ladybird/AK/StdLibExtras.h

638 lines
14 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
constexpr unsigned round_up_to_power_of_two(unsigned value, unsigned power_of_two)
{
return ((value - 1) & ~(power_of_two - 1)) + power_of_two;
}
namespace std {
// NOTE: This is in the "std" namespace since some compiler features rely on it.
template<typename T>
constexpr T&& move(T& arg)
{
return static_cast<T&&>(arg);
}
}
using std::move;
namespace AK {
template<typename T>
auto declval() -> T;
template<typename T, typename SizeType = decltype(sizeof(T)), SizeType N>
constexpr SizeType array_size(T (&)[N])
{
return N;
}
template<typename T>
constexpr T min(const T& a, const T& b)
{
return b < a ? b : a;
}
template<typename T>
constexpr T max(const T& a, const T& b)
{
return a < b ? b : a;
}
template<typename T>
constexpr T clamp(const T& value, const T& min, const T& max)
{
VERIFY(max >= min);
if (value > max)
return max;
if (value < min)
return min;
return value;
}
template<typename T, typename U>
constexpr T ceil_div(T a, U b)
{
static_assert(sizeof(T) == sizeof(U));
T result = a / b;
if ((a % b) != 0)
++result;
return result;
}
template<typename T, typename U>
inline void swap(T& a, U& b)
{
U tmp = move((U&)a);
a = (T &&) move(b);
b = move(tmp);
}
template<bool B, class T = void>
struct EnableIf {
};
template<class T>
struct EnableIf<true, T> {
using Type = T;
};
template<class T>
struct AddConst {
using Type = const T;
};
template<class T>
struct RemoveConst {
using Type = T;
};
template<class T>
struct RemoveConst<const T> {
using Type = T;
};
template<class T>
struct RemoveVolatile {
using Type = T;
};
template<class T>
struct RemoveVolatile<volatile T> {
using Type = T;
};
template<class T>
struct RemoveCV {
using Type = typename RemoveVolatile<typename RemoveConst<T>::Type>::Type;
};
template<class T, T v>
struct IntegralConstant {
static constexpr T value = v;
using ValueType = T;
using Type = IntegralConstant;
constexpr operator ValueType() const { return value; }
constexpr ValueType operator()() const { return value; }
};
using FalseType = IntegralConstant<bool, false>;
using TrueType = IntegralConstant<bool, true>;
template<typename...>
using VoidType = void;
template<class T>
struct IsLvalueReference : FalseType {
};
template<class T>
struct IsLvalueReference<T&> : TrueType {
};
template<class T>
struct __IsPointerHelper : FalseType {
};
template<class T>
struct __IsPointerHelper<T*> : TrueType {
};
template<class T>
struct IsPointer : __IsPointerHelper<typename RemoveCV<T>::Type> {
};
template<class>
struct IsFunction : FalseType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...)> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...)> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) volatile> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) volatile> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const volatile> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const volatile> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...)&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...)&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) volatile&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) volatile&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const volatile&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const volatile&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) &&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) &&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const&&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const&&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) volatile&&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) volatile&&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args...) const volatile&&> : TrueType {
};
template<class Ret, class... Args>
struct IsFunction<Ret(Args..., ...) const volatile&&> : TrueType {
};
template<class T>
struct IsRvalueReference : FalseType {
};
template<class T>
struct IsRvalueReference<T&&> : TrueType {
};
template<class T>
struct RemovePointer {
using Type = T;
};
template<class T>
struct RemovePointer<T*> {
using Type = T;
};
template<class T>
struct RemovePointer<T* const> {
using Type = T;
};
template<class T>
struct RemovePointer<T* volatile> {
using Type = T;
};
template<class T>
struct RemovePointer<T* const volatile> {
using Type = T;
};
template<typename T, typename U>
struct IsSame {
static constexpr bool value = false;
};
template<typename T>
struct IsSame<T, T> {
static constexpr bool value = true;
};
template<bool condition, class TrueType, class FalseType>
struct Conditional {
using Type = TrueType;
};
template<class TrueType, class FalseType>
struct Conditional<false, TrueType, FalseType> {
using Type = FalseType;
};
template<typename T>
struct IsNullPointer : IsSame<decltype(nullptr), typename RemoveCV<T>::Type> {
};
template<typename T>
struct RemoveReference {
using Type = T;
};
template<class T>
struct RemoveReference<T&> {
using Type = T;
};
template<class T>
struct RemoveReference<T&&> {
using Type = T;
};
template<class T>
constexpr T&& forward(typename RemoveReference<T>::Type& param)
{
return static_cast<T&&>(param);
}
template<class T>
constexpr T&& forward(typename RemoveReference<T>::Type&& param) noexcept
{
static_assert(!IsLvalueReference<T>::value, "Can't forward an rvalue as an lvalue.");
return static_cast<T&&>(param);
}
template<typename T>
struct MakeUnsigned {
using Type = void;
};
template<>
struct MakeUnsigned<signed char> {
using Type = unsigned char;
};
template<>
struct MakeUnsigned<short> {
using Type = unsigned short;
};
template<>
struct MakeUnsigned<int> {
using Type = unsigned int;
};
template<>
struct MakeUnsigned<long> {
using Type = unsigned long;
};
template<>
struct MakeUnsigned<long long> {
using Type = unsigned long long;
};
template<>
struct MakeUnsigned<unsigned char> {
using Type = unsigned char;
};
template<>
struct MakeUnsigned<unsigned short> {
using Type = unsigned short;
};
template<>
struct MakeUnsigned<unsigned int> {
using Type = unsigned int;
};
template<>
struct MakeUnsigned<unsigned long> {
using Type = unsigned long;
};
template<>
struct MakeUnsigned<unsigned long long> {
using Type = unsigned long long;
};
template<>
struct MakeUnsigned<char> {
using Type = unsigned char;
};
template<>
struct MakeUnsigned<char8_t> {
using Type = char8_t;
};
template<>
struct MakeUnsigned<char16_t> {
using Type = char16_t;
};
template<>
struct MakeUnsigned<char32_t> {
using Type = char32_t;
};
template<>
struct MakeUnsigned<bool> {
using Type = bool;
};
template<typename T>
struct MakeSigned {
};
template<>
struct MakeSigned<signed char> {
using Type = signed char;
};
template<>
struct MakeSigned<short> {
using Type = short;
};
template<>
struct MakeSigned<int> {
using Type = int;
};
template<>
struct MakeSigned<long> {
using Type = long;
};
template<>
struct MakeSigned<long long> {
using Type = long long;
};
template<>
struct MakeSigned<unsigned char> {
using Type = char;
};
template<>
struct MakeSigned<unsigned short> {
using Type = short;
};
template<>
struct MakeSigned<unsigned int> {
using Type = int;
};
template<>
struct MakeSigned<unsigned long> {
using Type = long;
};
template<>
struct MakeSigned<unsigned long long> {
using Type = long long;
};
template<>
struct MakeSigned<char> {
using Type = signed char;
};
template<class T>
struct IsVoid : IsSame<void, typename RemoveCV<T>::Type> {
};
template<class T>
struct IsConst : FalseType {
};
template<class T>
struct IsConst<const T> : TrueType {
};
template<typename T, typename U = T>
constexpr T exchange(T& slot, U&& value)
{
T old_value = move(slot);
slot = forward<U>(value);
return old_value;
}
template<typename T>
struct IsEnum : public IntegralConstant<bool, __is_enum(T)> {
};
template<typename T>
struct IsUnion : public IntegralConstant<bool, __is_union(T)> {
};
template<typename T>
struct IsClass : public IntegralConstant<bool, __is_class(T)> {
};
template<typename Base, typename Derived>
struct IsBaseOf : public IntegralConstant<bool, __is_base_of(Base, Derived)> {
};
template<typename T>
constexpr bool is_trivial()
{
return __is_trivial(T);
}
template<typename T>
constexpr bool is_trivially_copyable()
{
return __is_trivially_copyable(T);
}
template<typename T>
struct __IsIntegral : FalseType {
};
template<>
struct __IsIntegral<bool> : TrueType {
};
template<>
struct __IsIntegral<unsigned char> : TrueType {
};
template<>
struct __IsIntegral<char8_t> : TrueType {
};
template<>
struct __IsIntegral<char16_t> : TrueType {
};
template<>
struct __IsIntegral<char32_t> : TrueType {
};
template<>
struct __IsIntegral<unsigned short> : TrueType {
};
template<>
struct __IsIntegral<unsigned int> : TrueType {
};
template<>
struct __IsIntegral<unsigned long> : TrueType {
};
template<>
struct __IsIntegral<unsigned long long> : TrueType {
};
template<typename T>
using IsIntegral = __IsIntegral<typename MakeUnsigned<typename RemoveCV<T>::Type>::Type>;
template<typename T>
struct __IsFloatingPoint : FalseType {
};
template<>
struct __IsFloatingPoint<float> : TrueType {
};
template<>
struct __IsFloatingPoint<double> : TrueType {
};
template<>
struct __IsFloatingPoint<long double> : TrueType {
};
template<typename T>
using IsFloatingPoint = __IsFloatingPoint<typename RemoveCV<T>::Type>;
template<typename ReferenceType, typename T>
using CopyConst =
typename Conditional<IsConst<ReferenceType>::value, typename AddConst<T>::Type, typename RemoveConst<T>::Type>::Type;
template<typename... Ts>
using Void = void;
template<typename... _Ignored>
constexpr auto DependentFalse = false;
template<typename T>
using IsUnsigned = IsSame<T, typename MakeUnsigned<T>::Type>;
template<typename T>
using IsArithmetic = IntegralConstant<bool, IsIntegral<T>::value || IsFloatingPoint<T>::value>;
template<typename T>
using IsFundamental = IntegralConstant<bool, IsArithmetic<T>::value || IsVoid<T>::value || IsNullPointer<T>::value>;
template<typename T, T... Ts>
struct IntegerSequence {
using Type = T;
static constexpr unsigned size() noexcept { return sizeof...(Ts); };
};
template<unsigned... Indices>
using IndexSequence = IntegerSequence<unsigned, Indices...>;
template<typename T, T N, T... Ts>
auto make_integer_sequence_impl()
{
if constexpr (N == 0)
return IntegerSequence<T, Ts...> {};
else
return make_integer_sequence_impl<T, N - 1, N - 1, Ts...>();
}
template<typename T, T N>
using MakeIntegerSequence = decltype(make_integer_sequence_impl<T, N>());
template<unsigned N>
using MakeIndexSequence = MakeIntegerSequence<unsigned, N>;
template<typename T>
struct IdentityType {
using Type = T;
};
template<class T, bool = IsEnum<T>::value>
struct __UnderlyingType {
using Type = __underlying_type(T);
};
template<class T>
struct __UnderlyingType<T, false> {
};
template<class T>
struct UnderlyingType : __UnderlyingType<T> {
};
}
using AK::AddConst;
using AK::array_size;
using AK::ceil_div;
using AK::clamp;
using AK::Conditional;
using AK::declval;
using AK::DependentFalse;
using AK::exchange;
using AK::forward;
using AK::IdentityType;
using AK::IndexSequence;
using AK::IntegerSequence;
using AK::is_trivial;
using AK::is_trivially_copyable;
using AK::IsArithmetic;
using AK::IsBaseOf;
using AK::IsClass;
using AK::IsConst;
using AK::IsEnum;
using AK::IsFloatingPoint;
using AK::IsFundamental;
using AK::IsIntegral;
using AK::IsNullPointer;
using AK::IsSame;
using AK::IsUnion;
using AK::IsUnsigned;
using AK::IsVoid;
using AK::MakeIndexSequence;
using AK::MakeIntegerSequence;
using AK::MakeSigned;
using AK::MakeUnsigned;
using AK::max;
using AK::min;
using AK::RemoveConst;
using AK::swap;
using AK::UnderlyingType;
using AK::Void;