ladybird/Kernel/Scheduler.cpp
Andreas Kling bc1da7f1fd Kernel: Snooze the NetworkTask until there are incoming packets to process.
This is accomplished using a new Alarm class and a BlockedSnoozing state.
Basically, you call Process::snooze_until(some_alarm) and then the scheduler
won't wake up the process until some_alarm.is_ringing() returns true.
2019-03-20 17:09:46 +01:00

425 lines
14 KiB
C++

#include "Scheduler.h"
#include "Process.h"
#include "system.h"
#include "RTC.h"
#include "i8253.h"
#include <AK/TemporaryChange.h>
#include <Kernel/Alarm.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
static dword time_slice_for(Process::Priority priority)
{
// One time slice unit == 1ms
switch (priority) {
case Process::HighPriority:
return 50;
case Process::NormalPriority:
return 15;
case Process::LowPriority:
return 5;
}
ASSERT_NOT_REACHED();
}
Process* current;
Process* g_last_fpu_process;
Process* g_finalizer;
static Process* s_colonel_process;
struct TaskRedirectionData {
word selector;
TSS32 tss;
};
static TaskRedirectionData s_redirection;
static bool s_active;
bool Scheduler::is_active()
{
return s_active;
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!s_active);
TemporaryChange<bool> change(s_active, true);
ASSERT(s_active);
if (!current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return context_switch(*s_colonel_process);
}
auto now_sec = RTC::now();
auto now_usec = (suseconds_t)((PIT::ticks_since_boot() % 1000) * 1000);
// Check and unblock processes whose wait conditions have been met.
Process::for_each([&] (Process& process) {
if (process.state() == Process::BlockedSleep) {
if (process.wakeup_time() <= system.uptime)
process.unblock();
return true;
}
if (process.state() == Process::BlockedWait) {
process.for_each_child([&process] (Process& child) {
if (child.state() != Process::Dead)
return true;
if (process.waitee_pid() == -1 || process.waitee_pid() == child.pid()) {
process.m_waitee_pid = child.pid();
process.unblock();
return false;
}
return true;
});
return true;
}
if (process.state() == Process::BlockedRead) {
ASSERT(process.m_blocked_fd != -1);
// FIXME: Block until the amount of data wanted is available.
if (process.m_fds[process.m_blocked_fd].descriptor->can_read(process))
process.unblock();
return true;
}
if (process.state() == Process::BlockedWrite) {
ASSERT(process.m_blocked_fd != -1);
if (process.m_fds[process.m_blocked_fd].descriptor->can_write(process))
process.unblock();
return true;
}
if (process.state() == Process::BlockedConnect) {
ASSERT(process.m_blocked_socket);
if (process.m_blocked_socket->is_connected())
process.unblock();
return true;
}
if (process.state() == Process::BlockedReceive) {
ASSERT(process.m_blocked_socket);
auto& socket = *process.m_blocked_socket;
// FIXME: Block until the amount of data wanted is available.
bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec);
if (timed_out || socket.can_read(SocketRole::None)) {
process.unblock();
process.m_blocked_socket = nullptr;
return true;
}
return true;
}
if (process.state() == Process::BlockedSelect) {
if (process.m_select_has_timeout) {
if (now_sec > process.m_select_timeout.tv_sec || (now_sec == process.m_select_timeout.tv_sec && now_usec >= process.m_select_timeout.tv_usec)) {
process.unblock();
return true;
}
}
for (int fd : process.m_select_read_fds) {
if (process.m_fds[fd].descriptor->can_read(process)) {
process.unblock();
return true;
}
}
for (int fd : process.m_select_write_fds) {
if (process.m_fds[fd].descriptor->can_write(process)) {
process.unblock();
return true;
}
}
return true;
}
if (process.state() == Process::BlockedSnoozing) {
if (process.m_snoozing_alarm->is_ringing()) {
process.m_snoozing_alarm = nullptr;
process.unblock();
}
return true;
}
if (process.state() == Process::Skip1SchedulerPass) {
process.set_state(Process::Skip0SchedulerPasses);
return true;
}
if (process.state() == Process::Skip0SchedulerPasses) {
process.set_state(Process::Runnable);
return true;
}
if (process.state() == Process::Dead) {
if (current != &process && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
}
return true;
}
if (process.state() == Process::Dying) {
ASSERT(g_finalizer);
if (g_finalizer->state() == Process::BlockedLurking)
g_finalizer->unblock();
return true;
}
return true;
});
// Dispatch any pending signals.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_living([] (auto& process) {
if (!process.has_unmasked_pending_signals())
return true;
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
// while some other process is interrupted. Otherwise a mess will be made.
if (&process == current)
return true;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue. They'll be in userspace
// sooner or later and we can deliver the signal then.
// FIXME: Maybe we could check when returning from a syscall if there's a pending
// signal and dispatch it then and there? Would that be doable without the
// syscall effectively being "interrupted" despite having completed?
if (process.in_kernel() && !process.is_blocked() && !process.is_stopped())
return true;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = process.is_blocked();
if (process.dispatch_one_pending_signal() == ShouldUnblockProcess::No)
return true;
if (was_blocked) {
dbgprintf("Unblock %s(%u) due to signal\n", process.name().characters(), process.pid());
process.m_was_interrupted_while_blocked = true;
process.unblock();
}
return true;
});
#ifdef SCHEDULER_DEBUG
dbgprintf("Scheduler choices:\n");
for (auto* process = g_processes->head(); process; process = process->next()) {
//if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep)
// continue;
dbgprintf("[K%x] % 12s %s(%u) @ %w:%x\n", process, to_string(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
}
#endif
auto* previous_head = g_processes->head();
for (;;) {
// Move head to tail.
g_processes->append(g_processes->remove_head());
auto* process = g_processes->head();
if (process->state() == Process::Runnable || process->state() == Process::Running) {
#ifdef SCHEDULER_DEBUG
kprintf("switch to %s(%u) @ %w:%x\n", process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
#endif
return context_switch(*process);
}
if (process == previous_head) {
// Back at process_head, nothing wants to run. Send in the colonel!
return context_switch(*s_colonel_process);
}
}
}
bool Scheduler::donate_to(Process* beneficiary, const char* reason)
{
(void)reason;
unsigned ticks_left = current->ticks_left();
if (!beneficiary || beneficiary->state() != Process::Runnable || ticks_left <= 1) {
return yield();
}
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(beneficiary->priority()));
#ifdef SCHEDULER_DEBUG
dbgprintf("%s(%u) donating %u ticks to %s(%u), reason=%s\n", current->name().characters(), current->pid(), ticks_to_donate, beneficiary->name().characters(), beneficiary->pid(), reason);
#endif
context_switch(*beneficiary);
beneficiary->set_ticks_left(ticks_to_donate);
switch_now();
return 0;
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
ASSERT(current);
//dbgprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
if (!pick_next())
return 1;
//dbgprintf("yield() jumping to new process: %x (%s)\n", current->far_ptr().selector, current->name().characters());
switch_now();
return 0;
}
void Scheduler::pick_next_and_switch_now()
{
bool someone_wants_to_run = pick_next();
ASSERT(someone_wants_to_run);
switch_now();
}
void Scheduler::switch_now()
{
Descriptor& descriptor = get_gdt_entry(current->selector());
descriptor.type = 9;
flush_gdt();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(&current->far_ptr())
);
}
bool Scheduler::context_switch(Process& process)
{
process.set_ticks_left(time_slice_for(process.priority()));
process.did_schedule();
if (current == &process)
return false;
if (current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Process::Running)
current->set_state(Process::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgprintf("Scheduler: %s(%u) -> %s(%u) %w:%x\n",
current->name().characters(), current->pid(),
process.name().characters(), process.pid(),
process.tss().cs, process.tss().eip);
#endif
}
current = &process;
process.set_state(Process::Running);
#ifdef COOL_GLOBALS
g_cool_globals->current_pid = process.pid();
#endif
if (!process.selector()) {
process.set_selector(gdt_alloc_entry());
auto& descriptor = get_gdt_entry(process.selector());
descriptor.set_base(&process.tss());
descriptor.set_limit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
auto& descriptor = get_gdt_entry(process.selector());
descriptor.type = 11; // Busy TSS
flush_gdt();
return true;
}
static void initialize_redirection()
{
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.set_base(&s_redirection.tss);
descriptor.set_limit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
descriptor.type = 9;
flush_gdt();
}
void Scheduler::prepare_for_iret_to_new_process()
{
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.type = 9;
s_redirection.tss.backlink = current->selector();
load_task_register(s_redirection.selector);
}
void Scheduler::prepare_to_modify_tss(Process& process)
{
// This ensures that a currently running process modifying its own TSS
// in order to yield() and end up somewhere else doesn't just end up
// right after the yield().
if (current == &process)
load_task_register(s_redirection.selector);
}
Process* Scheduler::colonel()
{
return s_colonel_process;
}
void Scheduler::initialize()
{
s_redirection.selector = gdt_alloc_entry();
initialize_redirection();
s_colonel_process = Process::create_kernel_process("colonel", nullptr);
load_task_register(s_redirection.selector);
}
void Scheduler::timer_tick(RegisterDump& regs)
{
if (!current)
return;
system.uptime++;
if (current->tick())
return;
current->tss().gs = regs.gs;
current->tss().fs = regs.fs;
current->tss().es = regs.es;
current->tss().ds = regs.ds;
current->tss().edi = regs.edi;
current->tss().esi = regs.esi;
current->tss().ebp = regs.ebp;
current->tss().ebx = regs.ebx;
current->tss().edx = regs.edx;
current->tss().ecx = regs.ecx;
current->tss().eax = regs.eax;
current->tss().eip = regs.eip;
current->tss().cs = regs.cs;
current->tss().eflags = regs.eflags;
// Compute process stack pointer.
// Add 12 for CS, EIP, EFLAGS (interrupt mechanic)
current->tss().esp = regs.esp + 12;
current->tss().ss = regs.ss;
if ((current->tss().cs & 3) != 0) {
current->tss().ss = regs.ss_if_crossRing;
current->tss().esp = regs.esp_if_crossRing;
}
if (!pick_next())
return;
prepare_for_iret_to_new_process();
// Set the NT (nested task) flag.
asm(
"pushf\n"
"orl $0x00004000, (%esp)\n"
"popf\n"
);
}