mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-24 10:12:25 -05:00
e236f1d2ae
We have all comparison operators except less-than-or-equal already.
766 lines
25 KiB
C++
766 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
|
|
* Copyright (c) 2022, David Tuin <davidot@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "UnsignedBigInteger.h"
|
|
#include <AK/BuiltinWrappers.h>
|
|
#include <AK/CharacterTypes.h>
|
|
#include <AK/FloatingPoint.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/StringHash.h>
|
|
#include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
|
|
#include <math.h>
|
|
|
|
namespace Crypto {
|
|
|
|
UnsignedBigInteger::UnsignedBigInteger(u8 const* ptr, size_t length)
|
|
{
|
|
m_words.resize_and_keep_capacity((length + sizeof(u32) - 1) / sizeof(u32));
|
|
size_t in = length, out = 0;
|
|
while (in >= sizeof(u32)) {
|
|
in -= sizeof(u32);
|
|
u32 word = ((u32)ptr[in] << 24) | ((u32)ptr[in + 1] << 16) | ((u32)ptr[in + 2] << 8) | (u32)ptr[in + 3];
|
|
m_words[out++] = word;
|
|
}
|
|
if (in > 0) {
|
|
u32 word = 0;
|
|
for (size_t i = 0; i < in; i++) {
|
|
word <<= 8;
|
|
word |= (u32)ptr[i];
|
|
}
|
|
m_words[out++] = word;
|
|
}
|
|
}
|
|
|
|
UnsignedBigInteger::UnsignedBigInteger(double value)
|
|
{
|
|
// Because this is currently only used for LibJS we VERIFY some preconditions
|
|
// also these values don't have a clear BigInteger representation.
|
|
VERIFY(!isnan(value));
|
|
VERIFY(!isinf(value));
|
|
VERIFY(trunc(value) == value);
|
|
VERIFY(value >= 0.0);
|
|
|
|
if (value <= NumericLimits<u32>::max()) {
|
|
m_words.append(static_cast<u32>(value));
|
|
return;
|
|
}
|
|
|
|
FloatExtractor<double> extractor;
|
|
extractor.d = value;
|
|
VERIFY(!extractor.sign);
|
|
|
|
i32 real_exponent = extractor.exponent - extractor.exponent_bias;
|
|
VERIFY(real_exponent > 0);
|
|
|
|
// Ensure we have enough space, we will need 2^exponent bits, so round up in words
|
|
auto word_index = (real_exponent + BITS_IN_WORD) / BITS_IN_WORD;
|
|
m_words.resize_and_keep_capacity(word_index);
|
|
|
|
// Now we just need to put the mantissa with explicit 1 bit at the top at the proper location
|
|
u64 raw_mantissa = extractor.mantissa | (1ull << extractor.mantissa_bits);
|
|
VERIFY((raw_mantissa & 0xfff0000000000000) == 0x0010000000000000);
|
|
// Shift it so the bits we need are at the top
|
|
raw_mantissa <<= 64 - extractor.mantissa_bits - 1;
|
|
|
|
// The initial bit needs to be exactly aligned with exponent, this is 1-indexed
|
|
auto top_word_bit_offset = real_exponent % BITS_IN_WORD + 1;
|
|
|
|
auto top_word_bits_from_mantissa = raw_mantissa >> (64 - top_word_bit_offset);
|
|
VERIFY(top_word_bits_from_mantissa <= NumericLimits<Word>::max());
|
|
m_words[word_index - 1] = top_word_bits_from_mantissa;
|
|
|
|
--word_index;
|
|
// Shift used bits away
|
|
raw_mantissa <<= top_word_bit_offset;
|
|
i32 bits_in_mantissa = extractor.mantissa_bits + 1 - top_word_bit_offset;
|
|
// Now just put everything at the top of the next words
|
|
|
|
constexpr auto to_word_shift = 64 - BITS_IN_WORD;
|
|
|
|
while (word_index > 0 && bits_in_mantissa > 0) {
|
|
VERIFY((raw_mantissa >> to_word_shift) <= NumericLimits<Word>::max());
|
|
m_words[word_index - 1] = raw_mantissa >> to_word_shift;
|
|
raw_mantissa <<= to_word_shift;
|
|
|
|
bits_in_mantissa -= BITS_IN_WORD;
|
|
--word_index;
|
|
}
|
|
|
|
VERIFY(m_words.size() > word_index);
|
|
VERIFY((m_words.size() - word_index) <= 3);
|
|
|
|
// No bits left, otherwise we would have to round
|
|
VERIFY(raw_mantissa == 0);
|
|
}
|
|
|
|
UnsignedBigInteger UnsignedBigInteger::create_invalid()
|
|
{
|
|
UnsignedBigInteger invalid(0);
|
|
invalid.invalidate();
|
|
return invalid;
|
|
}
|
|
|
|
size_t UnsignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
|
|
{
|
|
size_t word_count = trimmed_length();
|
|
size_t out = 0;
|
|
if (word_count > 0) {
|
|
ssize_t leading_zeros = -1;
|
|
if (remove_leading_zeros) {
|
|
UnsignedBigInteger::Word word = m_words[word_count - 1];
|
|
for (size_t i = 0; i < sizeof(u32); i++) {
|
|
u8 byte = (u8)(word >> ((sizeof(u32) - i - 1) * 8));
|
|
data[out++] = byte;
|
|
if (leading_zeros < 0 && byte != 0)
|
|
leading_zeros = (int)i;
|
|
}
|
|
}
|
|
for (size_t i = word_count - (remove_leading_zeros ? 1 : 0); i > 0; i--) {
|
|
auto word = m_words[i - 1];
|
|
data[out++] = (u8)(word >> 24);
|
|
data[out++] = (u8)(word >> 16);
|
|
data[out++] = (u8)(word >> 8);
|
|
data[out++] = (u8)word;
|
|
}
|
|
if (leading_zeros > 0)
|
|
out -= leading_zeros;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
ErrorOr<UnsignedBigInteger> UnsignedBigInteger::from_base(u16 N, StringView str)
|
|
{
|
|
VERIFY(N <= 36);
|
|
UnsignedBigInteger result;
|
|
UnsignedBigInteger base { N };
|
|
|
|
for (auto const& c : str) {
|
|
if (c == '_')
|
|
continue;
|
|
if (!is_ascii_base36_digit(c))
|
|
return Error::from_string_literal("Invalid Base36 digit");
|
|
auto digit = parse_ascii_base36_digit(c);
|
|
if (digit >= N)
|
|
return Error::from_string_literal("Base36 digit out of range");
|
|
|
|
result = result.multiplied_by(base).plus(digit);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ErrorOr<String> UnsignedBigInteger::to_base(u16 N) const
|
|
{
|
|
VERIFY(N <= 36);
|
|
if (*this == UnsignedBigInteger { 0 })
|
|
return "0"_string;
|
|
|
|
StringBuilder builder;
|
|
UnsignedBigInteger temp(*this);
|
|
UnsignedBigInteger quotient;
|
|
UnsignedBigInteger remainder;
|
|
|
|
while (temp != UnsignedBigInteger { 0 }) {
|
|
UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(temp, N, quotient, remainder);
|
|
VERIFY(remainder.words()[0] < N);
|
|
TRY(builder.try_append(to_ascii_base36_digit(remainder.words()[0])));
|
|
temp.set_to(quotient);
|
|
}
|
|
|
|
return TRY(builder.to_string()).reverse();
|
|
}
|
|
|
|
ByteString UnsignedBigInteger::to_base_deprecated(u16 N) const
|
|
{
|
|
return MUST(to_base(N)).to_byte_string();
|
|
}
|
|
|
|
u64 UnsignedBigInteger::to_u64() const
|
|
{
|
|
static_assert(sizeof(Word) == 4);
|
|
if (!length())
|
|
return 0;
|
|
u64 value = m_words[0];
|
|
if (length() > 1)
|
|
value |= static_cast<u64>(m_words[1]) << 32;
|
|
return value;
|
|
}
|
|
|
|
double UnsignedBigInteger::to_double(UnsignedBigInteger::RoundingMode rounding_mode) const
|
|
{
|
|
VERIFY(!is_invalid());
|
|
auto highest_bit = one_based_index_of_highest_set_bit();
|
|
if (highest_bit == 0)
|
|
return 0;
|
|
--highest_bit;
|
|
|
|
using Extractor = FloatExtractor<double>;
|
|
|
|
// Simple case if less than 2^53 since those number are all exactly representable in doubles
|
|
if (highest_bit < Extractor::mantissa_bits + 1)
|
|
return static_cast<double>(to_u64());
|
|
|
|
// If it uses too many bit to represent in a double return infinity
|
|
if (highest_bit > Extractor::exponent_bias)
|
|
return __builtin_huge_val();
|
|
|
|
// Otherwise we have to take the top 53 bits, use those as the mantissa,
|
|
// and the amount of bits as the exponent. Note that the mantissa has an implicit top bit of 1
|
|
// so we have to ignore the very top bit.
|
|
|
|
// Since we extract at most 53 bits it will take at most 3 words
|
|
static_assert(BITS_IN_WORD * 3 >= (Extractor::mantissa_bits + 1));
|
|
constexpr auto bits_in_u64 = 64;
|
|
static_assert(bits_in_u64 > Extractor::mantissa_bits + 1);
|
|
|
|
auto bits_to_read = min(static_cast<size_t>(Extractor::mantissa_bits), highest_bit);
|
|
|
|
auto last_word_index = trimmed_length();
|
|
VERIFY(last_word_index > 0);
|
|
|
|
// Note that highest bit is 0-indexed at this point.
|
|
auto highest_bit_index_in_top_word = highest_bit % BITS_IN_WORD;
|
|
|
|
// Shift initial word until highest bit is just beyond top of u64.
|
|
u64 mantissa = m_words[last_word_index - 1];
|
|
if (highest_bit_index_in_top_word != 0)
|
|
mantissa <<= (bits_in_u64 - highest_bit_index_in_top_word);
|
|
else
|
|
mantissa = 0;
|
|
|
|
auto bits_written = highest_bit_index_in_top_word;
|
|
|
|
--last_word_index;
|
|
|
|
Optional<Word> dropped_bits_for_rounding;
|
|
u8 bits_dropped_from_final_word = 0;
|
|
|
|
if (bits_written < bits_to_read && last_word_index > 0) {
|
|
// Second word can always just cleanly be shifted up to the final bit of the first word
|
|
// since the first has at most BIT_IN_WORD - 1, 31
|
|
u64 next_word = m_words[last_word_index - 1];
|
|
VERIFY((mantissa & (next_word << (bits_in_u64 - bits_written - BITS_IN_WORD))) == 0);
|
|
mantissa |= next_word << (bits_in_u64 - bits_written - BITS_IN_WORD);
|
|
bits_written += BITS_IN_WORD;
|
|
--last_word_index;
|
|
|
|
if (bits_written > bits_to_read) {
|
|
bits_dropped_from_final_word = bits_written - bits_to_read;
|
|
dropped_bits_for_rounding = m_words[last_word_index] & ((1 << bits_dropped_from_final_word) - 1);
|
|
} else if (bits_written < bits_to_read && last_word_index > 0) {
|
|
// The final word has to be shifted down first to discard any excess bits.
|
|
u64 final_word = m_words[last_word_index - 1];
|
|
--last_word_index;
|
|
|
|
auto bits_to_write = bits_to_read - bits_written;
|
|
|
|
bits_dropped_from_final_word = BITS_IN_WORD - bits_to_write;
|
|
dropped_bits_for_rounding = final_word & ((1 << bits_dropped_from_final_word) - 1u);
|
|
final_word >>= bits_dropped_from_final_word;
|
|
|
|
// Then move the bits right up to the lowest bits of the second word
|
|
VERIFY((mantissa & (final_word << (bits_in_u64 - bits_written - bits_to_write))) == 0);
|
|
mantissa |= final_word << (bits_in_u64 - bits_written - bits_to_write);
|
|
}
|
|
}
|
|
|
|
// Now the mantissa should be complete so shift it down
|
|
mantissa >>= bits_in_u64 - Extractor::mantissa_bits;
|
|
|
|
if (rounding_mode == RoundingMode::IEEERoundAndTiesToEvenMantissa) {
|
|
bool round_up = false;
|
|
|
|
if (bits_dropped_from_final_word == 0) {
|
|
if (last_word_index > 0) {
|
|
Word next_word = m_words[last_word_index - 1];
|
|
last_word_index--;
|
|
if ((next_word & 0x80000000) != 0) {
|
|
// next top bit set check for any other bits
|
|
if ((next_word ^ 0x80000000) != 0) {
|
|
round_up = true;
|
|
} else {
|
|
while (last_word_index > 0) {
|
|
if (m_words[last_word_index - 1] != 0) {
|
|
round_up = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// All other bits are 0 which is a tie thus round to even exponent
|
|
// Since we are halfway, if exponent ends with 1 we round up, if 0 we round down
|
|
round_up = (mantissa & 1) != 0;
|
|
}
|
|
} else {
|
|
round_up = false;
|
|
}
|
|
} else {
|
|
// If there are no words left the rest is implicitly 0 so just round down
|
|
round_up = false;
|
|
}
|
|
|
|
} else {
|
|
VERIFY(dropped_bits_for_rounding.has_value());
|
|
VERIFY(bits_dropped_from_final_word >= 1);
|
|
|
|
// In this case the top bit comes form the dropped bits
|
|
auto top_bit_extractor = 1u << (bits_dropped_from_final_word - 1u);
|
|
if ((*dropped_bits_for_rounding & top_bit_extractor) != 0) {
|
|
// Possible tie again, if any other bit is set we round up
|
|
if ((*dropped_bits_for_rounding ^ top_bit_extractor) != 0) {
|
|
round_up = true;
|
|
} else {
|
|
while (last_word_index > 0) {
|
|
if (m_words[last_word_index - 1] != 0) {
|
|
round_up = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
round_up = (mantissa & 1) != 0;
|
|
}
|
|
} else {
|
|
round_up = false;
|
|
}
|
|
}
|
|
|
|
if (round_up) {
|
|
++mantissa;
|
|
if ((mantissa & (1ull << Extractor::mantissa_bits)) != 0) {
|
|
// we overflowed the mantissa
|
|
mantissa = 0;
|
|
highest_bit++;
|
|
|
|
// In which case it is possible we have to round to infinity
|
|
if (highest_bit > Extractor::exponent_bias)
|
|
return __builtin_huge_val();
|
|
}
|
|
}
|
|
} else {
|
|
VERIFY(rounding_mode == RoundingMode::RoundTowardZero);
|
|
}
|
|
|
|
Extractor extractor;
|
|
extractor.exponent = highest_bit + extractor.exponent_bias;
|
|
|
|
VERIFY((mantissa & 0xfff0000000000000) == 0);
|
|
extractor.mantissa = mantissa;
|
|
|
|
return extractor.d;
|
|
}
|
|
|
|
void UnsignedBigInteger::set_to_0()
|
|
{
|
|
m_words.clear_with_capacity();
|
|
m_is_invalid = false;
|
|
m_cached_trimmed_length = {};
|
|
m_cached_hash = 0;
|
|
}
|
|
|
|
void UnsignedBigInteger::set_to(UnsignedBigInteger::Word other)
|
|
{
|
|
m_is_invalid = false;
|
|
m_words.resize_and_keep_capacity(1);
|
|
m_words[0] = other;
|
|
m_cached_trimmed_length = {};
|
|
m_cached_hash = 0;
|
|
}
|
|
|
|
void UnsignedBigInteger::set_to(UnsignedBigInteger const& other)
|
|
{
|
|
m_is_invalid = other.m_is_invalid;
|
|
m_words.resize_and_keep_capacity(other.m_words.size());
|
|
__builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32));
|
|
m_cached_trimmed_length = {};
|
|
m_cached_hash = 0;
|
|
}
|
|
|
|
bool UnsignedBigInteger::is_zero() const
|
|
{
|
|
for (size_t i = 0; i < length(); ++i) {
|
|
if (m_words[i] != 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t UnsignedBigInteger::trimmed_length() const
|
|
{
|
|
if (!m_cached_trimmed_length.has_value()) {
|
|
size_t num_leading_zeroes = 0;
|
|
for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
|
|
if (m_words[i] != 0)
|
|
break;
|
|
}
|
|
m_cached_trimmed_length = length() - num_leading_zeroes;
|
|
}
|
|
return m_cached_trimmed_length.value();
|
|
}
|
|
|
|
void UnsignedBigInteger::clamp_to_trimmed_length()
|
|
{
|
|
auto length = trimmed_length();
|
|
if (m_words.size() > length)
|
|
m_words.resize(length);
|
|
}
|
|
|
|
void UnsignedBigInteger::resize_with_leading_zeros(size_t new_length)
|
|
{
|
|
size_t old_length = length();
|
|
if (old_length < new_length) {
|
|
m_words.resize_and_keep_capacity(new_length);
|
|
__builtin_memset(&m_words.data()[old_length], 0, (new_length - old_length) * sizeof(u32));
|
|
}
|
|
}
|
|
|
|
size_t UnsignedBigInteger::one_based_index_of_highest_set_bit() const
|
|
{
|
|
size_t number_of_words = trimmed_length();
|
|
size_t index = 0;
|
|
if (number_of_words > 0) {
|
|
index += (number_of_words - 1) * BITS_IN_WORD;
|
|
index += BITS_IN_WORD - count_leading_zeroes(m_words[number_of_words - 1]);
|
|
}
|
|
return index;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::add_without_allocation(*this, other, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::subtract_without_allocation(*this, other, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(*this, other, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(*this, other, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(*this, other, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not_fill_to_one_based_index(size_t size) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
|
|
UnsignedBigIntegerAlgorithms::bitwise_not_fill_to_one_based_index_without_allocation(*this, size, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
|
|
{
|
|
UnsignedBigInteger output;
|
|
UnsignedBigInteger temp_result;
|
|
UnsignedBigInteger temp_plus;
|
|
|
|
UnsignedBigIntegerAlgorithms::shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
|
|
|
|
return output;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_right(size_t num_bits) const
|
|
{
|
|
UnsignedBigInteger output;
|
|
|
|
UnsignedBigIntegerAlgorithms::shift_right_without_allocation(*this, num_bits, output);
|
|
|
|
return output;
|
|
}
|
|
|
|
FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(UnsignedBigInteger const& other) const
|
|
{
|
|
UnsignedBigInteger result;
|
|
UnsignedBigInteger temp_shift_result;
|
|
UnsignedBigInteger temp_shift_plus;
|
|
UnsignedBigInteger temp_shift;
|
|
|
|
UnsignedBigIntegerAlgorithms::multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(UnsignedBigInteger const& divisor) const
|
|
{
|
|
UnsignedBigInteger quotient;
|
|
UnsignedBigInteger remainder;
|
|
|
|
// If we actually have a u16-compatible divisor, short-circuit to the
|
|
// less computationally-intensive "divide_u16_without_allocation" method.
|
|
if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) {
|
|
UnsignedBigIntegerAlgorithms::divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
|
|
return UnsignedDivisionResult { quotient, remainder };
|
|
}
|
|
|
|
UnsignedBigInteger temp_shift_result;
|
|
UnsignedBigInteger temp_shift_plus;
|
|
UnsignedBigInteger temp_shift;
|
|
UnsignedBigInteger temp_minus;
|
|
|
|
UnsignedBigIntegerAlgorithms::divide_without_allocation(*this, divisor, quotient, remainder);
|
|
|
|
return UnsignedDivisionResult { quotient, remainder };
|
|
}
|
|
|
|
u32 UnsignedBigInteger::hash() const
|
|
{
|
|
if (m_cached_hash != 0)
|
|
return m_cached_hash;
|
|
|
|
return m_cached_hash = string_hash((char const*)m_words.data(), sizeof(Word) * m_words.size());
|
|
}
|
|
|
|
void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
|
|
{
|
|
size_t const word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
|
|
size_t const inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
|
|
|
|
m_words.ensure_capacity(word_index + 1);
|
|
|
|
for (size_t i = length(); i <= word_index; ++i) {
|
|
m_words.unchecked_append(0);
|
|
}
|
|
m_words[word_index] |= (1 << inner_word_index);
|
|
|
|
m_cached_trimmed_length = {};
|
|
m_cached_hash = 0;
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator==(UnsignedBigInteger const& other) const
|
|
{
|
|
if (is_invalid() != other.is_invalid())
|
|
return false;
|
|
|
|
auto length = trimmed_length();
|
|
|
|
if (length != other.trimmed_length())
|
|
return false;
|
|
|
|
return !__builtin_memcmp(m_words.data(), other.words().data(), length * (BITS_IN_WORD / 8));
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator!=(UnsignedBigInteger const& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator<(UnsignedBigInteger const& other) const
|
|
{
|
|
auto length = trimmed_length();
|
|
auto other_length = other.trimmed_length();
|
|
|
|
if (length < other_length) {
|
|
return true;
|
|
}
|
|
|
|
if (length > other_length) {
|
|
return false;
|
|
}
|
|
|
|
if (length == 0) {
|
|
return false;
|
|
}
|
|
for (int i = length - 1; i >= 0; --i) {
|
|
if (m_words[i] == other.m_words[i])
|
|
continue;
|
|
return m_words[i] < other.m_words[i];
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator<=(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this < other || *this == other;
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator>(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this != other && !(*this < other);
|
|
}
|
|
|
|
bool UnsignedBigInteger::operator>=(UnsignedBigInteger const& other) const
|
|
{
|
|
return *this > other || *this == other;
|
|
}
|
|
|
|
UnsignedBigInteger::CompareResult UnsignedBigInteger::compare_to_double(double value) const
|
|
{
|
|
VERIFY(!isnan(value));
|
|
|
|
if (isinf(value)) {
|
|
bool is_positive_infinity = __builtin_isinf_sign(value) > 0;
|
|
return is_positive_infinity ? CompareResult::DoubleGreaterThanBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
bool value_is_negative = value < 0;
|
|
|
|
if (value_is_negative)
|
|
return CompareResult::DoubleLessThanBigInt;
|
|
|
|
// Value is zero.
|
|
if (value == 0.0) {
|
|
VERIFY(!value_is_negative);
|
|
// Either we are also zero or value is certainly less than us.
|
|
return is_zero() ? CompareResult::DoubleEqualsBigInt : CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
// If value is not zero but we are, value must be greater.
|
|
if (is_zero())
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
FloatExtractor<double> extractor;
|
|
extractor.d = value;
|
|
|
|
// Value cannot be negative at this point.
|
|
VERIFY(extractor.sign == 0);
|
|
// Exponent cannot be all set, as then we must be NaN or infinity.
|
|
VERIFY(extractor.exponent != (1 << extractor.exponent_bits) - 1);
|
|
|
|
i32 real_exponent = extractor.exponent - extractor.exponent_bias;
|
|
if (real_exponent < 0) {
|
|
// value is less than 1, and we cannot be zero so value must be less.
|
|
return CompareResult::DoubleLessThanBigInt;
|
|
}
|
|
|
|
u64 bigint_bits_needed = one_based_index_of_highest_set_bit();
|
|
VERIFY(bigint_bits_needed > 0);
|
|
|
|
// Double value is `-1^sign (1.mantissa) * 2^(exponent - bias)` so we need
|
|
// `exponent - bias + 1` bit to represent doubles value,
|
|
// for example `exponent - bias` = 3, sign = 0 and mantissa = 0 we get
|
|
// `-1^0 * 2^3 * 1 = 8` which needs 4 bits to store 8 (0b1000).
|
|
u32 double_bits_needed = real_exponent + 1;
|
|
|
|
// If we need more bits to represent us, we must be of greater value.
|
|
if (bigint_bits_needed > double_bits_needed)
|
|
return CompareResult::DoubleLessThanBigInt;
|
|
// If we need less bits to represent us, we must be of less value.
|
|
if (bigint_bits_needed < double_bits_needed)
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
u64 mantissa_bits = extractor.mantissa;
|
|
|
|
// We add the bit which represents the 1. of the double value calculation.
|
|
constexpr u64 mantissa_extended_bit = 1ull << extractor.mantissa_bits;
|
|
|
|
mantissa_bits |= mantissa_extended_bit;
|
|
|
|
// Now we shift value to the left virtually, with `exponent - bias` steps
|
|
// we then pretend both it and the big int are extended with virtual zeros.
|
|
auto next_bigint_word = (BITS_IN_WORD - 1 + bigint_bits_needed) / BITS_IN_WORD;
|
|
|
|
VERIFY(next_bigint_word == trimmed_length());
|
|
|
|
auto msb_in_top_word_index = (bigint_bits_needed - 1) % BITS_IN_WORD;
|
|
VERIFY(msb_in_top_word_index == (BITS_IN_WORD - count_leading_zeroes(words()[next_bigint_word - 1]) - 1));
|
|
|
|
// We will keep the bits which are still valid in the mantissa at the top of mantissa bits.
|
|
mantissa_bits <<= 64 - (extractor.mantissa_bits + 1);
|
|
|
|
auto bits_left_in_mantissa = static_cast<size_t>(extractor.mantissa_bits) + 1;
|
|
|
|
auto get_next_value_bits = [&](size_t num_bits) -> Word {
|
|
VERIFY(num_bits < 63);
|
|
VERIFY(bits_left_in_mantissa > 0);
|
|
if (num_bits > bits_left_in_mantissa)
|
|
num_bits = bits_left_in_mantissa;
|
|
|
|
bits_left_in_mantissa -= num_bits;
|
|
|
|
u64 extracted_bits = mantissa_bits & (((1ull << num_bits) - 1) << (64 - num_bits));
|
|
// Now shift the bits down to put the most significant bit on the num_bits position
|
|
// this means the rest will be "virtual" zeros.
|
|
extracted_bits >>= 32;
|
|
|
|
// Now shift away the used bits and fit the result into a Word.
|
|
mantissa_bits <<= num_bits;
|
|
|
|
VERIFY(extracted_bits <= NumericLimits<Word>::max());
|
|
return static_cast<Word>(extracted_bits);
|
|
};
|
|
|
|
auto bits_in_next_bigint_word = msb_in_top_word_index + 1;
|
|
|
|
while (next_bigint_word > 0 && bits_left_in_mantissa > 0) {
|
|
Word bigint_word = words()[next_bigint_word - 1];
|
|
Word double_word = get_next_value_bits(bits_in_next_bigint_word);
|
|
|
|
// For the first bit we have to align it with the top bit of bigint
|
|
// and for all the other cases bits_in_next_bigint_word is 32 so this does nothing.
|
|
double_word >>= 32 - bits_in_next_bigint_word;
|
|
|
|
if (bigint_word < double_word)
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
|
|
if (bigint_word > double_word)
|
|
return CompareResult::DoubleLessThanBigInt;
|
|
|
|
--next_bigint_word;
|
|
bits_in_next_bigint_word = BITS_IN_WORD;
|
|
}
|
|
|
|
// If there are still bits left in bigint than any non zero bit means it has greater value.
|
|
if (next_bigint_word > 0) {
|
|
VERIFY(bits_left_in_mantissa == 0);
|
|
while (next_bigint_word > 0) {
|
|
if (words()[next_bigint_word - 1] != 0)
|
|
return CompareResult::DoubleLessThanBigInt;
|
|
--next_bigint_word;
|
|
}
|
|
} else if (bits_left_in_mantissa > 0) {
|
|
VERIFY(next_bigint_word == 0);
|
|
// Similarly if there are still any bits set in the mantissa it has greater value.
|
|
if (mantissa_bits != 0)
|
|
return CompareResult::DoubleGreaterThanBigInt;
|
|
}
|
|
|
|
// Otherwise if both don't have bits left or the rest of the bits are zero they are equal.
|
|
return CompareResult::DoubleEqualsBigInt;
|
|
}
|
|
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, Crypto::UnsignedBigInteger const& value)
|
|
{
|
|
if (value.is_invalid())
|
|
return fmtbuilder.put_string("invalid"sv);
|
|
|
|
StringBuilder builder;
|
|
for (int i = value.length() - 1; i >= 0; --i)
|
|
TRY(builder.try_appendff("{}|", value.words()[i]));
|
|
|
|
return Formatter<StringView>::format(fmtbuilder, builder.string_view());
|
|
}
|