ladybird/Kernel/MemoryManager.cpp

342 lines
9.8 KiB
C++

#include "MemoryManager.h"
#include <AK/Assertions.h>
#include <AK/kstdio.h>
#include <AK/kmalloc.h>
#include "i386.h"
#include "StdLib.h"
#include "Task.h"
static MemoryManager* s_the;
MemoryManager& MM
{
return *s_the;
}
MemoryManager::MemoryManager()
{
m_pageDirectory = (dword*)0x5000;
m_pageTableZero = (dword*)0x6000;
m_pageTableOne = (dword*)0x7000;
initializePaging();
}
MemoryManager::~MemoryManager()
{
}
void MemoryManager::initializePaging()
{
static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
memset(m_pageTableZero, 0, 4096);
memset(m_pageTableOne, 0, 4096);
memset(m_pageDirectory, 0, 4096);
#ifdef MM_DEBUG
kprintf("MM: Page directory @ %p\n", m_pageDirectory);
#endif
// Make null dereferences crash.
protectMap(LinearAddress(0), 4 * KB);
identityMap(LinearAddress(4096), 4 * MB);
for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE) {
m_freePages.append(PhysicalAddress(i));
}
asm volatile("movl %%eax, %%cr3"::"a"(m_pageDirectory));
asm volatile(
"movl %cr0, %eax\n"
"orl $0x80000001, %eax\n"
"movl %eax, %cr0\n"
);
}
void* MemoryManager::allocatePageTable()
{
auto ppages = allocatePhysicalPages(1);
dword address = ppages[0].get();
identityMap(LinearAddress(address), 4096);
return (void*)address;
}
auto MemoryManager::ensurePTE(LinearAddress linearAddress) -> PageTableEntry
{
ASSERT_INTERRUPTS_DISABLED();
dword pageDirectoryIndex = (linearAddress.get() >> 22) & 0x3ff;
dword pageTableIndex = (linearAddress.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&m_pageDirectory[pageDirectoryIndex]);
if (!pde.isPresent()) {
#ifdef MM_DEBUG
kprintf("MM: PDE %u not present, allocating\n", pageDirectoryIndex);
#endif
if (pageDirectoryIndex == 0) {
pde.setPageTableBase((dword)m_pageTableZero);
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
} else if (pageDirectoryIndex == 1) {
pde.setPageTableBase((dword)m_pageTableOne);
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
} else {
auto* pageTable = allocatePageTable();
kprintf("MM: Allocated page table #%u (for laddr=%p) at %p\n", pageDirectoryIndex, linearAddress.get(), pageTable);
memset(pageTable, 0, 4096);
pde.setPageTableBase((dword)pageTable);
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
}
}
return PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
}
void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += 4096) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensurePTE(pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(false);
pte.setPresent(false);
pte.setWritable(false);
flushTLB(pteAddress);
}
}
void MemoryManager::identityMap(LinearAddress linearAddress, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += 4096) {
auto pteAddress = linearAddress.offset(offset);
auto pte = ensurePTE(pteAddress);
pte.setPhysicalPageBase(pteAddress.get());
pte.setUserAllowed(true);
pte.setPresent(true);
pte.setWritable(true);
flushTLB(pteAddress);
}
}
void MemoryManager::initialize()
{
s_the = new MemoryManager;
}
PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
{
ASSERT_INTERRUPTS_DISABLED();
kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get());
if (fault.isNotPresent()) {
kprintf(" >> NP fault!\n");
} else if (fault.isProtectionViolation()) {
kprintf(" >> PV fault!\n");
}
return PageFaultResponse::ShouldCrash;
}
void MemoryManager::registerZone(Zone& zone)
{
ASSERT_INTERRUPTS_DISABLED();
m_zones.set(&zone);
}
void MemoryManager::unregisterZone(Zone& zone)
{
ASSERT_INTERRUPTS_DISABLED();
m_zones.remove(&zone);
m_freePages.append(move(zone.m_pages));
}
Zone::Zone(Vector<PhysicalAddress>&& pages)
: m_pages(move(pages))
{
MM.registerZone(*this);
}
Zone::~Zone()
{
MM.unregisterZone(*this);
}
RetainPtr<Zone> MemoryManager::createZone(size_t size)
{
InterruptDisabler disabler;
auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
if (pages.isEmpty()) {
kprintf("MM: createZone: no physical pages for size %u\n", size);
return nullptr;
}
return adopt(*new Zone(move(pages)));
}
Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
{
InterruptDisabler disabler;
if (count > m_freePages.size())
return { };
Vector<PhysicalAddress> pages;
pages.ensureCapacity(count);
for (size_t i = 0; i < count; ++i)
pages.append(m_freePages.takeLast());
return pages;
}
byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress)
{
ASSERT_INTERRUPTS_DISABLED();
auto pte = ensurePTE(LinearAddress(4 * MB));
kprintf("MM: quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr());
pte.setPhysicalPageBase(physicalAddress.pageBase());
pte.setPresent(true);
pte.setWritable(true);
flushTLB(LinearAddress(4 * MB));
return (byte*)(4 * MB);
}
void MemoryManager::flushEntireTLB()
{
asm volatile(
"mov %cr3, %eax\n"
"mov %eax, %cr3\n"
);
}
void MemoryManager::flushTLB(LinearAddress laddr)
{
asm volatile("invlpg %0": :"m" (*(char*)laddr.get()));
}
bool MemoryManager::unmapRegion(Task& task, Task::Region& region)
{
InterruptDisabler disabler;
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(laddr);
//kprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
}
return true;
}
bool MemoryManager::unmapSubregion(Task& task, Task::Subregion& subregion)
{
InterruptDisabler disabler;
auto& region = *subregion.region;
auto& zone = *region.zone;
size_t numPages = subregion.size / 4096;
ASSERT(numPages);
for (size_t i = 0; i < numPages; ++i) {
auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(0);
pte.setPresent(false);
pte.setWritable(false);
pte.setUserAllowed(false);
flushTLB(laddr);
//kprintf("MM: >> Unmapped subregion %s L%x => P%x <<\n", subregion.name.characters(), laddr, zone.m_pages[i].get());
}
return true;
}
bool MemoryManager::unmapRegionsForTask(Task& task)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto& region : task.m_regions) {
if (!unmapRegion(task, *region))
return false;
}
for (auto& subregion : task.m_subregions) {
if (!unmapSubregion(task, *subregion))
return false;
}
return true;
}
bool MemoryManager::mapSubregion(Task& task, Task::Subregion& subregion)
{
InterruptDisabler disabler;
auto& region = *subregion.region;
auto& zone = *region.zone;
size_t firstPage = subregion.offset / 4096;
size_t numPages = subregion.size / 4096;
ASSERT(numPages);
for (size_t i = 0; i < numPages; ++i) {
auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(zone.m_pages[firstPage + i].get());
pte.setPresent(true);
pte.setWritable(true);
pte.setUserAllowed(!task.isRing0());
flushTLB(laddr);
//kprintf("MM: >> Mapped subregion %s L%x => P%x (%u into region)<<\n", subregion.name.characters(), laddr, zone.m_pages[firstPage + i].get(), subregion.offset);
}
return true;
}
bool MemoryManager::mapRegion(Task& task, Task::Region& region)
{
InterruptDisabler disabler;
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(laddr);
pte.setPhysicalPageBase(zone.m_pages[i].get());
pte.setPresent(true);
pte.setWritable(true);
pte.setUserAllowed(!task.isRing0());
flushTLB(laddr);
//kprintf("MM: >> Mapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
}
return true;
}
bool MemoryManager::mapRegionsForTask(Task& task)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto& region : task.m_regions) {
if (!mapRegion(task, *region))
return false;
}
for (auto& subregion : task.m_subregions) {
if (!mapSubregion(task, *subregion))
return false;
}
return true;
}
bool copyToZone(Zone& zone, const void* data, size_t size)
{
if (zone.size() < size) {
kprintf("MM: copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size());
return false;
}
InterruptDisabler disabler;
auto* dataptr = (const byte*)data;
size_t remaining = size;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
byte* dest = MM.quickMapOnePage(zone.m_pages[i]);
kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining));
memcpy(dest, dataptr, min(PAGE_SIZE, remaining));
dataptr += PAGE_SIZE;
remaining -= PAGE_SIZE;
}
return true;
}