ladybird/Libraries/LibTLS/TLSv12.cpp
2024-12-07 19:08:40 +01:00

620 lines
24 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Base64.h>
#include <AK/Debug.h>
#include <AK/Endian.h>
#include <LibCore/ConfigFile.h>
#include <LibCore/DateTime.h>
#include <LibCore/File.h>
#include <LibCore/StandardPaths.h>
#include <LibCore/Timer.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/Constants.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/Certificate/Certificate.h>
#include <LibCrypto/Curves/Ed25519.h>
#include <LibCrypto/Curves/SECPxxxr1.h>
#include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
#include <LibFileSystem/FileSystem.h>
#include <LibTLS/TLSv12.h>
#include <errno.h>
#ifndef SOCK_NONBLOCK
# include <sys/ioctl.h>
#endif
namespace TLS {
void TLSv12::consume(ReadonlyBytes record)
{
if (m_context.critical_error) {
dbgln("There has been a critical error ({}), refusing to continue", (i8)m_context.critical_error);
return;
}
if (record.size() == 0) {
return;
}
dbgln_if(TLS_DEBUG, "Consuming {} bytes", record.size());
if (m_context.message_buffer.try_append(record).is_error()) {
dbgln("Not enough space in message buffer, dropping the record");
return;
}
size_t index { 0 };
size_t buffer_length = m_context.message_buffer.size();
size_t size_offset { 3 }; // read the common record header
size_t header_size { 5 };
dbgln_if(TLS_DEBUG, "message buffer length {}", buffer_length);
while (buffer_length >= 5) {
auto length = AK::convert_between_host_and_network_endian(ByteReader::load16(m_context.message_buffer.offset_pointer(index + size_offset))) + header_size;
if (length > buffer_length) {
dbgln_if(TLS_DEBUG, "Need more data: {} > {}", length, buffer_length);
break;
}
auto consumed = handle_message(m_context.message_buffer.bytes().slice(index, length));
if constexpr (TLS_DEBUG) {
if (consumed > 0)
dbgln("consumed {} bytes", consumed);
else
dbgln("error: {}", consumed);
}
if (consumed != (i8)Error::NeedMoreData) {
if (consumed < 0) {
dbgln("Consumed an error: {}", consumed);
if (!m_context.critical_error)
m_context.critical_error = (i8)consumed;
m_context.error_code = (Error)consumed;
break;
}
} else {
continue;
}
index += length;
buffer_length -= length;
if (m_context.critical_error) {
dbgln("Broken connection");
m_context.error_code = Error::BrokenConnection;
break;
}
}
if (m_context.error_code != Error::NoError && m_context.error_code != Error::NeedMoreData) {
dbgln("consume error: {}", (i8)m_context.error_code);
m_context.message_buffer.clear();
return;
}
if (index) {
// FIXME: Propagate errors.
m_context.message_buffer = MUST(m_context.message_buffer.slice(index, m_context.message_buffer.size() - index));
}
}
void TLSv12::try_disambiguate_error() const
{
dbgln("Possible failure cause(s): ");
switch ((AlertDescription)m_context.critical_error) {
case AlertDescription::HANDSHAKE_FAILURE:
if (!m_context.cipher_spec_set) {
dbgln("- No cipher suite in common with {}", m_context.extensions.SNI);
} else {
dbgln("- Unknown internal issue");
}
break;
case AlertDescription::INSUFFICIENT_SECURITY:
dbgln("- No cipher suite in common with {} (the server is oh so secure)", m_context.extensions.SNI);
break;
case AlertDescription::PROTOCOL_VERSION:
dbgln("- The server refused to negotiate with TLS 1.2 :(");
break;
case AlertDescription::UNEXPECTED_MESSAGE:
dbgln("- We sent an invalid message for the state we're in.");
break;
case AlertDescription::BAD_RECORD_MAC:
dbgln("- Bad MAC record from our side.");
dbgln("- Ciphertext wasn't an even multiple of the block length.");
dbgln("- Bad block cipher padding.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::RECORD_OVERFLOW:
dbgln("- Sent a ciphertext record which has a length bigger than 18432 bytes.");
dbgln("- Sent record decrypted to a compressed record that has a length bigger than 18432 bytes.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::DECOMPRESSION_FAILURE_RESERVED:
dbgln("- We sent invalid input for decompression (e.g. data that would expand to excessive length)");
break;
case AlertDescription::ILLEGAL_PARAMETER:
dbgln("- We sent a parameter in the handshake that is out of range or inconsistent with the other parameters.");
break;
case AlertDescription::DECODE_ERROR:
dbgln("- The message we sent cannot be decoded because a field was out of range or the length was incorrect.");
dbgln("- If both sides are compliant, the only cause is messages being corrupted in the network.");
break;
case AlertDescription::DECRYPT_ERROR:
dbgln("- A handshake crypto operation failed. This includes signature verification and validating Finished.");
break;
case AlertDescription::ACCESS_DENIED:
dbgln("- The certificate is valid, but once access control was applied, the sender decided to stop negotiation.");
break;
case AlertDescription::INTERNAL_ERROR:
dbgln("- No one knows, but it isn't a protocol failure.");
break;
case AlertDescription::DECRYPTION_FAILED_RESERVED:
case AlertDescription::NO_CERTIFICATE_RESERVED:
case AlertDescription::EXPORT_RESTRICTION_RESERVED:
dbgln("- No one knows, the server sent a non-compliant alert.");
break;
default:
dbgln("- No one knows.");
break;
}
dbgln("- {}", enum_to_value((AlertDescription)m_context.critical_error));
}
void TLSv12::set_root_certificates(Vector<Certificate> certificates)
{
if (!m_context.root_certificates.is_empty()) {
dbgln("TLS warn: resetting root certificates!");
m_context.root_certificates.clear();
}
for (auto& cert : certificates) {
if (!cert.is_valid()) {
dbgln("Certificate for {} is invalid, things may or may not work!", cert.subject.to_string());
}
// FIXME: Figure out what we should do when our root certs are invalid.
m_context.root_certificates.set(MUST(cert.subject.to_string()).to_byte_string(), cert);
}
dbgln_if(TLS_DEBUG, "{}: Set {} root certificates", this, m_context.root_certificates.size());
}
static bool wildcard_matches(StringView host, StringView subject)
{
if (host == subject)
return true;
if (subject.starts_with("*."sv)) {
auto maybe_first_dot_index = host.find('.');
if (maybe_first_dot_index.has_value()) {
auto first_dot_index = maybe_first_dot_index.release_value();
return wildcard_matches(host.substring_view(first_dot_index + 1), subject.substring_view(2));
}
}
return false;
}
static bool certificate_subject_matches_host(Certificate const& cert, StringView host)
{
if (wildcard_matches(host, cert.subject.common_name()))
return true;
for (auto& san : cert.SAN) {
if (wildcard_matches(host, san))
return true;
}
return false;
}
bool Context::verify_chain(StringView host) const
{
if (!options.validate_certificates)
return true;
Vector<Certificate> const* local_chain = nullptr;
if (is_server) {
dbgln("Unsupported: Server mode");
TODO();
} else {
local_chain = &certificates;
}
if (local_chain->is_empty()) {
dbgln("verify_chain: Attempting to verify an empty chain");
return false;
}
// RFC5246 section 7.4.2: The sender's certificate MUST come first in the list. Each following certificate
// MUST directly certify the one preceding it. Because certificate validation requires that root keys be
// distributed independently, the self-signed certificate that specifies the root certificate authority MAY be
// omitted from the chain, under the assumption that the remote end must already possess it in order to validate
// it in any case.
if (!host.is_empty()) {
auto const& first_certificate = local_chain->first();
auto subject_matches = certificate_subject_matches_host(first_certificate, host);
if (!subject_matches) {
dbgln("verify_chain: First certificate does not match the hostname");
return false;
}
} else {
// FIXME: The host is taken from m_context.extensions.SNI, when is this empty?
dbgln("FIXME: verify_chain called without host");
return false;
}
for (size_t cert_index = 0; cert_index < local_chain->size(); ++cert_index) {
auto const& cert = local_chain->at(cert_index);
auto subject_string = MUST(cert.subject.to_string());
auto issuer_string = MUST(cert.issuer.to_string());
if (!cert.is_valid()) {
dbgln("verify_chain: Certificate is not valid {}", subject_string);
return false;
}
auto maybe_root_certificate = root_certificates.get(issuer_string.to_byte_string());
if (maybe_root_certificate.has_value()) {
auto& root_certificate = *maybe_root_certificate;
auto verification_correct = verify_certificate_pair(cert, root_certificate);
if (!verification_correct) {
dbgln("verify_chain: Signature inconsistent, {} was not signed by {} (root certificate)", subject_string, issuer_string);
return false;
}
// Root certificate reached, and correctly verified, so we can stop now
return true;
}
if (subject_string == issuer_string) {
dbgln("verify_chain: Non-root self-signed certificate");
return options.allow_self_signed_certificates;
}
if ((cert_index + 1) >= local_chain->size()) {
dbgln("verify_chain: No trusted root certificate found before end of certificate chain");
dbgln("verify_chain: Last certificate in chain was signed by {}", issuer_string);
return false;
}
auto const& parent_certificate = local_chain->at(cert_index + 1);
if (issuer_string != MUST(parent_certificate.subject.to_string())) {
dbgln("verify_chain: Next certificate in the chain is not the issuer of this certificate");
return false;
}
if (!(parent_certificate.is_allowed_to_sign_certificate && parent_certificate.is_certificate_authority)) {
dbgln("verify_chain: {} is not marked as certificate authority", issuer_string);
return false;
}
if (parent_certificate.path_length_constraint.has_value() && cert_index > parent_certificate.path_length_constraint.value()) {
dbgln("verify_chain: Path length for certificate exceeded");
return false;
}
bool verification_correct = verify_certificate_pair(cert, parent_certificate);
if (!verification_correct) {
dbgln("verify_chain: Signature inconsistent, {} was not signed by {}", subject_string, issuer_string);
return false;
}
}
// Either a root certificate is reached, or parent validation fails as the end of the local chain is reached
VERIFY_NOT_REACHED();
}
bool Context::verify_certificate_pair(Certificate const& subject, Certificate const& issuer) const
{
Crypto::Hash::HashKind kind = Crypto::Hash::HashKind::Unknown;
auto identifier = subject.signature_algorithm.identifier;
bool is_rsa = true;
if (identifier == Crypto::ASN1::rsa_encryption_oid) {
kind = Crypto::Hash::HashKind::None;
} else if (identifier == Crypto::ASN1::rsa_md5_encryption_oid) {
kind = Crypto::Hash::HashKind::MD5;
} else if (identifier == Crypto::ASN1::rsa_sha1_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA1;
} else if (identifier == Crypto::ASN1::rsa_sha256_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA256;
} else if (identifier == Crypto::ASN1::rsa_sha384_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA384;
} else if (identifier == Crypto::ASN1::rsa_sha512_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA512;
} else if (identifier == Crypto::ASN1::ecdsa_with_sha256_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA256;
is_rsa = false;
} else if (identifier == Crypto::ASN1::ecdsa_with_sha384_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA384;
is_rsa = false;
} else if (identifier == Crypto::ASN1::ecdsa_with_sha512_encryption_oid) {
kind = Crypto::Hash::HashKind::SHA512;
is_rsa = false;
}
if (kind == Crypto::Hash::HashKind::Unknown) {
dbgln("verify_certificate_pair: Unknown signature algorithm, expected RSA or ECDSA with SHA1/256/384/512, got OID {}", identifier);
return false;
}
if (is_rsa) {
Crypto::PK::RSAPrivateKey dummy_private_key;
Crypto::PK::RSAPublicKey public_key_copy { issuer.public_key.rsa };
auto rsa = Crypto::PK::RSA(public_key_copy, dummy_private_key);
auto verification_buffer_result = ByteBuffer::create_uninitialized(subject.signature_value.size());
if (verification_buffer_result.is_error()) {
dbgln("verify_certificate_pair: Unable to allocate buffer for verification");
return false;
}
auto verification_buffer = verification_buffer_result.release_value();
auto verification_buffer_bytes = verification_buffer.bytes();
rsa.verify(subject.signature_value, verification_buffer_bytes);
ReadonlyBytes message = subject.tbs_asn1.bytes();
auto pkcs1 = Crypto::PK::EMSA_PKCS1_V1_5<Crypto::Hash::Manager>(kind);
auto verification = pkcs1.verify(message, verification_buffer_bytes, subject.signature_value.size() * 8);
return verification == Crypto::VerificationConsistency::Consistent;
}
// ECDSA hash verification: hash, then check signature against the specific curve
auto ec_curve = oid_to_curve(issuer.public_key.algorithm.ec_parameters.value_or({}));
if (ec_curve.is_error()) {
dbgln("verify_certificate_pair: Unknown curve for ECDSA signature verification");
return false;
}
auto public_key = issuer.public_key.ec;
auto public_point = Crypto::Curves::SECPxxxr1Point { public_key.x(), public_key.y() };
auto maybe_signature = Crypto::Curves::SECPxxxr1Signature::from_asn(subject.signature_value, {});
if (maybe_signature.is_error()) {
dbgln("verify_certificate_pair: Signature is not ASN.1 DER encoded");
return false;
}
auto signature = maybe_signature.release_value();
switch (ec_curve.release_value()) {
case SupportedGroup::SECP256R1: {
Crypto::Hash::Manager hasher(kind);
hasher.update(subject.tbs_asn1.bytes());
auto hash = hasher.digest();
Crypto::Curves::SECP256r1 curve;
auto result = curve.verify_point(hash.bytes(), public_point, signature);
if (result.is_error()) {
dbgln("verify_certificate_pair: Failed to check SECP256r1 signature {}", result.release_error());
return false;
}
return result.value();
}
case SupportedGroup::SECP384R1: {
Crypto::Hash::Manager hasher(kind);
hasher.update(subject.tbs_asn1.bytes());
auto hash = hasher.digest();
Crypto::Curves::SECP384r1 curve;
auto result = curve.verify_point(hash.bytes(), public_point, signature);
if (result.is_error()) {
dbgln("verify_certificate_pair: Failed to check SECP384r1 signature {}", result.release_error());
return false;
}
return result.value();
}
case SupportedGroup::X25519: {
Crypto::Curves::Ed25519 curve;
auto result = curve.verify(issuer.public_key.raw_key, subject.signature_value, subject.tbs_asn1.bytes());
if (!result) {
dbgln("verify_certificate_pair: Failed to check Ed25519 signature");
return false;
}
return result;
}
default:
dbgln("verify_certificate_pair: Don't know how to verify signature for curve {}", to_underlying(ec_curve.release_value()));
return false;
}
}
template<typename HMACType>
static void hmac_pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
{
if (!secret.size()) {
dbgln("null secret");
return;
}
auto append_label_seed = [&](auto& hmac) {
hmac.update(label, label_length);
hmac.update(seed);
if (seed_b.size() > 0)
hmac.update(seed_b);
};
HMACType hmac(secret);
append_label_seed(hmac);
constexpr auto digest_size = hmac.digest_size();
u8 digest[digest_size];
auto digest_0 = Bytes { digest, digest_size };
digest_0.overwrite(0, hmac.digest().immutable_data(), digest_size);
size_t index = 0;
while (index < output.size()) {
hmac.update(digest_0);
append_label_seed(hmac);
auto digest_1 = hmac.digest();
auto copy_size = min(digest_size, output.size() - index);
output.overwrite(index, digest_1.immutable_data(), copy_size);
index += copy_size;
digest_0.overwrite(0, hmac.process(digest_0).immutable_data(), digest_size);
}
}
void TLSv12::pseudorandom_function(Bytes output, ReadonlyBytes secret, u8 const* label, size_t label_length, ReadonlyBytes seed, ReadonlyBytes seed_b)
{
// Simplification: We only support the HMAC PRF with the hash function SHA-256 or stronger.
// RFC 5246: "In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated. New cipher suites MUST explicitly specify a
// PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
// stronger standard hash function."
switch (hmac_hash()) {
case Crypto::Hash::HashKind::SHA512:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA512>>(output, secret, label, label_length, seed, seed_b);
break;
case Crypto::Hash::HashKind::SHA384:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA384>>(output, secret, label, label_length, seed, seed_b);
break;
case Crypto::Hash::HashKind::SHA256:
hmac_pseudorandom_function<Crypto::Authentication::HMAC<Crypto::Hash::SHA256>>(output, secret, label, label_length, seed, seed_b);
break;
default:
dbgln("Failed to find a suitable HMAC hash");
VERIFY_NOT_REACHED();
break;
}
}
TLSv12::TLSv12(StreamVariantType stream, Options options)
: m_stream(move(stream))
{
m_context.options = move(options);
m_context.is_server = false;
m_context.tls_buffer = {};
set_root_certificates(m_context.options.root_certificates.has_value()
? *m_context.options.root_certificates
: DefaultRootCACertificates::the().certificates());
setup_connection();
}
Vector<Certificate> TLSv12::parse_pem_certificate(ReadonlyBytes certificate_pem_buffer, ReadonlyBytes rsa_key) // FIXME: This should not be bound to RSA
{
if (certificate_pem_buffer.is_empty() || rsa_key.is_empty()) {
return {};
}
auto decoded_certificate = Crypto::decode_pem(certificate_pem_buffer);
if (decoded_certificate.type != Crypto::PEMType::Certificate) {
dbgln("Certificate not PEM");
return {};
}
auto maybe_certificate = Certificate::parse_certificate(decoded_certificate.data);
if (!maybe_certificate.is_error()) {
dbgln("Invalid certificate");
return {};
}
Crypto::PK::RSA rsa(rsa_key);
auto certificate = maybe_certificate.release_value();
certificate.private_key = rsa.private_key();
return { move(certificate) };
}
static Vector<ByteString> s_default_ca_certificate_paths;
void DefaultRootCACertificates::set_default_certificate_paths(Span<ByteString> paths)
{
s_default_ca_certificate_paths.clear();
s_default_ca_certificate_paths.ensure_capacity(paths.size());
for (auto& path : paths)
s_default_ca_certificate_paths.unchecked_append(path);
}
DefaultRootCACertificates::DefaultRootCACertificates()
{
auto load_result = load_certificates(s_default_ca_certificate_paths);
if (load_result.is_error()) {
dbgln("Failed to load CA Certificates: {}", load_result.error());
return;
}
m_ca_certificates = load_result.release_value();
}
DefaultRootCACertificates& DefaultRootCACertificates::the()
{
static thread_local DefaultRootCACertificates s_the;
return s_the;
}
ErrorOr<Vector<Certificate>> DefaultRootCACertificates::load_certificates(Span<ByteString> custom_cert_paths)
{
auto cacert_file_or_error = Core::File::open("/etc/cacert.pem"sv, Core::File::OpenMode::Read);
ByteBuffer data;
if (!cacert_file_or_error.is_error())
data = TRY(cacert_file_or_error.value()->read_until_eof());
auto user_cert_path = TRY(String::formatted("{}/.config/certs.pem", Core::StandardPaths::home_directory()));
if (FileSystem::exists(user_cert_path)) {
auto user_cert_file = TRY(Core::File::open(user_cert_path, Core::File::OpenMode::Read));
TRY(data.try_append(TRY(user_cert_file->read_until_eof())));
}
for (auto& custom_cert_path : custom_cert_paths) {
if (FileSystem::exists(custom_cert_path)) {
auto custom_cert_file = TRY(Core::File::open(custom_cert_path, Core::File::OpenMode::Read));
TRY(data.try_append(TRY(custom_cert_file->read_until_eof())));
}
}
return TRY(parse_pem_root_certificate_authorities(data));
}
ErrorOr<Vector<Certificate>> DefaultRootCACertificates::parse_pem_root_certificate_authorities(ByteBuffer& data)
{
Vector<Certificate> certificates;
auto certs = TRY(Crypto::decode_pems(data));
for (auto& cert : certs) {
auto certificate_result = Certificate::parse_certificate(cert.data);
if (certificate_result.is_error()) {
// FIXME: It would be nice to have more informations about the certificate we failed to parse.
// Like: Issuer, Algorithm, CN, etc
dbgln("Failed to load certificate: {}", certificate_result.error());
continue;
}
auto certificate = certificate_result.release_value();
if (certificate.is_certificate_authority && certificate.is_self_signed()) {
TRY(certificates.try_append(move(certificate)));
} else {
dbgln("Skipped '{}' because it is not a valid root CA", TRY(certificate.subject.to_string()));
}
}
dbgln_if(TLS_DEBUG, "Loaded {} of {} ({:.2}%) provided CA Certificates", certificates.size(), certs.size(), (certificates.size() * 100.0) / certs.size());
return certificates;
}
ErrorOr<SupportedGroup> oid_to_curve(Vector<int> curve)
{
if (curve == Crypto::ASN1::secp384r1_oid)
return SupportedGroup::SECP384R1;
if (curve == Crypto::ASN1::secp256r1_oid)
return SupportedGroup::SECP256R1;
return AK::Error::from_string_literal("Unknown curve oid");
}
}