ladybird/Libraries/LibRegex/RegexOptimizer.cpp
Ali Mohammad Pur 50733c564c LibRegex: Use the *actually* correct repeat start offset for Repeat
Fixes #2931 and various frequent crashes.
2024-12-23 13:13:52 +01:00

1506 lines
66 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Function.h>
#include <AK/Queue.h>
#include <AK/QuickSort.h>
#include <AK/RedBlackTree.h>
#include <AK/Stack.h>
#include <AK/Trie.h>
#include <LibRegex/Regex.h>
#include <LibRegex/RegexBytecodeStreamOptimizer.h>
#include <LibUnicode/CharacterTypes.h>
#if REGEX_DEBUG
# include <AK/ScopeGuard.h>
# include <AK/ScopeLogger.h>
#endif
namespace regex {
using Detail::Block;
template<typename Parser>
void Regex<Parser>::run_optimization_passes()
{
parser_result.bytecode.flatten();
auto blocks = split_basic_blocks(parser_result.bytecode);
if (attempt_rewrite_entire_match_as_substring_search(blocks))
return;
// Rewrite fork loops as atomic groups
// e.g. a*b -> (ATOMIC a*)b
attempt_rewrite_loops_as_atomic_groups(blocks);
// FIXME: "There are a few more conditions this can be true in (e.g. within an arbitrarily nested capture group)"
MatchState state;
auto& opcode = parser_result.bytecode.get_opcode(state);
if (opcode.opcode_id() == OpCodeId::CheckBegin)
parser_result.optimization_data.only_start_of_line = true;
parser_result.bytecode.flatten();
}
template<typename Parser>
typename Regex<Parser>::BasicBlockList Regex<Parser>::split_basic_blocks(ByteCode const& bytecode)
{
BasicBlockList block_boundaries;
size_t end_of_last_block = 0;
auto bytecode_size = bytecode.size();
MatchState state;
state.instruction_position = 0;
auto check_jump = [&]<typename T>(OpCode const& opcode) {
auto& op = static_cast<T const&>(opcode);
ssize_t jump_offset = op.size() + op.offset();
if (jump_offset >= 0) {
block_boundaries.append({ end_of_last_block, state.instruction_position, "Jump ahead"sv });
end_of_last_block = state.instruction_position + opcode.size();
} else {
// This op jumps back, see if that's within this "block".
if (jump_offset + state.instruction_position > end_of_last_block) {
// Split the block!
block_boundaries.append({ end_of_last_block, jump_offset + state.instruction_position, "Jump back 1"sv });
block_boundaries.append({ jump_offset + state.instruction_position, state.instruction_position, "Jump back 2"sv });
end_of_last_block = state.instruction_position + opcode.size();
} else {
// Nope, it's just a jump to another block
block_boundaries.append({ end_of_last_block, state.instruction_position, "Jump"sv });
end_of_last_block = state.instruction_position + opcode.size();
}
}
};
for (;;) {
auto& opcode = bytecode.get_opcode(state);
switch (opcode.opcode_id()) {
case OpCodeId::Jump:
check_jump.template operator()<OpCode_Jump>(opcode);
break;
case OpCodeId::JumpNonEmpty:
check_jump.template operator()<OpCode_JumpNonEmpty>(opcode);
break;
case OpCodeId::ForkJump:
check_jump.template operator()<OpCode_ForkJump>(opcode);
break;
case OpCodeId::ForkStay:
check_jump.template operator()<OpCode_ForkStay>(opcode);
break;
case OpCodeId::FailForks:
block_boundaries.append({ end_of_last_block, state.instruction_position, "FailForks"sv });
end_of_last_block = state.instruction_position + opcode.size();
break;
case OpCodeId::Repeat: {
// Repeat produces two blocks, one containing its repeated expr, and one after that.
auto& repeat = static_cast<OpCode_Repeat const&>(opcode);
auto repeat_start = state.instruction_position - repeat.offset();
if (repeat_start > end_of_last_block)
block_boundaries.append({ end_of_last_block, repeat_start, "Repeat"sv });
block_boundaries.append({ repeat_start, state.instruction_position, "Repeat after"sv });
end_of_last_block = state.instruction_position + opcode.size();
break;
}
default:
break;
}
auto next_ip = state.instruction_position + opcode.size();
if (next_ip < bytecode_size)
state.instruction_position = next_ip;
else
break;
}
if (end_of_last_block < bytecode_size)
block_boundaries.append({ end_of_last_block, bytecode_size, "End"sv });
quick_sort(block_boundaries, [](auto& a, auto& b) { return a.start < b.start; });
return block_boundaries;
}
static bool has_overlap(Vector<CompareTypeAndValuePair> const& lhs, Vector<CompareTypeAndValuePair> const& rhs)
{
// We have to fully interpret the two sequences to determine if they overlap (that is, keep track of inversion state and what ranges they cover).
bool inverse { false };
bool temporary_inverse { false };
bool reset_temporary_inverse { false };
auto current_lhs_inversion_state = [&]() -> bool { return temporary_inverse ^ inverse; };
RedBlackTree<u32, u32> lhs_ranges;
RedBlackTree<u32, u32> lhs_negated_ranges;
HashTable<CharClass> lhs_char_classes;
HashTable<CharClass> lhs_negated_char_classes;
auto has_any_unicode_property = false;
HashTable<Unicode::GeneralCategory> lhs_unicode_general_categories;
HashTable<Unicode::Property> lhs_unicode_properties;
HashTable<Unicode::Script> lhs_unicode_scripts;
HashTable<Unicode::Script> lhs_unicode_script_extensions;
HashTable<Unicode::GeneralCategory> lhs_negated_unicode_general_categories;
HashTable<Unicode::Property> lhs_negated_unicode_properties;
HashTable<Unicode::Script> lhs_negated_unicode_scripts;
HashTable<Unicode::Script> lhs_negated_unicode_script_extensions;
auto any_unicode_property_matches = [&](u32 code_point) {
if (any_of(lhs_negated_unicode_general_categories, [code_point](auto category) { return Unicode::code_point_has_general_category(code_point, category); }))
return false;
if (any_of(lhs_negated_unicode_properties, [code_point](auto property) { return Unicode::code_point_has_property(code_point, property); }))
return false;
if (any_of(lhs_negated_unicode_scripts, [code_point](auto script) { return Unicode::code_point_has_script(code_point, script); }))
return false;
if (any_of(lhs_negated_unicode_script_extensions, [code_point](auto script) { return Unicode::code_point_has_script_extension(code_point, script); }))
return false;
if (any_of(lhs_unicode_general_categories, [code_point](auto category) { return Unicode::code_point_has_general_category(code_point, category); }))
return true;
if (any_of(lhs_unicode_properties, [code_point](auto property) { return Unicode::code_point_has_property(code_point, property); }))
return true;
if (any_of(lhs_unicode_scripts, [code_point](auto script) { return Unicode::code_point_has_script(code_point, script); }))
return true;
if (any_of(lhs_unicode_script_extensions, [code_point](auto script) { return Unicode::code_point_has_script_extension(code_point, script); }))
return true;
return false;
};
auto range_contains = [&]<typename T>(T& value) -> bool {
u32 start;
u32 end;
if constexpr (IsSame<T, CharRange>) {
start = value.from;
end = value.to;
} else {
start = value;
end = value;
}
if (has_any_unicode_property) {
// We have some properties, and a range is present
// Instead of checking every single code point in the range, assume it's a match.
return start != end || any_unicode_property_matches(start);
}
auto* max = lhs_ranges.find_smallest_not_below(start);
return max && *max <= end;
};
auto char_class_contains = [&](CharClass const& value) -> bool {
if (lhs_char_classes.contains(value))
return true;
if (lhs_negated_char_classes.contains(value))
return false;
if (lhs_ranges.is_empty())
return false;
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it) {
auto start = it.key();
auto end = *it;
for (u32 ch = start; ch <= end; ++ch) {
if (OpCode_Compare::matches_character_class(value, ch, false))
return true;
}
}
return false;
};
for (auto const& pair : lhs) {
if (reset_temporary_inverse) {
reset_temporary_inverse = false;
temporary_inverse = false;
} else {
reset_temporary_inverse = true;
}
switch (pair.type) {
case CharacterCompareType::Inverse:
inverse = !inverse;
break;
case CharacterCompareType::TemporaryInverse:
temporary_inverse = true;
reset_temporary_inverse = false;
break;
case CharacterCompareType::AnyChar:
// Special case: if not inverted, AnyChar is always in the range.
if (!current_lhs_inversion_state())
return true;
break;
case CharacterCompareType::Char:
if (!current_lhs_inversion_state())
lhs_ranges.insert(pair.value, pair.value);
else
lhs_negated_ranges.insert(pair.value, pair.value);
break;
case CharacterCompareType::String:
// FIXME: We just need to look at the last character of this string, but we only have the first character here.
// Just bail out to avoid false positives.
return true;
case CharacterCompareType::CharClass:
if (!current_lhs_inversion_state())
lhs_char_classes.set(static_cast<CharClass>(pair.value));
else
lhs_negated_char_classes.set(static_cast<CharClass>(pair.value));
break;
case CharacterCompareType::CharRange: {
auto range = CharRange(pair.value);
if (!current_lhs_inversion_state())
lhs_ranges.insert(range.from, range.to);
else
lhs_negated_ranges.insert(range.from, range.to);
break;
}
case CharacterCompareType::LookupTable:
// We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
return true;
case CharacterCompareType::Reference:
// We've handled this before coming here.
break;
case CharacterCompareType::Property:
has_any_unicode_property = true;
if (!current_lhs_inversion_state())
lhs_unicode_properties.set(static_cast<Unicode::Property>(pair.value));
else
lhs_negated_unicode_properties.set(static_cast<Unicode::Property>(pair.value));
break;
case CharacterCompareType::GeneralCategory:
has_any_unicode_property = true;
if (!current_lhs_inversion_state())
lhs_unicode_general_categories.set(static_cast<Unicode::GeneralCategory>(pair.value));
else
lhs_negated_unicode_general_categories.set(static_cast<Unicode::GeneralCategory>(pair.value));
break;
case CharacterCompareType::Script:
has_any_unicode_property = true;
if (!current_lhs_inversion_state())
lhs_unicode_scripts.set(static_cast<Unicode::Script>(pair.value));
else
lhs_negated_unicode_scripts.set(static_cast<Unicode::Script>(pair.value));
break;
case CharacterCompareType::ScriptExtension:
has_any_unicode_property = true;
if (!current_lhs_inversion_state())
lhs_unicode_script_extensions.set(static_cast<Unicode::Script>(pair.value));
else
lhs_negated_unicode_script_extensions.set(static_cast<Unicode::Script>(pair.value));
break;
case CharacterCompareType::Or:
case CharacterCompareType::EndAndOr:
// These are the default behaviour for [...], so we don't need to do anything (unless we add support for 'And' below).
break;
case CharacterCompareType::And:
// FIXME: These are too difficult to handle, so bail out.
return true;
case CharacterCompareType::Undefined:
case CharacterCompareType::RangeExpressionDummy:
// These do not occur in valid bytecode.
VERIFY_NOT_REACHED();
}
}
if constexpr (REGEX_DEBUG) {
dbgln("lhs ranges:");
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it)
dbgln(" {}..{}", it.key(), *it);
dbgln("lhs negated ranges:");
for (auto it = lhs_negated_ranges.begin(); it != lhs_negated_ranges.end(); ++it)
dbgln(" {}..{}", it.key(), *it);
}
temporary_inverse = false;
reset_temporary_inverse = false;
inverse = false;
auto in_or = false; // We're in an OR block, so we should wait for the EndAndOr to decide if we would match.
auto matched_in_or = false;
auto inverse_matched_in_or = false;
for (auto const& pair : rhs) {
if (reset_temporary_inverse) {
reset_temporary_inverse = false;
temporary_inverse = false;
} else {
reset_temporary_inverse = true;
}
if constexpr (REGEX_DEBUG) {
dbgln("check {} ({}) [inverted? {}] against {{", character_compare_type_name(pair.type), pair.value, current_lhs_inversion_state());
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it)
dbgln(" {}..{}", it.key(), *it);
for (auto it = lhs_negated_ranges.begin(); it != lhs_negated_ranges.end(); ++it)
dbgln(" ^[{}..{}]", it.key(), *it);
for (auto& char_class : lhs_char_classes)
dbgln(" {}", character_class_name(char_class));
for (auto& char_class : lhs_negated_char_classes)
dbgln(" ^{}", character_class_name(char_class));
dbgln("}}, in or: {}, matched in or: {}, inverse matched in or: {}", in_or, matched_in_or, inverse_matched_in_or);
}
switch (pair.type) {
case CharacterCompareType::Inverse:
inverse = !inverse;
break;
case CharacterCompareType::TemporaryInverse:
temporary_inverse = true;
reset_temporary_inverse = false;
break;
case CharacterCompareType::AnyChar:
// Special case: if not inverted, AnyChar is always in the range.
if (!in_or && !current_lhs_inversion_state())
return true;
if (in_or) {
matched_in_or = true;
inverse_matched_in_or = false;
}
break;
case CharacterCompareType::Char: {
auto matched = range_contains(pair.value);
if (!in_or && (current_lhs_inversion_state() ^ matched))
return true;
if (in_or) {
matched_in_or |= matched;
inverse_matched_in_or |= !matched;
}
break;
}
case CharacterCompareType::String:
// FIXME: We just need to look at the last character of this string, but we only have the first character here.
// Just bail out to avoid false positives.
return true;
case CharacterCompareType::CharClass: {
auto contains = char_class_contains(static_cast<CharClass>(pair.value));
if (!in_or && (current_lhs_inversion_state() ^ contains))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= !contains;
}
break;
}
case CharacterCompareType::CharRange: {
auto range = CharRange(pair.value);
auto contains = range_contains(range);
if (!in_or && (contains ^ current_lhs_inversion_state()))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= !contains;
}
break;
}
case CharacterCompareType::LookupTable:
// We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
return true;
case CharacterCompareType::Reference:
// We've handled this before coming here.
break;
case CharacterCompareType::Property:
// The only reasonable scenario where we can check these properties without spending too much time is if:
// - the ranges are empty
// - the char classes are empty
// - the unicode properties are empty or contain only this property
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
return true;
if (has_any_unicode_property && !lhs_unicode_properties.is_empty() && !lhs_negated_unicode_properties.is_empty()) {
auto contains = lhs_unicode_properties.contains(static_cast<Unicode::Property>(pair.value));
if (!in_or && (current_lhs_inversion_state() ^ contains))
return true;
auto inverse_contains = lhs_negated_unicode_properties.contains(static_cast<Unicode::Property>(pair.value));
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= inverse_contains;
}
}
break;
case CharacterCompareType::GeneralCategory:
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
return true;
if (has_any_unicode_property && !lhs_unicode_general_categories.is_empty() && !lhs_negated_unicode_general_categories.is_empty()) {
auto contains = lhs_unicode_general_categories.contains(static_cast<Unicode::GeneralCategory>(pair.value));
if (!in_or && (current_lhs_inversion_state() ^ contains))
return true;
auto inverse_contains = lhs_negated_unicode_general_categories.contains(static_cast<Unicode::GeneralCategory>(pair.value));
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= inverse_contains;
}
}
break;
case CharacterCompareType::Script:
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
return true;
if (has_any_unicode_property && !lhs_unicode_scripts.is_empty() && !lhs_negated_unicode_scripts.is_empty()) {
auto contains = lhs_unicode_scripts.contains(static_cast<Unicode::Script>(pair.value));
if (!in_or && (current_lhs_inversion_state() ^ contains))
return true;
auto inverse_contains = lhs_negated_unicode_scripts.contains(static_cast<Unicode::Script>(pair.value));
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= inverse_contains;
}
}
break;
case CharacterCompareType::ScriptExtension:
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
return true;
if (has_any_unicode_property && !lhs_unicode_script_extensions.is_empty() && !lhs_negated_unicode_script_extensions.is_empty()) {
auto contains = lhs_unicode_script_extensions.contains(static_cast<Unicode::Script>(pair.value));
if (!in_or && (current_lhs_inversion_state() ^ contains))
return true;
auto inverse_contains = lhs_negated_unicode_script_extensions.contains(static_cast<Unicode::Script>(pair.value));
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
return true;
if (in_or) {
matched_in_or |= contains;
inverse_matched_in_or |= inverse_contains;
}
}
break;
case CharacterCompareType::Or:
in_or = true;
break;
case CharacterCompareType::EndAndOr:
// FIXME: Handle And when we support it below.
VERIFY(in_or);
in_or = false;
if (current_lhs_inversion_state()) {
if (!inverse_matched_in_or)
return true;
} else {
if (matched_in_or)
return true;
}
break;
case CharacterCompareType::And:
// FIXME: These are too difficult to handle, so bail out.
return true;
case CharacterCompareType::Undefined:
case CharacterCompareType::RangeExpressionDummy:
// These do not occur in valid bytecode.
VERIFY_NOT_REACHED();
}
}
return false;
}
enum class AtomicRewritePreconditionResult {
SatisfiedWithProperHeader,
SatisfiedWithEmptyHeader,
NotSatisfied,
};
static AtomicRewritePreconditionResult block_satisfies_atomic_rewrite_precondition(ByteCode const& bytecode, Block const& repeated_block, Block const& following_block)
{
Vector<Vector<CompareTypeAndValuePair>> repeated_values;
MatchState state;
auto has_seen_actionable_opcode = false;
for (state.instruction_position = repeated_block.start; state.instruction_position < repeated_block.end;) {
auto& opcode = bytecode.get_opcode(state);
switch (opcode.opcode_id()) {
case OpCodeId::Compare: {
has_seen_actionable_opcode = true;
auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
if (repeated_values.is_empty() && any_of(compares, [](auto& compare) { return compare.type == CharacterCompareType::AnyChar; }))
return AtomicRewritePreconditionResult::NotSatisfied;
repeated_values.append(move(compares));
break;
}
case OpCodeId::CheckBegin:
case OpCodeId::CheckEnd:
has_seen_actionable_opcode = true;
if (repeated_values.is_empty())
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
break;
case OpCodeId::CheckBoundary:
// FIXME: What should we do with these? for now, let's fail.
return AtomicRewritePreconditionResult::NotSatisfied;
case OpCodeId::Restore:
case OpCodeId::GoBack:
return AtomicRewritePreconditionResult::NotSatisfied;
case OpCodeId::ForkJump:
case OpCodeId::ForkReplaceJump:
case OpCodeId::JumpNonEmpty:
// We could attempt to recursively resolve the follow set, but pretending that this just goes nowhere is faster.
if (!has_seen_actionable_opcode)
return AtomicRewritePreconditionResult::NotSatisfied;
break;
default:
break;
}
state.instruction_position += opcode.size();
}
dbgln_if(REGEX_DEBUG, "Found {} entries in reference", repeated_values.size());
bool following_block_has_at_least_one_compare = false;
// Find the first compare in the following block, it must NOT match any of the values in `repeated_values'.
auto final_instruction = following_block.start;
for (state.instruction_position = following_block.start; state.instruction_position < following_block.end;) {
final_instruction = state.instruction_position;
auto& opcode = bytecode.get_opcode(state);
switch (opcode.opcode_id()) {
case OpCodeId::Compare: {
following_block_has_at_least_one_compare = true;
// We found a compare, let's see what it has.
auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
if (compares.is_empty())
break;
if (any_of(compares, [&](auto& compare) {
return compare.type == CharacterCompareType::AnyChar || compare.type == CharacterCompareType::Reference;
}))
return AtomicRewritePreconditionResult::NotSatisfied;
if (any_of(repeated_values, [&](auto& repeated_value) { return has_overlap(compares, repeated_value); }))
return AtomicRewritePreconditionResult::NotSatisfied;
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
}
case OpCodeId::CheckBegin:
case OpCodeId::CheckEnd:
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader; // Nothing can match the end!
case OpCodeId::CheckBoundary:
// FIXME: What should we do with these? For now, consider them a failure.
return AtomicRewritePreconditionResult::NotSatisfied;
case OpCodeId::ForkJump:
case OpCodeId::ForkReplaceJump:
case OpCodeId::JumpNonEmpty:
// See note in the previous switch, same cases.
if (!following_block_has_at_least_one_compare)
return AtomicRewritePreconditionResult::NotSatisfied;
break;
default:
break;
}
state.instruction_position += opcode.size();
}
// If the following block falls through, we can't rewrite it.
state.instruction_position = final_instruction;
switch (bytecode.get_opcode(state).opcode_id()) {
case OpCodeId::Jump:
case OpCodeId::JumpNonEmpty:
case OpCodeId::ForkJump:
case OpCodeId::ForkReplaceJump:
break;
default:
return AtomicRewritePreconditionResult::NotSatisfied;
}
if (following_block_has_at_least_one_compare)
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
return AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader;
}
template<typename Parser>
bool Regex<Parser>::attempt_rewrite_entire_match_as_substring_search(BasicBlockList const& basic_blocks)
{
// If there's no jumps, we can probably rewrite this as a substring search (Compare { string = str }).
if (basic_blocks.size() > 1)
return false;
if (basic_blocks.is_empty()) {
parser_result.optimization_data.pure_substring_search = ""sv;
return true; // Empty regex, sure.
}
auto& bytecode = parser_result.bytecode;
auto is_unicode = parser_result.options.has_flag_set(AllFlags::Unicode);
// We have a single basic block, let's see if it's a series of character or string compares.
StringBuilder final_string;
MatchState state;
while (state.instruction_position < bytecode.size()) {
auto& opcode = bytecode.get_opcode(state);
switch (opcode.opcode_id()) {
case OpCodeId::Compare: {
auto& compare = static_cast<OpCode_Compare const&>(opcode);
for (auto& flat_compare : compare.flat_compares()) {
if (flat_compare.type != CharacterCompareType::Char)
return false;
if (is_unicode || flat_compare.value <= 0x7f)
final_string.append_code_point(flat_compare.value);
else
final_string.append(bit_cast<char>(static_cast<u8>(flat_compare.value)));
}
break;
}
default:
return false;
}
state.instruction_position += opcode.size();
}
parser_result.optimization_data.pure_substring_search = final_string.to_byte_string();
return true;
}
template<typename Parser>
void Regex<Parser>::attempt_rewrite_loops_as_atomic_groups(BasicBlockList const& basic_blocks)
{
auto& bytecode = parser_result.bytecode;
if constexpr (REGEX_DEBUG) {
RegexDebug dbg;
dbg.print_bytecode(*this);
for (auto const& block : basic_blocks)
dbgln("block from {} to {} (comment: {})", block.start, block.end, block.comment);
}
// A pattern such as:
// bb0 | RE0
// | ForkX bb0
// -------------------------
// bb1 | RE1
// can be rewritten as:
// -------------------------
// bb0 | RE0
// | ForkReplaceX bb0
// -------------------------
// bb1 | RE1
// provided that first(RE1) not-in end(RE0), which is to say
// that RE1 cannot start with whatever RE0 has matched (ever).
//
// Alternatively, a second form of this pattern can also occur:
// bb0 | *
// | ForkX bb2
// ------------------------
// bb1 | RE0
// | Jump bb0
// ------------------------
// bb2 | RE1
// which can be transformed (with the same preconditions) to:
// bb0 | *
// | ForkReplaceX bb2
// ------------------------
// bb1 | RE0
// | Jump bb0
// ------------------------
// bb2 | RE1
enum class AlternateForm {
DirectLoopWithoutHeader, // loop without proper header, a block forking to itself. i.e. the first form.
DirectLoopWithoutHeaderAndEmptyFollow, // loop without proper header, a block forking to itself. i.e. the first form but with RE1 being empty.
DirectLoopWithHeader, // loop with proper header, i.e. the second form.
};
struct CandidateBlock {
Block forking_block;
Optional<Block> new_target_block;
AlternateForm form;
};
Vector<CandidateBlock> candidate_blocks;
auto is_an_eligible_jump = [](OpCode const& opcode, size_t ip, size_t block_start, AlternateForm alternate_form) {
switch (opcode.opcode_id()) {
case OpCodeId::JumpNonEmpty: {
auto const& op = static_cast<OpCode_JumpNonEmpty const&>(opcode);
auto form = op.form();
if (form != OpCodeId::Jump && alternate_form == AlternateForm::DirectLoopWithHeader)
return false;
if (form != OpCodeId::ForkJump && form != OpCodeId::ForkStay && alternate_form == AlternateForm::DirectLoopWithoutHeader)
return false;
return op.offset() + ip + opcode.size() == block_start;
}
case OpCodeId::ForkJump:
if (alternate_form == AlternateForm::DirectLoopWithHeader)
return false;
return static_cast<OpCode_ForkJump const&>(opcode).offset() + ip + opcode.size() == block_start;
case OpCodeId::ForkStay:
if (alternate_form == AlternateForm::DirectLoopWithHeader)
return false;
return static_cast<OpCode_ForkStay const&>(opcode).offset() + ip + opcode.size() == block_start;
case OpCodeId::Jump:
// Infinite loop does *not* produce forks.
if (alternate_form == AlternateForm::DirectLoopWithoutHeader)
return false;
if (alternate_form == AlternateForm::DirectLoopWithHeader)
return static_cast<OpCode_Jump const&>(opcode).offset() + ip + opcode.size() == block_start;
VERIFY_NOT_REACHED();
default:
return false;
}
};
for (size_t i = 0; i < basic_blocks.size(); ++i) {
auto forking_block = basic_blocks[i];
Optional<Block> fork_fallback_block;
if (i + 1 < basic_blocks.size())
fork_fallback_block = basic_blocks[i + 1];
MatchState state;
// Check if the last instruction in this block is a jump to the block itself:
{
state.instruction_position = forking_block.end;
auto& opcode = bytecode.get_opcode(state);
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithoutHeader)) {
// We've found RE0 (and RE1 is just the following block, if any), let's see if the precondition applies.
// if RE1 is empty, there's no first(RE1), so this is an automatic pass.
if (!fork_fallback_block.has_value()
|| (fork_fallback_block->end == fork_fallback_block->start && block_satisfies_atomic_rewrite_precondition(bytecode, forking_block, *fork_fallback_block) != AtomicRewritePreconditionResult::NotSatisfied)) {
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
break;
}
auto precondition = block_satisfies_atomic_rewrite_precondition(bytecode, forking_block, *fork_fallback_block);
if (precondition == AtomicRewritePreconditionResult::SatisfiedWithProperHeader) {
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
break;
}
if (precondition == AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader) {
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeaderAndEmptyFollow });
break;
}
}
}
// Check if the last instruction in the last block is a direct jump to this block
if (fork_fallback_block.has_value()) {
state.instruction_position = fork_fallback_block->end;
auto& opcode = bytecode.get_opcode(state);
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithHeader)) {
// We've found bb1 and bb0, let's just make sure that bb0 forks to bb2.
state.instruction_position = forking_block.end;
auto& opcode = bytecode.get_opcode(state);
if (opcode.opcode_id() == OpCodeId::ForkJump || opcode.opcode_id() == OpCodeId::ForkStay) {
Optional<Block> block_following_fork_fallback;
if (i + 2 < basic_blocks.size())
block_following_fork_fallback = basic_blocks[i + 2];
if (!block_following_fork_fallback.has_value()
|| block_satisfies_atomic_rewrite_precondition(bytecode, *fork_fallback_block, *block_following_fork_fallback) != AtomicRewritePreconditionResult::NotSatisfied) {
candidate_blocks.append({ forking_block, {}, AlternateForm::DirectLoopWithHeader });
break;
}
}
}
// We've found a slightly degenerate case, where the next block jumps back to the _jump_ instruction in the forking block.
// This is a direct loop without a proper header that is posing as a loop with a header.
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.end, AlternateForm::DirectLoopWithHeader)) {
// We've found bb1 and bb0, let's just make sure that bb0 forks to bb2.
state.instruction_position = forking_block.end;
auto& opcode = bytecode.get_opcode(state);
if (opcode.opcode_id() == OpCodeId::ForkJump || opcode.opcode_id() == OpCodeId::ForkStay) {
Optional<Block> block_following_fork_fallback;
if (i + 2 < basic_blocks.size())
block_following_fork_fallback = basic_blocks[i + 2];
if (!block_following_fork_fallback.has_value()
|| block_satisfies_atomic_rewrite_precondition(bytecode, *fork_fallback_block, *block_following_fork_fallback) != AtomicRewritePreconditionResult::NotSatisfied) {
candidate_blocks.append({ forking_block, {}, AlternateForm::DirectLoopWithoutHeader });
break;
}
}
}
}
}
dbgln_if(REGEX_DEBUG, "Found {} candidate blocks", candidate_blocks.size());
if (candidate_blocks.is_empty()) {
dbgln_if(REGEX_DEBUG, "Failed to find anything for {}", pattern_value);
return;
}
RedBlackTree<size_t, size_t> needed_patches;
// Reverse the blocks, so we can patch the bytecode without messing with the latter patches.
quick_sort(candidate_blocks, [](auto& a, auto& b) { return b.forking_block.start > a.forking_block.start; });
for (auto& candidate : candidate_blocks) {
// Note that both forms share a ForkReplace patch in forking_block.
// Patch the ForkX in forking_block to be a ForkReplaceX instead.
auto& opcode_id = bytecode[candidate.forking_block.end];
if (opcode_id == (ByteCodeValueType)OpCodeId::ForkStay) {
opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
} else if (opcode_id == (ByteCodeValueType)OpCodeId::ForkJump) {
opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
} else if (opcode_id == (ByteCodeValueType)OpCodeId::JumpNonEmpty) {
auto& jump_opcode_id = bytecode[candidate.forking_block.end + 3];
if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkStay)
jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
else if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkJump)
jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
else
VERIFY_NOT_REACHED();
} else {
VERIFY_NOT_REACHED();
}
}
if (!needed_patches.is_empty()) {
MatchState state;
auto bytecode_size = bytecode.size();
state.instruction_position = 0;
struct Patch {
ssize_t value;
size_t offset;
bool should_negate { false };
};
for (;;) {
if (state.instruction_position >= bytecode_size)
break;
auto& opcode = bytecode.get_opcode(state);
Stack<Patch, 2> patch_points;
switch (opcode.opcode_id()) {
case OpCodeId::Jump:
patch_points.push({ static_cast<OpCode_Jump const&>(opcode).offset(), state.instruction_position + 1 });
break;
case OpCodeId::JumpNonEmpty:
patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).offset(), state.instruction_position + 1 });
patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).checkpoint(), state.instruction_position + 2 });
break;
case OpCodeId::ForkJump:
patch_points.push({ static_cast<OpCode_ForkJump const&>(opcode).offset(), state.instruction_position + 1 });
break;
case OpCodeId::ForkStay:
patch_points.push({ static_cast<OpCode_ForkStay const&>(opcode).offset(), state.instruction_position + 1 });
break;
case OpCodeId::Repeat:
patch_points.push({ -(ssize_t) static_cast<OpCode_Repeat const&>(opcode).offset(), state.instruction_position + 1, true });
break;
default:
break;
}
while (!patch_points.is_empty()) {
auto& patch_point = patch_points.top();
auto target_offset = patch_point.value + state.instruction_position + opcode.size();
constexpr auto do_patch = [](auto& patch_it, auto& patch_point, auto& target_offset, auto& bytecode, auto ip) {
if (patch_it.key() == ip)
return;
if (patch_point.value < 0 && target_offset <= patch_it.key() && ip > patch_it.key())
bytecode[patch_point.offset] += (patch_point.should_negate ? 1 : -1) * (*patch_it);
else if (patch_point.value > 0 && target_offset >= patch_it.key() && ip < patch_it.key())
bytecode[patch_point.offset] += (patch_point.should_negate ? -1 : 1) * (*patch_it);
};
if (auto patch_it = needed_patches.find_largest_not_above_iterator(target_offset); !patch_it.is_end())
do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);
else if (auto patch_it = needed_patches.find_largest_not_above_iterator(state.instruction_position); !patch_it.is_end())
do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);
patch_points.pop();
}
state.instruction_position += opcode.size();
}
}
if constexpr (REGEX_DEBUG) {
warnln("Transformed to:");
RegexDebug dbg;
dbg.print_bytecode(*this);
}
}
void Optimizer::append_alternation(ByteCode& target, ByteCode&& left, ByteCode&& right)
{
Array<ByteCode, 2> alternatives;
alternatives[0] = move(left);
alternatives[1] = move(right);
append_alternation(target, alternatives);
}
template<typename K, typename V, typename KTraits>
using OrderedHashMapForTrie = OrderedHashMap<K, V, KTraits>;
void Optimizer::append_alternation(ByteCode& target, Span<ByteCode> alternatives)
{
if (alternatives.size() == 0)
return;
if (alternatives.size() == 1)
return target.extend(move(alternatives[0]));
if (all_of(alternatives, [](auto& x) { return x.is_empty(); }))
return;
for (auto& entry : alternatives)
entry.flatten();
#if REGEX_DEBUG
ScopeLogger<true> log;
warnln("Alternations:");
RegexDebug dbg;
for (auto& entry : alternatives) {
warnln("----------");
dbg.print_bytecode(entry);
}
ScopeGuard print_at_end {
[&] {
warnln("======================");
RegexDebug dbg;
dbg.print_bytecode(target);
}
};
#endif
// First, find incoming jump edges.
// We need them for two reasons:
// - We need to distinguish between insn-A-jumped-to-by-insn-B and insn-A-jumped-to-by-insn-C (as otherwise we'd break trie invariants)
// - We need to know which jumps to patch when we're done
struct JumpEdge {
Span<ByteCodeValueType const> jump_insn;
};
Vector<HashMap<size_t, Vector<JumpEdge>>> incoming_jump_edges_for_each_alternative;
incoming_jump_edges_for_each_alternative.resize(alternatives.size());
auto has_any_backwards_jump = false;
MatchState state;
for (size_t i = 0; i < alternatives.size(); ++i) {
auto& alternative = alternatives[i];
// Add a jump to the "end" of the block; this is implicit in the bytecode, but we need it to be explicit in the trie.
// Jump{offset=0}
alternative.append(static_cast<ByteCodeValueType>(OpCodeId::Jump));
alternative.append(0);
auto& incoming_jump_edges = incoming_jump_edges_for_each_alternative[i];
auto alternative_bytes = alternative.spans<1>().singular_span();
for (state.instruction_position = 0; state.instruction_position < alternative.size();) {
auto& opcode = alternative.get_opcode(state);
auto opcode_bytes = alternative_bytes.slice(state.instruction_position, opcode.size());
switch (opcode.opcode_id()) {
case OpCodeId::Jump:
incoming_jump_edges.ensure(static_cast<OpCode_Jump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_Jump const&>(opcode).offset() < 0;
break;
case OpCodeId::JumpNonEmpty:
incoming_jump_edges.ensure(static_cast<OpCode_JumpNonEmpty const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_JumpNonEmpty const&>(opcode).offset() < 0;
break;
case OpCodeId::ForkJump:
incoming_jump_edges.ensure(static_cast<OpCode_ForkJump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_ForkJump const&>(opcode).offset() < 0;
break;
case OpCodeId::ForkStay:
incoming_jump_edges.ensure(static_cast<OpCode_ForkStay const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_ForkStay const&>(opcode).offset() < 0;
break;
case OpCodeId::ForkReplaceJump:
incoming_jump_edges.ensure(static_cast<OpCode_ForkReplaceJump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_ForkReplaceJump const&>(opcode).offset() < 0;
break;
case OpCodeId::ForkReplaceStay:
incoming_jump_edges.ensure(static_cast<OpCode_ForkReplaceStay const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
has_any_backwards_jump |= static_cast<OpCode_ForkReplaceStay const&>(opcode).offset() < 0;
break;
case OpCodeId::Repeat:
incoming_jump_edges.ensure(state.instruction_position - static_cast<OpCode_Repeat const&>(opcode).offset()).append({ opcode_bytes });
has_any_backwards_jump = true;
break;
default:
break;
}
state.instruction_position += opcode.size();
}
}
struct QualifiedIP {
size_t alternative_index;
size_t instruction_position;
};
using Tree = Trie<DisjointSpans<ByteCodeValueType const>, Vector<QualifiedIP>, Traits<DisjointSpans<ByteCodeValueType const>>, void, OrderedHashMapForTrie>;
Tree trie { {} }; // Root node is empty, key{ instruction_bytes, dependent_instruction_bytes... } -> IP
size_t common_hits = 0;
size_t total_nodes = 0;
size_t total_bytecode_entries_in_tree = 0;
for (size_t i = 0; i < alternatives.size(); ++i) {
auto& alternative = alternatives[i];
auto& incoming_jump_edges = incoming_jump_edges_for_each_alternative[i];
auto* active_node = &trie;
auto alternative_span = alternative.spans<1>().singular_span();
for (state.instruction_position = 0; state.instruction_position < alternative_span.size();) {
total_nodes += 1;
auto& opcode = alternative.get_opcode(state);
auto opcode_bytes = alternative_span.slice(state.instruction_position, opcode.size());
Vector<Span<ByteCodeValueType const>> node_key_bytes;
node_key_bytes.append(opcode_bytes);
if (auto edges = incoming_jump_edges.get(state.instruction_position); edges.has_value()) {
for (auto& edge : *edges)
node_key_bytes.append(edge.jump_insn);
}
active_node = static_cast<decltype(active_node)>(MUST(active_node->ensure_child(DisjointSpans<ByteCodeValueType const> { move(node_key_bytes) })));
if (active_node->has_metadata()) {
active_node->metadata_value().append({ i, state.instruction_position });
common_hits += 1;
} else {
active_node->set_metadata(Vector<QualifiedIP> { QualifiedIP { i, state.instruction_position } });
total_bytecode_entries_in_tree += opcode.size();
}
state.instruction_position += opcode.size();
}
}
if constexpr (REGEX_DEBUG) {
Function<void(decltype(trie)&, size_t)> print_tree = [&](decltype(trie)& node, size_t indent = 0) mutable {
ByteString name = "(no ip)";
ByteString insn;
if (node.has_metadata()) {
name = ByteString::formatted(
"{}@{} ({} node{})",
node.metadata_value().first().instruction_position,
node.metadata_value().first().alternative_index,
node.metadata_value().size(),
node.metadata_value().size() == 1 ? "" : "s");
MatchState state;
state.instruction_position = node.metadata_value().first().instruction_position;
auto& opcode = alternatives[node.metadata_value().first().alternative_index].get_opcode(state);
insn = ByteString::formatted("{} {}", opcode.to_byte_string(), opcode.arguments_string());
}
dbgln("{:->{}}| {} -- {}", "", indent * 2, name, insn);
for (auto& child : node.children())
print_tree(static_cast<decltype(trie)&>(*child.value), indent + 1);
};
print_tree(trie, 0);
}
// This is really only worth it if we don't blow up the size by the 2-extra-instruction-per-node scheme, similarly, if no nodes are shared, we're better off not using a tree.
auto tree_cost = (total_nodes - common_hits) * 2;
auto chain_cost = total_nodes + alternatives.size() * 2;
dbgln_if(REGEX_DEBUG, "Total nodes: {}, common hits: {} (tree cost = {}, chain cost = {})", total_nodes, common_hits, tree_cost, chain_cost);
if (common_hits == 0 || tree_cost > chain_cost) {
// It's better to lay these out as a normal sequence of instructions.
auto patch_start = target.size();
for (size_t i = 1; i < alternatives.size(); ++i) {
target.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
target.empend(0u); // To be filled later.
}
size_t size_to_jump = 0;
bool seen_one_empty = false;
for (size_t i = alternatives.size(); i > 0; --i) {
auto& entry = alternatives[i - 1];
if (entry.is_empty()) {
if (seen_one_empty)
continue;
seen_one_empty = true;
}
auto is_first = i == 1;
auto instruction_size = entry.size() + (is_first ? 0 : 2); // Jump; -> +2
size_to_jump += instruction_size;
if (!is_first)
target[patch_start + (i - 2) * 2 + 1] = size_to_jump + (alternatives.size() - i) * 2;
dbgln_if(REGEX_DEBUG, "{} size = {}, cum={}", i - 1, instruction_size, size_to_jump);
}
seen_one_empty = false;
for (size_t i = alternatives.size(); i > 0; --i) {
auto& chunk = alternatives[i - 1];
if (chunk.is_empty()) {
if (seen_one_empty)
continue;
seen_one_empty = true;
}
ByteCode* previous_chunk = nullptr;
size_t j = i - 1;
auto seen_one_empty_before = chunk.is_empty();
while (j >= 1) {
--j;
auto& candidate_chunk = alternatives[j];
if (candidate_chunk.is_empty()) {
if (seen_one_empty_before)
continue;
}
previous_chunk = &candidate_chunk;
break;
}
size_to_jump -= chunk.size() + (previous_chunk ? 2 : 0);
target.extend(move(chunk));
target.empend(static_cast<ByteCodeValueType>(OpCodeId::Jump));
target.empend(size_to_jump); // Jump to the _END label
}
} else {
target.ensure_capacity(total_bytecode_entries_in_tree + common_hits * 6);
auto node_is = [](Tree const* node, QualifiedIP ip) {
if (!node->has_metadata())
return false;
for (auto& node_ip : node->metadata_value()) {
if (node_ip.alternative_index == ip.alternative_index && node_ip.instruction_position == ip.instruction_position)
return true;
}
return false;
};
struct Patch {
QualifiedIP source_ip;
size_t target_ip;
bool done { false };
};
Vector<Patch> patch_locations;
patch_locations.ensure_capacity(total_nodes);
auto add_patch_point = [&](Tree const* node, size_t target_ip) {
if (!node->has_metadata())
return;
auto& node_ip = node->metadata_value().first();
patch_locations.append({ node_ip, target_ip });
};
Queue<Tree*> nodes_to_visit;
nodes_to_visit.enqueue(&trie);
HashMap<size_t, NonnullOwnPtr<RedBlackTree<u64, u64>>> instruction_positions;
if (has_any_backwards_jump)
MUST(instruction_positions.try_ensure_capacity(alternatives.size()));
auto ip_mapping_for_alternative = [&](size_t i) -> RedBlackTree<u64, u64>& {
return *instruction_positions.ensure(i, [] {
return make<RedBlackTree<u64, u64>>();
});
};
// each node:
// node.re
// forkjump child1
// forkjump child2
// ...
while (!nodes_to_visit.is_empty()) {
auto const* node = nodes_to_visit.dequeue();
for (auto& patch : patch_locations) {
if (!patch.done && node_is(node, patch.source_ip)) {
auto value = static_cast<ByteCodeValueType>(target.size() - patch.target_ip - 1);
if (value == 0)
target[patch.target_ip - 1] = static_cast<ByteCodeValueType>(OpCodeId::Jump);
target[patch.target_ip] = value;
patch.done = true;
}
}
if (!node->value().individual_spans().is_empty()) {
auto insn_bytes = node->value().individual_spans().first();
target.ensure_capacity(target.size() + insn_bytes.size());
state.instruction_position = target.size();
target.append(insn_bytes);
if (has_any_backwards_jump) {
for (auto& ip : node->metadata_value())
ip_mapping_for_alternative(ip.alternative_index).insert(ip.instruction_position, state.instruction_position);
}
auto& opcode = target.get_opcode(state);
ssize_t jump_offset;
auto is_jump = true;
auto patch_location = state.instruction_position + 1;
bool should_negate = false;
switch (opcode.opcode_id()) {
case OpCodeId::Jump:
jump_offset = static_cast<OpCode_Jump const&>(opcode).offset();
break;
case OpCodeId::JumpNonEmpty:
jump_offset = static_cast<OpCode_JumpNonEmpty const&>(opcode).offset();
break;
case OpCodeId::ForkJump:
jump_offset = static_cast<OpCode_ForkJump const&>(opcode).offset();
break;
case OpCodeId::ForkStay:
jump_offset = static_cast<OpCode_ForkStay const&>(opcode).offset();
break;
case OpCodeId::ForkReplaceJump:
jump_offset = static_cast<OpCode_ForkReplaceJump const&>(opcode).offset();
break;
case OpCodeId::ForkReplaceStay:
jump_offset = static_cast<OpCode_ForkReplaceStay const&>(opcode).offset();
break;
case OpCodeId::Repeat:
jump_offset = static_cast<ssize_t>(0) - static_cast<ssize_t>(static_cast<OpCode_Repeat const&>(opcode).offset()) - static_cast<ssize_t>(opcode.size());
should_negate = true;
break;
default:
is_jump = false;
break;
}
if (is_jump) {
VERIFY(node->has_metadata());
QualifiedIP ip = node->metadata_value().first();
auto intended_jump_ip = ip.instruction_position + jump_offset + opcode.size();
if (jump_offset < 0) {
VERIFY(has_any_backwards_jump);
// We should've already seen this instruction, so we can just patch it in.
auto& ip_mapping = ip_mapping_for_alternative(ip.alternative_index);
auto target_ip = ip_mapping.find(intended_jump_ip);
if (!target_ip) {
RegexDebug dbg;
size_t x = 0;
for (auto& entry : alternatives) {
warnln("----------- {} ----------", x++);
dbg.print_bytecode(entry);
}
dbgln("Regex Tree / Unknown backwards jump: {}@{} -> {}",
ip.instruction_position,
ip.alternative_index,
intended_jump_ip);
VERIFY_NOT_REACHED();
}
ssize_t target_value = *target_ip - patch_location - 1;
if (should_negate)
target_value = -target_value + 2; // from -1 to +1.
target[patch_location] = static_cast<ByteCodeValueType>(target_value);
} else {
patch_locations.append({ QualifiedIP { ip.alternative_index, intended_jump_ip }, patch_location });
}
}
}
for (auto const& child : node->children()) {
auto* child_node = static_cast<Tree*>(child.value.ptr());
target.append(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
add_patch_point(child_node, target.size());
target.append(static_cast<ByteCodeValueType>(0));
nodes_to_visit.enqueue(child_node);
}
}
for (auto& patch : patch_locations) {
if (patch.done)
continue;
auto& alternative = alternatives[patch.source_ip.alternative_index];
if (patch.source_ip.instruction_position >= alternative.size()) {
// This just wants to jump to the end of the alternative, which is fine.
// Patch it to jump to the end of the target instead.
target[patch.target_ip] = static_cast<ByteCodeValueType>(target.size() - patch.target_ip - 1);
continue;
}
dbgln("Regex Tree / Unpatched jump: {}@{} -> {}@{}",
patch.source_ip.instruction_position,
patch.source_ip.alternative_index,
patch.target_ip,
target[patch.target_ip]);
VERIFY_NOT_REACHED();
}
}
}
enum class LookupTableInsertionOutcome {
Successful,
ReplaceWithAnyChar,
TemporaryInversionNeeded,
PermanentInversionNeeded,
FlushOnInsertion,
FinishFlushOnInsertion,
CannotPlaceInTable,
};
static LookupTableInsertionOutcome insert_into_lookup_table(RedBlackTree<ByteCodeValueType, CharRange>& table, CompareTypeAndValuePair pair)
{
switch (pair.type) {
case CharacterCompareType::Inverse:
return LookupTableInsertionOutcome::PermanentInversionNeeded;
case CharacterCompareType::TemporaryInverse:
return LookupTableInsertionOutcome::TemporaryInversionNeeded;
case CharacterCompareType::AnyChar:
return LookupTableInsertionOutcome::ReplaceWithAnyChar;
case CharacterCompareType::CharClass:
return LookupTableInsertionOutcome::CannotPlaceInTable;
case CharacterCompareType::Char:
table.insert(pair.value, { (u32)pair.value, (u32)pair.value });
break;
case CharacterCompareType::CharRange: {
CharRange range { pair.value };
table.insert(range.from, range);
break;
}
case CharacterCompareType::EndAndOr:
return LookupTableInsertionOutcome::FinishFlushOnInsertion;
case CharacterCompareType::And:
return LookupTableInsertionOutcome::FlushOnInsertion;
case CharacterCompareType::Reference:
case CharacterCompareType::Property:
case CharacterCompareType::GeneralCategory:
case CharacterCompareType::Script:
case CharacterCompareType::ScriptExtension:
case CharacterCompareType::Or:
return LookupTableInsertionOutcome::CannotPlaceInTable;
case CharacterCompareType::Undefined:
case CharacterCompareType::RangeExpressionDummy:
case CharacterCompareType::String:
case CharacterCompareType::LookupTable:
VERIFY_NOT_REACHED();
}
return LookupTableInsertionOutcome::Successful;
}
void Optimizer::append_character_class(ByteCode& target, Vector<CompareTypeAndValuePair>&& pairs)
{
ByteCode arguments;
size_t argument_count = 0;
if (pairs.size() <= 1) {
for (auto& pair : pairs) {
arguments.append(to_underlying(pair.type));
if (pair.type != CharacterCompareType::AnyChar
&& pair.type != CharacterCompareType::TemporaryInverse
&& pair.type != CharacterCompareType::Inverse
&& pair.type != CharacterCompareType::And
&& pair.type != CharacterCompareType::Or
&& pair.type != CharacterCompareType::EndAndOr)
arguments.append(pair.value);
++argument_count;
}
} else {
RedBlackTree<ByteCodeValueType, CharRange> table;
RedBlackTree<ByteCodeValueType, CharRange> inverted_table;
auto* current_table = &table;
auto* current_inverted_table = &inverted_table;
bool invert_for_next_iteration = false;
bool is_currently_inverted = false;
auto flush_tables = [&] {
auto append_table = [&](auto& table) {
++argument_count;
arguments.append(to_underlying(CharacterCompareType::LookupTable));
auto size_index = arguments.size();
arguments.append(0);
Optional<CharRange> active_range;
size_t range_count = 0;
for (auto& range : table) {
if (!active_range.has_value()) {
active_range = range;
continue;
}
if (range.from <= active_range->to + 1 && range.to + 1 >= active_range->from) {
active_range = CharRange { min(range.from, active_range->from), max(range.to, active_range->to) };
} else {
++range_count;
arguments.append(active_range.release_value());
active_range = range;
}
}
if (active_range.has_value()) {
++range_count;
arguments.append(active_range.release_value());
}
arguments[size_index] = range_count;
};
auto contains_regular_table = !table.is_empty();
auto contains_inverted_table = !inverted_table.is_empty();
if (contains_regular_table)
append_table(table);
if (contains_inverted_table) {
++argument_count;
arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
append_table(inverted_table);
}
table.clear();
inverted_table.clear();
};
auto flush_on_every_insertion = false;
for (auto& value : pairs) {
auto should_invert_after_this_iteration = invert_for_next_iteration;
invert_for_next_iteration = false;
auto insertion_result = insert_into_lookup_table(*current_table, value);
switch (insertion_result) {
case LookupTableInsertionOutcome::Successful:
if (flush_on_every_insertion)
flush_tables();
break;
case LookupTableInsertionOutcome::ReplaceWithAnyChar: {
table.clear();
inverted_table.clear();
arguments.append(to_underlying(CharacterCompareType::AnyChar));
++argument_count;
break;
}
case LookupTableInsertionOutcome::TemporaryInversionNeeded:
swap(current_table, current_inverted_table);
invert_for_next_iteration = true;
is_currently_inverted = !is_currently_inverted;
break;
case LookupTableInsertionOutcome::PermanentInversionNeeded:
flush_tables();
arguments.append(to_underlying(CharacterCompareType::Inverse));
++argument_count;
break;
case LookupTableInsertionOutcome::FlushOnInsertion:
case LookupTableInsertionOutcome::FinishFlushOnInsertion:
flush_tables();
flush_on_every_insertion = insertion_result == LookupTableInsertionOutcome::FlushOnInsertion;
[[fallthrough]];
case LookupTableInsertionOutcome::CannotPlaceInTable:
if (is_currently_inverted) {
arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
++argument_count;
}
arguments.append(to_underlying(value.type));
if (value.type != CharacterCompareType::AnyChar
&& value.type != CharacterCompareType::TemporaryInverse
&& value.type != CharacterCompareType::Inverse
&& value.type != CharacterCompareType::And
&& value.type != CharacterCompareType::Or
&& value.type != CharacterCompareType::EndAndOr)
arguments.append(value.value);
++argument_count;
break;
}
if (should_invert_after_this_iteration) {
swap(current_table, current_inverted_table);
is_currently_inverted = !is_currently_inverted;
}
}
flush_tables();
}
target.empend(static_cast<ByteCodeValueType>(OpCodeId::Compare));
target.empend(argument_count); // number of arguments
target.empend(arguments.size()); // size of arguments
target.extend(move(arguments));
}
template void Regex<PosixBasicParser>::run_optimization_passes();
template void Regex<PosixExtendedParser>::run_optimization_passes();
template void Regex<ECMA262Parser>::run_optimization_passes();
}