ladybird/Kernel/Thread.cpp
Andreas Kling d5f3972012 Kernel: No need to manually deallocate kernel stack Region in ~Thread()
Since we're keeping this Region in an OwnPtr, it will be torn down when
we get to ~OwnPtr anyway.
2019-09-27 19:10:52 +02:00

636 lines
20 KiB
C++

#include <AK/ELF/ELFLoader.h>
#include <AK/StringBuilder.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibC/signal_numbers.h>
//#define SIGNAL_DEBUG
u16 thread_specific_selector()
{
static u16 selector;
if (!selector) {
selector = gdt_alloc_entry();
auto& descriptor = get_gdt_entry(selector);
descriptor.dpl = 3;
descriptor.segment_present = 1;
descriptor.granularity = 0;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 1;
descriptor.type = 2;
}
return selector;
}
Descriptor& thread_specific_descriptor()
{
return get_gdt_entry(thread_specific_selector());
}
HashTable<Thread*>& thread_table()
{
ASSERT_INTERRUPTS_DISABLED();
static HashTable<Thread*>* table;
if (!table)
table = new HashTable<Thread*>;
return *table;
}
static const u32 default_kernel_stack_size = 65536;
static const u32 default_userspace_stack_size = 65536;
Thread::Thread(Process& process)
: m_process(process)
, m_tid(process.m_next_tid++)
{
dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
set_default_signal_dispositions();
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
memset(&m_tss, 0, sizeof(m_tss));
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
u16 cs, ds, ss, gs;
if (m_process.is_ring0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
gs = 0;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
gs = thread_specific_selector() | 3;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = gs;
m_tss.ss = ss;
m_tss.cs = cs;
m_tss.cr3 = m_process.page_directory().cr3();
if (m_process.is_ring0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
m_kernel_stack_top = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
m_tss.esp = m_kernel_stack_top;
} else {
// Ring3 processes need a separate stack for Ring0.
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
m_tss.ss0 = 0x10;
m_tss.esp0 = m_kernel_stack_top;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_process.pid();
m_far_ptr.offset = 0x98765432;
if (m_process.pid() != 0) {
InterruptDisabler disabler;
thread_table().set(this);
Scheduler::init_thread(*this);
}
}
Thread::~Thread()
{
dbgprintf("~Thread{%p}\n", this);
kfree_aligned(m_fpu_state);
{
InterruptDisabler disabler;
thread_table().remove(this);
}
if (g_last_fpu_thread == this)
g_last_fpu_thread = nullptr;
if (selector())
gdt_free_entry(selector());
if (m_userspace_stack_region)
m_process.deallocate_region(*m_userspace_stack_region);
}
void Thread::unblock()
{
if (current == this) {
set_state(Thread::Running);
return;
}
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
set_state(Thread::Runnable);
}
void Thread::block_helper()
{
// This function mostly exists to avoid circular header dependencies. If
// anything needs adding, think carefully about whether it belongs in
// block() instead. Remember that we're unlocking here, so be very careful
// about altering any state once we're unlocked!
bool did_unlock = process().big_lock().unlock_if_locked();
Scheduler::yield();
if (did_unlock)
process().big_lock().lock();
}
u64 Thread::sleep(u32 ticks)
{
ASSERT(state() == Thread::Running);
u64 wakeup_time = g_uptime + ticks;
auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
if (wakeup_time > g_uptime) {
ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
}
return wakeup_time;
}
const char* Thread::state_string() const
{
switch (state()) {
case Thread::Invalid:
return "Invalid";
case Thread::Runnable:
return "Runnable";
case Thread::Running:
return "Running";
case Thread::Dying:
return "Dying";
case Thread::Dead:
return "Dead";
case Thread::Stopped:
return "Stopped";
case Thread::Skip1SchedulerPass:
return "Skip1";
case Thread::Skip0SchedulerPasses:
return "Skip0";
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
return m_blocker->state_string();
}
kprintf("Thread::state_string(): Invalid state: %u\n", state());
ASSERT_NOT_REACHED();
return nullptr;
}
void Thread::finalize()
{
ASSERT(current == g_finalizer);
dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
set_state(Thread::State::Dead);
if (m_dump_backtrace_on_finalization)
dbg() << backtrace_impl();
if (this == &m_process.main_thread()) {
m_process.finalize();
return;
}
delete this;
}
void Thread::finalize_dying_threads()
{
ASSERT(current == g_finalizer);
Vector<Thread*, 32> dying_threads;
{
InterruptDisabler disabler;
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
dying_threads.append(&thread);
return IterationDecision::Continue;
});
}
for (auto* thread : dying_threads)
thread->finalize();
}
bool Thread::tick()
{
++m_ticks;
if (tss().cs & 3)
++m_process.m_ticks_in_user;
else
++m_process.m_ticks_in_kernel;
return --m_ticks_left;
}
void Thread::send_signal(u8 signal, Process* sender)
{
ASSERT(signal < 32);
InterruptDisabler disabler;
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
if (should_ignore_signal(signal)) {
dbg() << "signal " << signal << " was ignored by " << process();
return;
}
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
m_pending_signals |= 1 << (signal - 1);
}
bool Thread::has_unmasked_pending_signals() const
{
return m_pending_signals & ~m_signal_mask;
}
ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
u32 signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
u8 signal = 1;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << (signal - 1))) {
break;
}
}
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
DefaultSignalAction default_signal_action(u8 signal)
{
ASSERT(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
case SIGPWR:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
ASSERT_NOT_REACHED();
}
bool Thread::should_ignore_signal(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
if (action.handler_or_sigaction.is_null())
return default_signal_action(signal) == DefaultSignalAction::Ignore;
if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
return true;
return false;
}
ShouldUnblockThread Thread::dispatch_signal(u8 signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal > 0 && signal <= 32);
ASSERT(!process().is_ring0());
#ifdef SIGNAL_DEBUG
kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
#endif
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << (signal - 1));
if (signal == SIGSTOP) {
set_state(Stopped);
return ShouldUnblockThread::No;
}
if (signal == SIGCONT && state() == Stopped)
set_state(Runnable);
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
set_state(Stopped);
return ShouldUnblockThread::No;
case DefaultSignalAction::DumpCore:
process().for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
return IterationDecision::Continue;
});
[[fallthrough]];
case DefaultSignalAction::Terminate:
m_process.terminate_due_to_signal(signal);
return ShouldUnblockThread::No;
case DefaultSignalAction::Ignore:
ASSERT_NOT_REACHED();
case DefaultSignalAction::Continue:
return ShouldUnblockThread::Yes;
}
ASSERT_NOT_REACHED();
}
if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
#endif
return ShouldUnblockThread::Yes;
}
ProcessPagingScope paging_scope(m_process);
// The userspace registers should be stored at the top of the stack
// We have to subtract 2 because the processor decrements the kernel
// stack before pushing the args.
auto& regs = *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump) - 2);
u32 old_signal_mask = m_signal_mask;
u32 new_signal_mask = action.mask;
if (action.flags & SA_NODEFER)
new_signal_mask &= ~(1 << (signal - 1));
else
new_signal_mask |= 1 << (signal - 1);
m_signal_mask |= new_signal_mask;
u32 old_esp = regs.esp_if_crossRing;
u32 ret_eip = regs.eip;
u32 ret_eflags = regs.eflags;
// Align the stack to 16 bytes.
// Note that we push 56 bytes (4 * 14) on to the stack,
// so we need to account for this here.
u32 stack_alignment = (regs.esp_if_crossRing - 56) % 16;
regs.esp_if_crossRing -= stack_alignment;
push_value_on_user_stack(regs, ret_eflags);
push_value_on_user_stack(regs, ret_eip);
push_value_on_user_stack(regs, regs.eax);
push_value_on_user_stack(regs, regs.ecx);
push_value_on_user_stack(regs, regs.edx);
push_value_on_user_stack(regs, regs.ebx);
push_value_on_user_stack(regs, old_esp);
push_value_on_user_stack(regs, regs.ebp);
push_value_on_user_stack(regs, regs.esi);
push_value_on_user_stack(regs, regs.edi);
// PUSH old_signal_mask
push_value_on_user_stack(regs, old_signal_mask);
push_value_on_user_stack(regs, signal);
push_value_on_user_stack(regs, handler_vaddr.get());
push_value_on_user_stack(regs, 0); //push fake return address
regs.eip = g_return_to_ring3_from_signal_trampoline.get();
ASSERT((regs.esp_if_crossRing % 16) == 0);
// If we're not blocking we need to update the tss so
// that the far jump in Scheduler goes to the proper location.
// When we are blocking we don't update the TSS as we want to
// resume at the blocker and descend the stack, cleaning up nicely.
if (!in_kernel()) {
Scheduler::prepare_to_modify_tss(*this);
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = thread_specific_selector() | 3;
m_tss.eip = regs.eip;
m_tss.esp = regs.esp_if_crossRing;
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
}
#ifdef SIGNAL_DEBUG
kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), state_string(), m_tss.cs, m_tss.eip);
#endif
return ShouldUnblockThread::Yes;
}
void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
}
void Thread::push_value_on_user_stack(RegisterDump& registers, u32 value)
{
registers.esp_if_crossRing -= 4;
u32* stack_ptr = (u32*)registers.esp_if_crossRing;
*stack_ptr = value;
}
void Thread::push_value_on_stack(u32 value)
{
m_tss.esp -= 4;
u32* stack_ptr = (u32*)m_tss.esp;
*stack_ptr = value;
}
void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
{
auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
ASSERT(region);
m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
char* stack_base = (char*)region->vaddr().get();
int argc = arguments.size();
char** argv = (char**)stack_base;
char** env = argv + arguments.size() + 1;
char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
size_t total_blob_size = 0;
for (auto& a : arguments)
total_blob_size += a.length() + 1;
for (auto& e : environment)
total_blob_size += e.length() + 1;
size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
// FIXME: It would be better if this didn't make us panic.
ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
for (int i = 0; i < arguments.size(); ++i) {
argv[i] = bufptr;
memcpy(bufptr, arguments[i].characters(), arguments[i].length());
bufptr += arguments[i].length();
*(bufptr++) = '\0';
}
argv[arguments.size()] = nullptr;
for (int i = 0; i < environment.size(); ++i) {
env[i] = bufptr;
memcpy(bufptr, environment[i].characters(), environment[i].length());
bufptr += environment[i].length();
*(bufptr++) = '\0';
}
env[environment.size()] = nullptr;
// NOTE: The stack needs to be 16-byte aligned.
push_value_on_stack((u32)env);
push_value_on_stack((u32)argv);
push_value_on_stack((u32)argc);
push_value_on_stack(0);
}
void Thread::make_userspace_stack_for_secondary_thread(void* argument)
{
m_userspace_stack_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
ASSERT(m_userspace_stack_region);
m_tss.esp = m_userspace_stack_region->vaddr().offset(default_userspace_stack_size).get();
// NOTE: The stack needs to be 16-byte aligned.
push_value_on_stack((u32)argument);
push_value_on_stack(0);
}
Thread* Thread::clone(Process& process)
{
auto* clone = new Thread(process);
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
clone->m_signal_mask = m_signal_mask;
clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
clone->m_has_used_fpu = m_has_used_fpu;
clone->m_thread_specific_data = m_thread_specific_data;
return clone;
}
void Thread::initialize()
{
Scheduler::initialize();
}
Vector<Thread*> Thread::all_threads()
{
Vector<Thread*> threads;
InterruptDisabler disabler;
threads.ensure_capacity(thread_table().size());
for (auto* thread : thread_table())
threads.unchecked_append(thread);
return threads;
}
bool Thread::is_thread(void* ptr)
{
ASSERT_INTERRUPTS_DISABLED();
return thread_table().contains((Thread*)ptr);
}
void Thread::set_state(State new_state)
{
InterruptDisabler disabler;
if (new_state == Blocked) {
// we should always have a Blocker while blocked
ASSERT(m_blocker != nullptr);
}
m_state = new_state;
if (m_process.pid() != 0) {
Scheduler::update_state_for_thread(*this);
}
}
String Thread::backtrace(ProcessInspectionHandle&) const
{
return backtrace_impl();
}
String Thread::backtrace_impl() const
{
auto& process = const_cast<Process&>(this->process());
ProcessPagingScope paging_scope(process);
struct RecognizedSymbol {
u32 address;
const KSym* ksym;
};
StringBuilder builder;
Vector<RecognizedSymbol, 64> recognized_symbols;
recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
for (u32* stack_ptr = (u32*)frame_ptr(); process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr)); stack_ptr = (u32*)*stack_ptr) {
u32 retaddr = stack_ptr[1];
recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
}
for (auto& symbol : recognized_symbols) {
if (!symbol.address)
break;
if (!symbol.ksym) {
if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
builder.appendf("%p %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
else
builder.appendf("%p\n", symbol.address);
continue;
}
unsigned offset = symbol.address - symbol.ksym->address;
if (symbol.ksym->address == ksym_highest_address && offset > 4096)
builder.appendf("%p\n", symbol.address);
else
builder.appendf("%p %s +%u\n", symbol.address, symbol.ksym->name, offset);
}
return builder.to_string();
}
void Thread::make_thread_specific_region(Badge<Process>)
{
size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
thread_specific_data->self = thread_specific_data;
if (process().m_master_tls_size)
memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
}