ladybird/Userland/Libraries/LibGfx/Bitmap.cpp
Andreas Kling 6a96920dbc LibGfx: Remove Bitmap and Painter "scale" concept
We don't need intrinsic scale factors for Gfx::Bitmap in Ladybird,
as everything flows through the CSS / device pixel ratio mechanism.

This patch also removes various unused functions instead of adapting
them to the change.
2024-06-05 15:37:05 +02:00

435 lines
15 KiB
C++

/*
* Copyright (c) 2018-2024, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Timothy Slater <tslater2006@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Bitmap.h>
#include <AK/ByteString.h>
#include <AK/Checked.h>
#include <AK/LexicalPath.h>
#include <AK/Memory.h>
#include <AK/MemoryStream.h>
#include <LibCore/File.h>
#include <LibCore/MappedFile.h>
#include <LibCore/MimeData.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/ImageFormats/ImageDecoder.h>
#include <LibGfx/ShareableBitmap.h>
#include <errno.h>
namespace Gfx {
struct BackingStore {
void* data { nullptr };
size_t pitch { 0 };
size_t size_in_bytes { 0 };
};
size_t Bitmap::minimum_pitch(size_t width, BitmapFormat format)
{
size_t element_size;
switch (determine_storage_format(format)) {
case StorageFormat::BGRx8888:
case StorageFormat::BGRA8888:
case StorageFormat::RGBA8888:
element_size = 4;
break;
default:
VERIFY_NOT_REACHED();
}
return width * element_size;
}
static bool size_would_overflow(BitmapFormat format, IntSize size)
{
if (size.width() < 0 || size.height() < 0)
return true;
// This check is a bit arbitrary, but should protect us from most shenanigans:
if (size.width() >= INT16_MAX || size.height() >= INT16_MAX)
return true;
// In contrast, this check is absolutely necessary:
size_t pitch = Bitmap::minimum_pitch(size.width(), format);
return Checked<size_t>::multiplication_would_overflow(pitch, size.height());
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create(BitmapFormat format, IntSize size)
{
auto backing_store = TRY(Bitmap::allocate_backing_store(format, size));
return AK::adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, size, backing_store));
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_shareable(BitmapFormat format, IntSize size)
{
if (size_would_overflow(format, size))
return Error::from_string_literal("Gfx::Bitmap::create_shareable size overflow");
auto const pitch = minimum_pitch(size.width(), format);
auto const data_size = size_in_bytes(pitch, size.height());
auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE)));
auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(format, buffer, size));
return bitmap;
}
Bitmap::Bitmap(BitmapFormat format, IntSize size, BackingStore const& backing_store)
: m_size(size)
, m_data(backing_store.data)
, m_pitch(backing_store.pitch)
, m_format(format)
{
VERIFY(!m_size.is_empty());
VERIFY(!size_would_overflow(format, size));
VERIFY(m_data);
VERIFY(backing_store.size_in_bytes == size_in_bytes());
m_data_is_malloced = true;
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_wrapper(BitmapFormat format, IntSize size, size_t pitch, void* data)
{
if (size_would_overflow(format, size))
return Error::from_string_literal("Gfx::Bitmap::create_wrapper size overflow");
return adopt_ref(*new Bitmap(format, size, pitch, data));
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(StringView path, Optional<IntSize> ideal_size)
{
auto file = TRY(Core::File::open(path, Core::File::OpenMode::Read));
return load_from_file(move(file), path, ideal_size);
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(NonnullOwnPtr<Core::File> file, StringView path, Optional<IntSize> ideal_size)
{
auto mapped_file = TRY(Core::MappedFile::map_from_file(move(file), path));
auto mime_type = Core::guess_mime_type_based_on_filename(path);
return load_from_bytes(mapped_file->bytes(), ideal_size, mime_type);
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_bytes(ReadonlyBytes bytes, Optional<IntSize> ideal_size, Optional<ByteString> mine_type)
{
if (auto decoder = TRY(ImageDecoder::try_create_for_raw_bytes(bytes, mine_type))) {
auto frame = TRY(decoder->frame(0, ideal_size));
if (auto& bitmap = frame.image)
return bitmap.release_nonnull();
}
return Error::from_string_literal("Gfx::Bitmap unable to load from file");
}
Bitmap::Bitmap(BitmapFormat format, IntSize size, size_t pitch, void* data)
: m_size(size)
, m_data(data)
, m_pitch(pitch)
, m_format(format)
{
VERIFY(pitch >= minimum_pitch(size.width(), format));
VERIFY(!size_would_overflow(format, size));
// FIXME: assert that `data` is actually long enough!
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size)
{
if (size_would_overflow(format, size))
return Error::from_string_literal("Gfx::Bitmap::create_with_anonymous_buffer size overflow");
return adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, move(buffer), size));
}
Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size)
: m_size(size)
, m_data(buffer.data<void>())
, m_pitch(minimum_pitch(size.width(), format))
, m_format(format)
, m_buffer(move(buffer))
{
VERIFY(!size_would_overflow(format, size));
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::clone() const
{
auto new_bitmap = TRY(Bitmap::create(format(), size()));
VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());
return new_bitmap;
}
void Bitmap::apply_mask(Gfx::Bitmap const& mask, MaskKind mask_kind)
{
VERIFY(size() == mask.size());
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
auto color = get_pixel(x, y);
auto mask_color = mask.get_pixel(x, y);
if (mask_kind == MaskKind::Luminance) {
color = color.with_alpha(color.alpha() * mask_color.alpha() * mask_color.luminosity() / (255 * 255));
} else {
VERIFY(mask_kind == MaskKind::Alpha);
color = color.with_alpha(color.alpha() * mask_color.alpha() / 255);
}
set_pixel(x, y, color);
}
}
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(int sx, int sy) const
{
VERIFY(sx >= 0 && sy >= 0);
if (sx == 1 && sy == 1)
return clone();
auto new_bitmap = TRY(Gfx::Bitmap::create(format(), { width() * sx, height() * sy }));
auto old_width = width();
auto old_height = height();
for (int y = 0; y < old_height; y++) {
for (int x = 0; x < old_width; x++) {
auto color = get_pixel(x, y);
auto base_x = x * sx;
auto base_y = y * sy;
for (int new_y = base_y; new_y < base_y + sy; new_y++) {
for (int new_x = base_x; new_x < base_x + sx; new_x++) {
new_bitmap->set_pixel(new_x, new_y, color);
}
}
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(float sx, float sy) const
{
VERIFY(sx >= 0.0f && sy >= 0.0f);
if (floorf(sx) == sx && floorf(sy) == sy)
return scaled(static_cast<int>(sx), static_cast<int>(sy));
int scaled_width = (int)ceilf(sx * (float)width());
int scaled_height = (int)ceilf(sy * (float)height());
return scaled_to_size({ scaled_width, scaled_height });
}
// http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled_to_size(Gfx::IntSize size) const
{
auto new_bitmap = TRY(Gfx::Bitmap::create(format(), size));
auto old_width = width();
auto old_height = height();
auto new_width = new_bitmap->width();
auto new_height = new_bitmap->height();
if (old_width == 1 && old_height == 1) {
new_bitmap->fill(get_pixel(0, 0));
return new_bitmap;
}
if (old_width > 1 && old_height > 1) {
// The interpolation goes out of bounds on the bottom- and right-most edges.
// We handle those in two specialized loops not only to make them faster, but
// also to avoid four branch checks for every pixel.
for (int y = 0; y < new_height - 1; y++) {
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int i = floorf(p);
int j = floorf(q);
float u = p - static_cast<float>(i);
float v = q - static_cast<float>(j);
auto a = get_pixel(i, j);
auto b = get_pixel(i + 1, j);
auto c = get_pixel(i, j + 1);
auto d = get_pixel(i + 1, j + 1);
auto e = a.mixed_with(b, u);
auto f = c.mixed_with(d, u);
auto color = e.mixed_with(f, v);
new_bitmap->set_pixel(x, y, color);
}
}
// Bottom strip (excluding last pixel)
auto old_bottom_y = old_height - 1;
auto new_bottom_y = new_height - 1;
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
int i = floorf(p);
float u = p - static_cast<float>(i);
auto a = get_pixel(i, old_bottom_y);
auto b = get_pixel(i + 1, old_bottom_y);
auto color = a.mixed_with(b, u);
new_bitmap->set_pixel(x, new_bottom_y, color);
}
// Right strip (excluding last pixel)
auto old_right_x = old_width - 1;
auto new_right_x = new_width - 1;
for (int y = 0; y < new_height - 1; y++) {
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int j = floorf(q);
float v = q - static_cast<float>(j);
auto c = get_pixel(old_right_x, j);
auto d = get_pixel(old_right_x, j + 1);
auto color = c.mixed_with(d, v);
new_bitmap->set_pixel(new_right_x, y, color);
}
// Bottom-right pixel
new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(width() - 1, height() - 1));
return new_bitmap;
} else if (old_height == 1) {
// Copy horizontal strip multiple times (excluding last pixel to out of bounds).
auto old_bottom_y = old_height - 1;
for (int x = 0; x < new_width - 1; x++) {
auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
int i = floorf(p);
float u = p - static_cast<float>(i);
auto a = get_pixel(i, old_bottom_y);
auto b = get_pixel(i + 1, old_bottom_y);
auto color = a.mixed_with(b, u);
for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
// Interpolate color only once and then copy into all columns.
new_bitmap->set_pixel(x, new_bottom_y, color);
}
}
for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
// Copy last pixel of horizontal strip
new_bitmap->set_pixel(new_width - 1, new_bottom_y, get_pixel(width() - 1, old_bottom_y));
}
return new_bitmap;
} else if (old_width == 1) {
// Copy vertical strip multiple times (excluding last pixel to avoid out of bounds).
auto old_right_x = old_width - 1;
for (int y = 0; y < new_height - 1; y++) {
auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
int j = floorf(q);
float v = q - static_cast<float>(j);
auto c = get_pixel(old_right_x, j);
auto d = get_pixel(old_right_x, j + 1);
auto color = c.mixed_with(d, v);
for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
// Interpolate color only once and copy into all rows.
new_bitmap->set_pixel(new_right_x, y, color);
}
}
for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
// Copy last pixel of vertical strip
new_bitmap->set_pixel(new_right_x, new_height - 1, get_pixel(old_right_x, height() - 1));
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::cropped(Gfx::IntRect crop, Optional<BitmapFormat> new_bitmap_format) const
{
auto new_bitmap = TRY(Gfx::Bitmap::create(new_bitmap_format.value_or(format()), { crop.width(), crop.height() }));
for (int y = 0; y < crop.height(); ++y) {
for (int x = 0; x < crop.width(); ++x) {
int global_x = x + crop.left();
int global_y = y + crop.top();
if (global_x >= width() || global_y >= height() || global_x < 0 || global_y < 0) {
new_bitmap->set_pixel(x, y, Gfx::Color::Black);
} else {
new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
}
}
}
return new_bitmap;
}
ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
{
if (m_buffer.is_valid()) {
// FIXME: The const_cast here is awkward.
return NonnullRefPtr { const_cast<Bitmap&>(*this) };
}
auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE)));
auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(m_format, move(buffer), size()));
memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
return bitmap;
}
Bitmap::~Bitmap()
{
if (m_data_is_malloced) {
kfree_sized(m_data, size_in_bytes());
}
m_data = nullptr;
}
void Bitmap::strip_alpha_channel()
{
VERIFY(m_format == BitmapFormat::BGRA8888 || m_format == BitmapFormat::BGRx8888);
for (ARGB32& pixel : *this)
pixel = 0xff000000 | (pixel & 0xffffff);
m_format = BitmapFormat::BGRx8888;
}
void Bitmap::fill(Color color)
{
for (int y = 0; y < height(); ++y) {
auto* scanline = this->scanline(y);
fast_u32_fill(scanline, color.value(), width());
}
}
Gfx::ShareableBitmap Bitmap::to_shareable_bitmap() const
{
auto bitmap_or_error = to_bitmap_backed_by_anonymous_buffer();
if (bitmap_or_error.is_error())
return {};
return Gfx::ShareableBitmap { bitmap_or_error.release_value_but_fixme_should_propagate_errors(), Gfx::ShareableBitmap::ConstructWithKnownGoodBitmap };
}
ErrorOr<BackingStore> Bitmap::allocate_backing_store(BitmapFormat format, IntSize size)
{
if (size.is_empty())
return Error::from_string_literal("Gfx::Bitmap backing store size is empty");
if (size_would_overflow(format, size))
return Error::from_string_literal("Gfx::Bitmap backing store size overflow");
auto const pitch = minimum_pitch(size.width(), format);
auto const data_size_in_bytes = size_in_bytes(pitch, size.height());
void* data = kcalloc(1, data_size_in_bytes);
if (data == nullptr)
return Error::from_errno(errno);
return BackingStore { data, pitch, data_size_in_bytes };
}
bool Bitmap::visually_equals(Bitmap const& other) const
{
auto own_width = width();
auto own_height = height();
if (other.width() != own_width || other.height() != own_height)
return false;
for (auto y = 0; y < own_height; ++y) {
for (auto x = 0; x < own_width; ++x) {
if (get_pixel(x, y) != other.get_pixel(x, y))
return false;
}
}
return true;
}
}