ladybird/AK/HashTable.h
Andreas Kling 12120167a9 AK: Add ensure_capacity() for HashMap and HashTable.
These functions make sure that the underlying table can accomodate at least
'capacity' entries before needing a rehash.
2019-05-27 13:07:20 +02:00

432 lines
12 KiB
C++

#pragma once
#include "Assertions.h"
#include "DoublyLinkedList.h"
#include "Traits.h"
#include "StdLibExtras.h"
#include "kstdio.h"
//#define HASHTABLE_DEBUG
namespace AK {
template<typename T, typename = Traits<T>> class HashTable;
template<typename T, typename TraitsForT>
class HashTable {
private:
struct Bucket {
DoublyLinkedList<T> chain;
};
public:
HashTable() { }
explicit HashTable(HashTable&& other)
: m_buckets(other.m_buckets)
, m_size(other.m_size)
, m_capacity(other.m_capacity)
{
other.m_size = 0;
other.m_capacity = 0;
other.m_buckets = nullptr;
}
HashTable& operator=(HashTable&& other)
{
if (this != &other) {
clear();
m_buckets = other.m_buckets;
m_size = other.m_size;
m_capacity = other.m_capacity;
other.m_size = 0;
other.m_capacity = 0;
other.m_buckets = nullptr;
}
return *this;
}
~HashTable() { clear(); }
bool is_empty() const { return !m_size; }
int size() const { return m_size; }
int capacity() const { return m_capacity; }
void ensure_capacity(int capacity)
{
ASSERT(capacity >= size());
rehash(capacity);
}
void set(const T&);
void set(T&&);
bool contains(const T&) const;
void clear();
void dump() const;
class Iterator {
public:
bool operator!=(const Iterator& other) const
{
if (m_is_end && other.m_is_end)
return false;
return &m_table != &other.m_table
|| m_is_end != other.m_is_end
|| m_bucket_index != other.m_bucket_index
|| m_bucket_iterator != other.m_bucket_iterator;
}
bool operator==(const Iterator& other) const { return !(*this != other); }
T& operator*()
{
#ifdef HASHTABLE_DEBUG
kprintf("retrieve { bucket_index: %u, is_end: %u }\n", m_bucket_index, m_is_end);
#endif
return *m_bucket_iterator;
}
T* operator->() { return m_bucket_iterator.operator->(); }
Iterator& operator++()
{
skip_to_next();
return *this;
}
void skip_to_next()
{
#ifdef HASHTABLE_DEBUG
unsigned pass = 0;
#endif
while (!m_is_end) {
#ifdef HASHTABLE_DEBUG
++pass;
kprintf("skip_to_next pass %u, m_bucket_index=%u\n", pass, m_bucket_index);
#endif
if (m_bucket_iterator.is_end()) {
++m_bucket_index;
if (m_bucket_index >= m_table.capacity()) {
m_is_end = true;
return;
}
m_bucket_iterator = m_table.m_buckets[m_bucket_index].chain.begin();
} else {
++m_bucket_iterator;
}
if (!m_bucket_iterator.is_end())
return;
}
}
private:
friend class HashTable;
explicit Iterator(HashTable& table, bool is_end, typename DoublyLinkedList<T>::Iterator bucket_iterator = DoublyLinkedList<T>::Iterator::universal_end(), int bucket_index = 0)
: m_table(table)
, m_bucket_index(bucket_index)
, m_is_end(is_end)
, m_bucket_iterator(bucket_iterator)
{
if (!is_end && !m_table.is_empty() && !(m_bucket_iterator != DoublyLinkedList<T>::Iterator::universal_end())) {
#ifdef HASHTABLE_DEBUG
kprintf("bucket iterator init!\n");
#endif
m_bucket_iterator = m_table.m_buckets[0].chain.begin();
if (m_bucket_iterator.is_end())
skip_to_next();
}
}
HashTable& m_table;
int m_bucket_index { 0 };
bool m_is_end { false };
typename DoublyLinkedList<T>::Iterator m_bucket_iterator;
};
Iterator begin() { return Iterator(*this, is_empty()); }
Iterator end() { return Iterator(*this, true); }
class ConstIterator {
public:
bool operator!=(const ConstIterator& other) const
{
if (m_is_end && other.m_is_end)
return false;
return &m_table != &other.m_table
|| m_is_end != other.m_is_end
|| m_bucket_index != other.m_bucket_index
|| m_bucket_iterator != other.m_bucket_iterator;
}
bool operator==(const ConstIterator& other) const { return !(*this != other); }
const T& operator*() const
{
#ifdef HASHTABLE_DEBUG
kprintf("retrieve { bucket_index: %u, is_end: %u }\n", m_bucket_index, m_is_end);
#endif
return *m_bucket_iterator;
}
const T* operator->() const { return m_bucket_iterator.operator->(); }
ConstIterator& operator++()
{
skip_to_next();
return *this;
}
void skip_to_next()
{
#ifdef HASHTABLE_DEBUG
unsigned pass = 0;
#endif
while (!m_is_end) {
#ifdef HASHTABLE_DEBUG
++pass;
kprintf("skip_to_next pass %u, m_bucket_index=%u\n", pass, m_bucket_index);
#endif
if (m_bucket_iterator.is_end()) {
++m_bucket_index;
if (m_bucket_index >= m_table.capacity()) {
m_is_end = true;
return;
}
const DoublyLinkedList<T>& chain = m_table.m_buckets[m_bucket_index].chain;
m_bucket_iterator = chain.begin();
} else {
++m_bucket_iterator;
}
if (!m_bucket_iterator.is_end())
return;
}
}
private:
friend class HashTable;
ConstIterator(const HashTable& table, bool is_end, typename DoublyLinkedList<T>::ConstIterator bucket_iterator = DoublyLinkedList<T>::ConstIterator::universal_end(), int bucket_index = 0)
: m_table(table)
, m_bucket_index(bucket_index)
, m_is_end(is_end)
, m_bucket_iterator(bucket_iterator)
{
if (!is_end && !m_table.is_empty() && !(m_bucket_iterator != DoublyLinkedList<T>::ConstIterator::universal_end())) {
#ifdef HASHTABLE_DEBUG
kprintf("const bucket iterator init!\n");
#endif
const DoublyLinkedList<T>& chain = m_table.m_buckets[0].chain;
m_bucket_iterator = chain.begin();
if (m_bucket_iterator.is_end())
skip_to_next();
}
}
const HashTable& m_table;
int m_bucket_index { 0 };
bool m_is_end { false };
typename DoublyLinkedList<T>::ConstIterator m_bucket_iterator;
};
ConstIterator begin() const { return ConstIterator(*this, is_empty()); }
ConstIterator end() const { return ConstIterator(*this, true); }
Iterator find(const T&);
ConstIterator find(const T&) const;
void remove(const T& value)
{
auto it = find(value);
if (it != end())
remove(it);
}
void remove(Iterator);
private:
Bucket& lookup(const T&, int* bucket_index = nullptr);
const Bucket& lookup(const T&, int* bucket_index = nullptr) const;
void rehash(int capacity);
void insert(const T&);
void insert(T&&);
Bucket* m_buckets { nullptr };
int m_size { 0 };
int m_capacity { 0 };
};
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::set(T&& value)
{
if (!m_capacity)
rehash(1);
auto& bucket = lookup(value);
for (auto& e : bucket.chain) {
if (e == value) {
e = move(value);
return;
}
}
if (size() >= capacity()) {
rehash(size() + 1);
insert(move(value));
} else {
bucket.chain.append(move(value));
}
m_size++;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::set(const T& value)
{
if (!m_capacity)
rehash(1);
auto& bucket = lookup(value);
for (auto& e : bucket.chain) {
if (e == value) {
e = move(value);
return;
}
}
if (size() >= capacity()) {
rehash(size() + 1);
insert(value);
} else {
bucket.chain.append(value);
}
m_size++;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::rehash(int new_capacity)
{
new_capacity *= 2;
#ifdef HASHTABLE_DEBUG
kprintf("rehash to %u buckets\n", new_capacity);
#endif
auto* new_buckets = new Bucket[new_capacity];
auto* old_buckets = m_buckets;
int old_capacity = m_capacity;
m_buckets = new_buckets;
m_capacity = new_capacity;
#ifdef HASHTABLE_DEBUG
kprintf("reinsert %u buckets\n", old_capacity);
#endif
for (int i = 0; i < old_capacity; ++i) {
for (auto& value : old_buckets[i].chain) {
insert(move(value));
}
}
delete [] old_buckets;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::clear()
{
if (m_buckets) {
delete [] m_buckets;
m_buckets = nullptr;
}
m_capacity = 0;
m_size = 0;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::insert(T&& value)
{
auto& bucket = lookup(value);
bucket.chain.append(move(value));
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::insert(const T& value)
{
auto& bucket = lookup(value);
bucket.chain.append(value);
}
template<typename T, typename TraitsForT>
bool HashTable<T, TraitsForT>::contains(const T& value) const
{
if (is_empty())
return false;
auto& bucket = lookup(value);
for (auto& e : bucket.chain) {
if (e == value)
return true;
}
return false;
}
template<typename T, typename TraitsForT>
auto HashTable<T, TraitsForT>::find(const T& value) -> Iterator
{
if (is_empty())
return end();
int bucket_index;
auto& bucket = lookup(value, &bucket_index);
auto bucket_iterator = bucket.chain.find(value);
if (bucket_iterator != bucket.chain.end())
return Iterator(*this, false, bucket_iterator, bucket_index);
return end();
}
template<typename T, typename TraitsForT>
auto HashTable<T, TraitsForT>::find(const T& value) const -> ConstIterator
{
if (is_empty())
return end();
int bucket_index;
auto& bucket = lookup(value, &bucket_index);
auto bucket_iterator = bucket.chain.find(value);
if (bucket_iterator != bucket.chain.end())
return ConstIterator(*this, false, bucket_iterator, bucket_index);
return end();
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::remove(Iterator it)
{
ASSERT(!is_empty());
m_buckets[it.m_bucket_index].chain.remove(it.m_bucket_iterator);
--m_size;
}
template<typename T, typename TraitsForT>
typename HashTable<T, TraitsForT>::Bucket& HashTable<T, TraitsForT>::lookup(const T& value, int* bucket_index)
{
unsigned hash = TraitsForT::hash(value);
#ifdef HASHTABLE_DEBUG
kprintf("hash for ");
TraitsForT::dump(value);
kprintf(" is %u\n", hash);
#endif
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
template<typename T, typename TraitsForT>
const typename HashTable<T, TraitsForT>::Bucket& HashTable<T, TraitsForT>::lookup(const T& value, int* bucket_index) const
{
unsigned hash = TraitsForT::hash(value);
#ifdef HASHTABLE_DEBUG
kprintf("hash for ");
TraitsForT::dump(value);
kprintf(" is %u\n", hash);
#endif
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::dump() const
{
kprintf("HashTable{%p} m_size=%u, m_capacity=%u, m_buckets=%p\n", this, m_size, m_capacity, m_buckets);
for (int i = 0; i < m_capacity; ++i) {
auto& bucket = m_buckets[i];
kprintf("Bucket %u\n", i);
for (auto& e : bucket.chain) {
kprintf(" > ");
TraitsForT::dump(e);
kprintf("\n");
}
}
}
}
using AK::HashTable;