f;
|
|
float green_accumulator = 0.f;
|
|
float blue_accumulator = 0.f;
|
|
float total_area = 0.f;
|
|
for (int sy = enclosing_source_box.y(); sy < enclosing_source_box.bottom(); ++sy) {
|
|
for (int sx = enclosing_source_box.x(); sx < enclosing_source_box.right(); ++sx) {
|
|
float area = source_box.intersected(pixel_box.translated(sx, sy)).size().area();
|
|
|
|
auto pixel = get_pixel(source, sx, sy);
|
|
area *= pixel.alpha() / 255.f;
|
|
|
|
red_accumulator += pixel.red() * area;
|
|
green_accumulator += pixel.green() * area;
|
|
blue_accumulator += pixel.blue() * area;
|
|
total_area += area;
|
|
}
|
|
}
|
|
|
|
Color src_pixel = {
|
|
round_to<u8>(min(red_accumulator / total_area, 255.f)),
|
|
round_to<u8>(min(green_accumulator / total_area, 255.f)),
|
|
round_to<u8>(min(blue_accumulator / total_area, 255.f)),
|
|
round_to<u8>(min(total_area * 255.f / source_pixel_area * opacity, 255.f)),
|
|
};
|
|
|
|
if constexpr (has_alpha_channel)
|
|
scanline[x] = scanline[x].blend(src_pixel);
|
|
else
|
|
scanline[x] = src_pixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<bool has_alpha_channel, ScalingMode scaling_mode, typename GetPixel>
|
|
ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity)
|
|
{
|
|
auto int_src_rect = enclosing_int_rect(src_rect);
|
|
auto clipped_src_rect = int_src_rect.intersected(source.rect());
|
|
if (clipped_src_rect.is_empty())
|
|
return;
|
|
|
|
if constexpr (scaling_mode == ScalingMode::NearestNeighbor || scaling_mode == ScalingMode::SmoothPixels) {
|
|
if (dst_rect == clipped_rect && int_src_rect == src_rect && !(dst_rect.width() % int_src_rect.width()) && !(dst_rect.height() % int_src_rect.height())) {
|
|
int hfactor = dst_rect.width() / int_src_rect.width();
|
|
int vfactor = dst_rect.height() / int_src_rect.height();
|
|
if (hfactor == 2 && vfactor == 2)
|
|
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 2, 2, get_pixel, opacity);
|
|
if (hfactor == 3 && vfactor == 3)
|
|
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 3, 3, get_pixel, opacity);
|
|
if (hfactor == 4 && vfactor == 4)
|
|
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, 4, 4, get_pixel, opacity);
|
|
return do_draw_integer_scaled_bitmap<has_alpha_channel>(target, dst_rect, int_src_rect, source, hfactor, vfactor, get_pixel, opacity);
|
|
}
|
|
}
|
|
|
|
if constexpr (scaling_mode == ScalingMode::BoxSampling)
|
|
return do_draw_box_sampled_scaled_bitmap<has_alpha_channel>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
|
|
bool has_opacity = opacity != 1.f;
|
|
i64 shift = 1ll << 32;
|
|
i64 fractional_mask = shift - 1;
|
|
i64 bilinear_offset_x = (1ll << 31) * (src_rect.width() / dst_rect.width() - 1);
|
|
i64 bilinear_offset_y = (1ll << 31) * (src_rect.height() / dst_rect.height() - 1);
|
|
i64 hscale = src_rect.width() * shift / dst_rect.width();
|
|
i64 vscale = src_rect.height() * shift / dst_rect.height();
|
|
i64 src_left = src_rect.left() * shift;
|
|
i64 src_top = src_rect.top() * shift;
|
|
|
|
for (int y = clipped_rect.top(); y < clipped_rect.bottom(); ++y) {
|
|
auto* scanline = reinterpret_cast<Color*>(target.scanline(y));
|
|
auto desired_y = (y - dst_rect.y()) * vscale + src_top;
|
|
|
|
for (int x = clipped_rect.left(); x < clipped_rect.right(); ++x) {
|
|
auto desired_x = (x - dst_rect.x()) * hscale + src_left;
|
|
|
|
Color src_pixel;
|
|
if constexpr (scaling_mode == ScalingMode::BilinearBlend) {
|
|
auto shifted_x = desired_x + bilinear_offset_x;
|
|
auto shifted_y = desired_y + bilinear_offset_y;
|
|
|
|
auto scaled_x0 = clamp(shifted_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
|
|
auto scaled_x1 = clamp((shifted_x >> 32) + 1, clipped_src_rect.left(), clipped_src_rect.right() - 1);
|
|
auto scaled_y0 = clamp(shifted_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
|
|
auto scaled_y1 = clamp((shifted_y >> 32) + 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
|
|
|
|
float x_ratio = (shifted_x & fractional_mask) / static_cast<float>(shift);
|
|
float y_ratio = (shifted_y & fractional_mask) / static_cast<float>(shift);
|
|
|
|
auto top_left = get_pixel(source, scaled_x0, scaled_y0);
|
|
auto top_right = get_pixel(source, scaled_x1, scaled_y0);
|
|
auto bottom_left = get_pixel(source, scaled_x0, scaled_y1);
|
|
auto bottom_right = get_pixel(source, scaled_x1, scaled_y1);
|
|
|
|
auto top = top_left.mixed_with(top_right, x_ratio);
|
|
auto bottom = bottom_left.mixed_with(bottom_right, x_ratio);
|
|
|
|
src_pixel = top.mixed_with(bottom, y_ratio);
|
|
} else if constexpr (scaling_mode == ScalingMode::SmoothPixels) {
|
|
auto scaled_x1 = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
|
|
auto scaled_x0 = clamp(scaled_x1 - 1, clipped_src_rect.left(), clipped_src_rect.right() - 1);
|
|
auto scaled_y1 = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
|
|
auto scaled_y0 = clamp(scaled_y1 - 1, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
|
|
|
|
float x_ratio = (desired_x & fractional_mask) / (float)shift;
|
|
float y_ratio = (desired_y & fractional_mask) / (float)shift;
|
|
|
|
float scaled_x_ratio = clamp(x_ratio * dst_rect.width() / (float)src_rect.width(), 0.f, 1.f);
|
|
float scaled_y_ratio = clamp(y_ratio * dst_rect.height() / (float)src_rect.height(), 0.f, 1.f);
|
|
|
|
auto top_left = get_pixel(source, scaled_x0, scaled_y0);
|
|
auto top_right = get_pixel(source, scaled_x1, scaled_y0);
|
|
auto bottom_left = get_pixel(source, scaled_x0, scaled_y1);
|
|
auto bottom_right = get_pixel(source, scaled_x1, scaled_y1);
|
|
|
|
auto top = top_left.mixed_with(top_right, scaled_x_ratio);
|
|
auto bottom = bottom_left.mixed_with(bottom_right, scaled_x_ratio);
|
|
|
|
src_pixel = top.mixed_with(bottom, scaled_y_ratio);
|
|
} else {
|
|
auto scaled_x = clamp(desired_x >> 32, clipped_src_rect.left(), clipped_src_rect.right() - 1);
|
|
auto scaled_y = clamp(desired_y >> 32, clipped_src_rect.top(), clipped_src_rect.bottom() - 1);
|
|
src_pixel = get_pixel(source, scaled_x, scaled_y);
|
|
}
|
|
|
|
if (has_opacity)
|
|
src_pixel.set_alpha(src_pixel.alpha() * opacity);
|
|
|
|
if constexpr (has_alpha_channel)
|
|
scanline[x] = scanline[x].blend(src_pixel);
|
|
else
|
|
scanline[x] = src_pixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<bool has_alpha_channel, typename GetPixel>
|
|
ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, IntRect const& dst_rect, IntRect const& clipped_rect, Gfx::Bitmap const& source, FloatRect const& src_rect, GetPixel get_pixel, float opacity, ScalingMode scaling_mode)
|
|
{
|
|
switch (scaling_mode) {
|
|
case ScalingMode::NearestNeighbor:
|
|
do_draw_scaled_bitmap<has_alpha_channel, ScalingMode::NearestNeighbor>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
break;
|
|
case ScalingMode::SmoothPixels:
|
|
do_draw_scaled_bitmap<has_alpha_channel, ScalingMode::SmoothPixels>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
break;
|
|
case ScalingMode::BilinearBlend:
|
|
do_draw_scaled_bitmap<has_alpha_channel, ScalingMode::BilinearBlend>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
break;
|
|
case ScalingMode::BoxSampling:
|
|
do_draw_scaled_bitmap<has_alpha_channel, ScalingMode::BoxSampling>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
break;
|
|
case ScalingMode::None:
|
|
do_draw_scaled_bitmap<has_alpha_channel, ScalingMode::None>(target, dst_rect, clipped_rect, source, src_rect, get_pixel, opacity);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, IntRect const& a_src_rect, float opacity, ScalingMode scaling_mode)
|
|
{
|
|
draw_scaled_bitmap(a_dst_rect, source, FloatRect { a_src_rect }, opacity, scaling_mode);
|
|
}
|
|
|
|
void Painter::draw_scaled_bitmap(IntRect const& a_dst_rect, Gfx::Bitmap const& source, FloatRect const& a_src_rect, float opacity, ScalingMode scaling_mode)
|
|
{
|
|
IntRect int_src_rect = enclosing_int_rect(a_src_rect);
|
|
if (a_src_rect == int_src_rect && a_dst_rect.size() == int_src_rect.size())
|
|
return blit(a_dst_rect.location(), source, int_src_rect, opacity);
|
|
|
|
if (scaling_mode == ScalingMode::None) {
|
|
IntRect clipped_draw_rect { (int)a_src_rect.location().x(), (int)a_src_rect.location().y(), a_dst_rect.size().width(), a_dst_rect.size().height() };
|
|
return blit(a_dst_rect.location(), source, clipped_draw_rect, opacity);
|
|
}
|
|
|
|
auto dst_rect = to_physical(a_dst_rect);
|
|
auto src_rect = a_src_rect;
|
|
auto clipped_rect = dst_rect.intersected(clip_rect());
|
|
if (clipped_rect.is_empty())
|
|
return;
|
|
|
|
if (source.has_alpha_channel() || opacity != 1.0f) {
|
|
switch (source.format()) {
|
|
case BitmapFormat::BGRx8888:
|
|
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRx8888>, opacity, scaling_mode);
|
|
break;
|
|
case BitmapFormat::BGRA8888:
|
|
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRA8888>, opacity, scaling_mode);
|
|
break;
|
|
default:
|
|
do_draw_scaled_bitmap<true>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::Invalid>, opacity, scaling_mode);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (source.format()) {
|
|
case BitmapFormat::BGRx8888:
|
|
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::BGRx8888>, opacity, scaling_mode);
|
|
break;
|
|
default:
|
|
do_draw_scaled_bitmap<false>(*m_target, dst_rect, clipped_rect, source, src_rect, Gfx::get_pixel<BitmapFormat::Invalid>, opacity, scaling_mode);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Painter::set_pixel(IntPoint p, Color color, bool blend)
|
|
{
|
|
auto point = p;
|
|
point.translate_by(state().translation);
|
|
// Use the scale only to avoid clipping pixels set in drawing functions that handle
|
|
// scaling and call set_pixel() -- do not scale the pixel.
|
|
if (!clip_rect().contains(point))
|
|
return;
|
|
set_physical_pixel(point, color, blend);
|
|
}
|
|
|
|
void Painter::set_physical_pixel(IntPoint physical_point, Color color, bool blend)
|
|
{
|
|
// This function should only be called after translation, clipping, etc has been handled elsewhere
|
|
// if not use set_pixel().
|
|
auto& dst = target().scanline(physical_point.y())[physical_point.x()];
|
|
if (!blend || color.alpha() == 255)
|
|
dst = color.value();
|
|
else if (color.alpha())
|
|
dst = color_for_format(target().format(), dst).blend(color).value();
|
|
}
|
|
|
|
Optional<Color> Painter::get_pixel(IntPoint p)
|
|
{
|
|
auto point = p;
|
|
point.translate_by(state().translation);
|
|
if (!clip_rect().contains(point))
|
|
return {};
|
|
return target().get_pixel(point);
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<Bitmap>> Painter::get_region_bitmap(IntRect const& region, BitmapFormat format, Optional<IntRect&> actual_region)
|
|
{
|
|
auto bitmap_region = region.translated(state().translation).intersected(target().rect());
|
|
if (actual_region.has_value())
|
|
actual_region.value() = bitmap_region.translated(-state().translation);
|
|
return target().cropped(bitmap_region, format);
|
|
}
|
|
|
|
ALWAYS_INLINE void Painter::set_physical_pixel(u32& pixel, Color color)
|
|
{
|
|
// This always sets a single physical pixel, independent of scale().
|
|
// This should only be called by routines that already handle scale.
|
|
pixel = color.value();
|
|
}
|
|
|
|
ALWAYS_INLINE void Painter::fill_physical_scanline(int y, int x, int width, Color color)
|
|
{
|
|
// This always draws a single physical scanline, independent of scale().
|
|
// This should only be called by routines that already handle scale.
|
|
fast_u32_fill(target().scanline(y) + x, color.value(), width);
|
|
}
|
|
|
|
void Painter::draw_physical_pixel(IntPoint physical_position, Color color, int thickness)
|
|
{
|
|
// This always draws a single physical pixel, independent of scale().
|
|
// This should only be called by routines that already handle scale
|
|
// (including scaling thickness).
|
|
if (thickness <= 0)
|
|
return;
|
|
|
|
if (thickness == 1) { // Implies scale() == 1.
|
|
auto& pixel = target().scanline(physical_position.y())[physical_position.x()];
|
|
return set_physical_pixel(pixel, color_for_format(target().format(), pixel).blend(color));
|
|
}
|
|
|
|
IntRect rect { physical_position, { thickness, thickness } };
|
|
rect.intersect(clip_rect());
|
|
fill_physical_rect(rect, color);
|
|
}
|
|
|
|
void Painter::draw_line(IntPoint a_p1, IntPoint a_p2, Color color, int thickness, LineStyle style, Color alternate_color)
|
|
{
|
|
if (clip_rect().is_empty())
|
|
return;
|
|
|
|
if (thickness <= 0)
|
|
return;
|
|
|
|
if (color.alpha() == 0)
|
|
return;
|
|
|
|
auto clip_rect = this->clip_rect();
|
|
|
|
auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1;
|
|
auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2;
|
|
|
|
auto point1 = to_physical(p1);
|
|
auto point2 = to_physical(p2);
|
|
|
|
auto alternate_color_is_transparent = alternate_color == Color::Transparent;
|
|
|
|
// Special case: vertical line.
|
|
if (point1.x() == point2.x()) {
|
|
int const x = point1.x();
|
|
if (x < clip_rect.left() || x >= clip_rect.right())
|
|
return;
|
|
if (point1.y() > point2.y())
|
|
swap(point1, point2);
|
|
if (point1.y() >= clip_rect.bottom())
|
|
return;
|
|
if (point2.y() < clip_rect.top())
|
|
return;
|
|
int min_y = max(point1.y(), clip_rect.top());
|
|
int max_y = min(point2.y(), clip_rect.bottom() - 1);
|
|
if (style == LineStyle::Dotted) {
|
|
for (int y = min_y; y <= max_y; y += thickness * 2)
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
} else if (style == LineStyle::Dashed) {
|
|
for (int y = min_y; y <= max_y; y += thickness * 6) {
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
draw_physical_pixel({ x, min(y + thickness, max_y) }, color, thickness);
|
|
draw_physical_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness);
|
|
if (!alternate_color_is_transparent) {
|
|
draw_physical_pixel({ x, min(y + thickness * 3, max_y) }, alternate_color, thickness);
|
|
draw_physical_pixel({ x, min(y + thickness * 4, max_y) }, alternate_color, thickness);
|
|
draw_physical_pixel({ x, min(y + thickness * 5, max_y) }, alternate_color, thickness);
|
|
}
|
|
}
|
|
} else {
|
|
for (int y = min_y; y <= max_y; y += thickness)
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
draw_physical_pixel({ x, max_y }, color, thickness);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case: horizontal line.
|
|
if (point1.y() == point2.y()) {
|
|
int const y = point1.y();
|
|
if (y < clip_rect.top() || y >= clip_rect.bottom())
|
|
return;
|
|
if (point1.x() > point2.x())
|
|
swap(point1, point2);
|
|
if (point1.x() >= clip_rect.right())
|
|
return;
|
|
if (point2.x() < clip_rect.left())
|
|
return;
|
|
int min_x = max(point1.x(), clip_rect.left());
|
|
int max_x = min(point2.x(), clip_rect.right() - 1);
|
|
if (style == LineStyle::Dotted) {
|
|
for (int x = min_x; x <= max_x; x += thickness * 2)
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
} else if (style == LineStyle::Dashed) {
|
|
for (int x = min_x; x <= max_x; x += thickness * 6) {
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
draw_physical_pixel({ min(x + thickness, max_x), y }, color, thickness);
|
|
draw_physical_pixel({ min(x + thickness * 2, max_x), y }, color, thickness);
|
|
if (!alternate_color_is_transparent) {
|
|
draw_physical_pixel({ min(x + thickness * 3, max_x), y }, alternate_color, thickness);
|
|
draw_physical_pixel({ min(x + thickness * 4, max_x), y }, alternate_color, thickness);
|
|
draw_physical_pixel({ min(x + thickness * 5, max_x), y }, alternate_color, thickness);
|
|
}
|
|
}
|
|
} else {
|
|
for (int x = min_x; x <= max_x; x += thickness)
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
draw_physical_pixel({ max_x, y }, color, thickness);
|
|
}
|
|
return;
|
|
}
|
|
|
|
int const adx = abs(point2.x() - point1.x());
|
|
int const ady = abs(point2.y() - point1.y());
|
|
|
|
if (adx > ady) {
|
|
if (point1.x() > point2.x())
|
|
swap(point1, point2);
|
|
} else {
|
|
if (point1.y() > point2.y())
|
|
swap(point1, point2);
|
|
}
|
|
|
|
int const dx = point2.x() - point1.x();
|
|
int const dy = point2.y() - point1.y();
|
|
int error = 0;
|
|
|
|
size_t number_of_pixels_drawn = 0;
|
|
|
|
auto draw_pixel_in_line = [&](int x, int y) {
|
|
bool should_draw_line = true;
|
|
if (style == LineStyle::Dotted && number_of_pixels_drawn % 2 == 1)
|
|
should_draw_line = false;
|
|
else if (style == LineStyle::Dashed && number_of_pixels_drawn % 6 >= 3)
|
|
should_draw_line = false;
|
|
|
|
if (should_draw_line)
|
|
draw_physical_pixel({ x, y }, color, thickness);
|
|
else if (!alternate_color_is_transparent)
|
|
draw_physical_pixel({ x, y }, alternate_color, thickness);
|
|
|
|
number_of_pixels_drawn++;
|
|
};
|
|
|
|
if (dx > dy) {
|
|
int const y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1);
|
|
int const delta_error = 2 * abs(dy);
|
|
int y = point1.y();
|
|
for (int x = point1.x(); x <= point2.x(); ++x) {
|
|
if (clip_rect.contains(x, y))
|
|
draw_pixel_in_line(x, y);
|
|
error += delta_error;
|
|
if (error >= dx) {
|
|
y += y_step;
|
|
error -= 2 * dx;
|
|
}
|
|
}
|
|
} else {
|
|
int const x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1);
|
|
int const delta_error = 2 * abs(dx);
|
|
int x = point1.x();
|
|
for (int y = point1.y(); y <= point2.y(); ++y) {
|
|
if (clip_rect.contains(x, y))
|
|
draw_pixel_in_line(x, y);
|
|
error += delta_error;
|
|
if (error >= dy) {
|
|
x += x_step;
|
|
error -= 2 * dy;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Painter::draw_triangle_wave(IntPoint a_p1, IntPoint a_p2, Color color, int amplitude, int thickness)
|
|
{
|
|
// FIXME: Support more than horizontal waves
|
|
VERIFY(a_p1.y() == a_p2.y());
|
|
|
|
auto const p1 = thickness > 1 ? a_p1.translated(-(thickness / 2), -(thickness / 2)) : a_p1;
|
|
auto const p2 = thickness > 1 ? a_p2.translated(-(thickness / 2), -(thickness / 2)) : a_p2;
|
|
|
|
auto point1 = to_physical(p1);
|
|
auto point2 = to_physical(p2);
|
|
|
|
auto y = point1.y();
|
|
|
|
for (int x = 0; x <= point2.x() - point1.x(); ++x) {
|
|
auto y_offset = abs(x % (2 * amplitude) - amplitude) - amplitude;
|
|
draw_physical_pixel({ point1.x() + x, y + y_offset }, color, thickness);
|
|
}
|
|
}
|
|
|
|
static bool can_approximate_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control)
|
|
{
|
|
// TODO: Somehow calculate the required number of splits based on the curve (and its size).
|
|
constexpr float tolerance = 0.5f;
|
|
|
|
auto p1x = 3 * control.x() - 2 * p1.x() - p2.x();
|
|
auto p1y = 3 * control.y() - 2 * p1.y() - p2.y();
|
|
auto p2x = 3 * control.x() - 2 * p2.x() - p1.x();
|
|
auto p2y = 3 * control.y() - 2 * p2.y() - p1.y();
|
|
|
|
p1x = p1x * p1x;
|
|
p1y = p1y * p1y;
|
|
p2x = p2x * p2x;
|
|
p2y = p2y * p2y;
|
|
|
|
auto error = max(p1x, p2x) + max(p1y, p2y);
|
|
VERIFY(isfinite(error));
|
|
|
|
return error <= tolerance;
|
|
}
|
|
|
|
void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>& callback)
|
|
{
|
|
struct SegmentDescriptor {
|
|
FloatPoint control_point;
|
|
FloatPoint p1;
|
|
FloatPoint p2;
|
|
};
|
|
|
|
static constexpr auto split_quadratic_bezier_curve = [](FloatPoint original_control, FloatPoint p1, FloatPoint p2, auto& segments) {
|
|
auto po1_midpoint = original_control + p1;
|
|
po1_midpoint /= 2;
|
|
|
|
auto po2_midpoint = original_control + p2;
|
|
po2_midpoint /= 2;
|
|
|
|
auto new_segment = po1_midpoint + po2_midpoint;
|
|
new_segment /= 2;
|
|
|
|
segments.append({ po2_midpoint, new_segment, p2 });
|
|
segments.append({ po1_midpoint, p1, new_segment });
|
|
};
|
|
|
|
Vector<SegmentDescriptor> segments;
|
|
segments.append({ control_point, p1, p2 });
|
|
while (!segments.is_empty()) {
|
|
auto segment = segments.take_last();
|
|
|
|
if (can_approximate_bezier_curve(segment.p1, segment.p2, segment.control_point))
|
|
callback(segment.p1, segment.p2);
|
|
else
|
|
split_quadratic_bezier_curve(segment.control_point, segment.p1, segment.p2, segments);
|
|
}
|
|
}
|
|
|
|
void Painter::for_each_line_segment_on_bezier_curve(FloatPoint control_point, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>&& callback)
|
|
{
|
|
for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback);
|
|
}
|
|
|
|
void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>&& callback)
|
|
{
|
|
for_each_line_segment_on_cubic_bezier_curve(control_point_0, control_point_1, p1, p2, callback);
|
|
}
|
|
|
|
static bool can_approximate_cubic_bezier_curve(FloatPoint p1, FloatPoint p2, FloatPoint control_0, FloatPoint control_1)
|
|
{
|
|
// TODO: Somehow calculate the required number of splits based on the curve (and its size).
|
|
constexpr float tolerance = 0.5f;
|
|
|
|
auto ax = 3 * control_0.x() - 2 * p1.x() - p2.x();
|
|
auto ay = 3 * control_0.y() - 2 * p1.y() - p2.y();
|
|
auto bx = 3 * control_1.x() - p1.x() - 2 * p2.x();
|
|
auto by = 3 * control_1.y() - p1.y() - 2 * p2.y();
|
|
|
|
ax *= ax;
|
|
ay *= ay;
|
|
bx *= bx;
|
|
by *= by;
|
|
|
|
auto error = max(ax, bx) + max(ay, by);
|
|
VERIFY(isfinite(error));
|
|
|
|
return error <= tolerance;
|
|
}
|
|
|
|
// static
|
|
void Painter::for_each_line_segment_on_cubic_bezier_curve(FloatPoint control_point_0, FloatPoint control_point_1, FloatPoint p1, FloatPoint p2, Function<void(FloatPoint, FloatPoint)>& callback)
|
|
{
|
|
struct ControlPair {
|
|
FloatPoint control_point_0;
|
|
FloatPoint control_point_1;
|
|
};
|
|
struct SegmentDescriptor {
|
|
ControlPair control_points;
|
|
FloatPoint p1;
|
|
FloatPoint p2;
|
|
};
|
|
|
|
static constexpr auto split_cubic_bezier_curve = [](ControlPair const& original_controls, FloatPoint p1, FloatPoint p2, auto& segments) {
|
|
Array level_1_midpoints {
|
|
(p1 + original_controls.control_point_0) / 2,
|
|
(original_controls.control_point_0 + original_controls.control_point_1) / 2,
|
|
(original_controls.control_point_1 + p2) / 2,
|
|
};
|
|
Array level_2_midpoints {
|
|
(level_1_midpoints[0] + level_1_midpoints[1]) / 2,
|
|
(level_1_midpoints[1] + level_1_midpoints[2]) / 2,
|
|
};
|
|
auto level_3_midpoint = (level_2_midpoints[0] + level_2_midpoints[1]) / 2;
|
|
|
|
segments.append({ { level_2_midpoints[1], level_1_midpoints[2] }, level_3_midpoint, p2 });
|
|
segments.append({ { level_1_midpoints[0], level_2_midpoints[0] }, p1, level_3_midpoint });
|
|
};
|
|
|
|
Vector<SegmentDescriptor> segments;
|
|
segments.append({ { control_point_0, control_point_1 }, p1, p2 });
|
|
while (!segments.is_empty()) {
|
|
auto segment = segments.take_last();
|
|
|
|
if (can_approximate_cubic_bezier_curve(segment.p1, segment.p2, segment.control_points.control_point_0, segment.control_points.control_point_1))
|
|
callback(segment.p1, segment.p2);
|
|
else
|
|
split_cubic_bezier_curve(segment.control_points, segment.p1, segment.p2, segments);
|
|
}
|
|
}
|
|
|
|
void Painter::add_clip_rect(IntRect const& rect)
|
|
{
|
|
state().clip_rect.intersect(rect.translated(translation()));
|
|
state().clip_rect.intersect(target().rect()); // FIXME: This shouldn't be necessary?
|
|
}
|
|
|
|
void Painter::clear_clip_rect()
|
|
{
|
|
state().clip_rect = m_clip_origin;
|
|
}
|
|
|
|
PainterStateSaver::PainterStateSaver(Painter& painter)
|
|
: m_painter(painter)
|
|
{
|
|
m_painter.save();
|
|
}
|
|
|
|
PainterStateSaver::~PainterStateSaver()
|
|
{
|
|
m_painter.restore();
|
|
}
|
|
|
|
void Painter::stroke_path(Path const& path, Color color, int thickness)
|
|
{
|
|
if (thickness <= 0)
|
|
return;
|
|
fill_path(path.stroke_to_fill(thickness), color);
|
|
}
|
|
|
|
void Painter::draw_scaled_bitmap_with_transform(IntRect const& dst_rect, Bitmap const& bitmap, FloatRect const& src_rect, AffineTransform const& transform, float opacity, ScalingMode scaling_mode)
|
|
{
|
|
if (transform.is_identity_or_translation_or_scale()) {
|
|
draw_scaled_bitmap(transform.map(dst_rect.to_type<float>()).to_rounded<int>(), bitmap, src_rect, opacity, scaling_mode);
|
|
} else {
|
|
// The painter has an affine transform, we have to draw through it!
|
|
|
|
// FIXME: This is kinda inefficient.
|
|
// What we currently do, roughly:
|
|
// - Map the destination rect through the context's transform.
|
|
// - Compute the bounding rect of the destination quad.
|
|
// - For each point in the clipped bounding rect, reverse-map it to a point in the source image.
|
|
// - Sample the source image at the computed point.
|
|
// - Set or blend (depending on alpha values) one pixel in the canvas.
|
|
// - Loop.
|
|
|
|
// FIXME: Painter should have an affine transform as part of its state and handle all of this instead.
|
|
|
|
if (opacity == 0.0f)
|
|
return;
|
|
|
|
auto inverse_transform = transform.inverse();
|
|
if (!inverse_transform.has_value())
|
|
return;
|
|
|
|
auto destination_quad = transform.map_to_quad(dst_rect.to_type<float>());
|
|
auto destination_bounding_rect = destination_quad.bounding_rect().to_rounded<int>();
|
|
auto source_rect = enclosing_int_rect(src_rect).intersected(bitmap.rect());
|
|
|
|
Gfx::AffineTransform source_transform;
|
|
source_transform.translate(src_rect.x(), src_rect.y());
|
|
source_transform.scale(src_rect.width() / dst_rect.width(), src_rect.height() / dst_rect.height());
|
|
source_transform.translate(-dst_rect.x(), -dst_rect.y());
|
|
|
|
auto translated_dest_rect = destination_bounding_rect.translated(translation());
|
|
auto clipped_bounding_rect = translated_dest_rect.intersected(clip_rect());
|
|
if (clipped_bounding_rect.is_empty())
|
|
return;
|
|
|
|
auto sample_transform = source_transform.multiply(*inverse_transform);
|
|
auto start_offset = destination_bounding_rect.location() + (clipped_bounding_rect.location() - translated_dest_rect.location());
|
|
for (int y = 0; y < clipped_bounding_rect.height(); ++y) {
|
|
for (int x = 0; x < clipped_bounding_rect.width(); ++x) {
|
|
auto point = Gfx::IntPoint { x, y };
|
|
auto sample_point = point + start_offset;
|
|
|
|
// AffineTransform::map(IntPoint) rounds internally, which is wrong here. So explicitly call the FloatPoint version, and then truncate the result.
|
|
auto source_point = Gfx::IntPoint { sample_transform.map(Gfx::FloatPoint { sample_point }) };
|
|
|
|
if (!source_rect.contains(source_point))
|
|
continue;
|
|
auto source_color = bitmap.get_pixel(source_point);
|
|
if (source_color.alpha() == 0)
|
|
continue;
|
|
if (opacity != 1.0f)
|
|
source_color = source_color.with_opacity(opacity);
|
|
set_physical_pixel(point + clipped_bounding_rect.location(), source_color, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|