mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 01:32:14 -05:00
50733c564c
Fixes #2931 and various frequent crashes.
1506 lines
66 KiB
C++
1506 lines
66 KiB
C++
/*
|
|
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/Function.h>
|
|
#include <AK/Queue.h>
|
|
#include <AK/QuickSort.h>
|
|
#include <AK/RedBlackTree.h>
|
|
#include <AK/Stack.h>
|
|
#include <AK/Trie.h>
|
|
#include <LibRegex/Regex.h>
|
|
#include <LibRegex/RegexBytecodeStreamOptimizer.h>
|
|
#include <LibUnicode/CharacterTypes.h>
|
|
#if REGEX_DEBUG
|
|
# include <AK/ScopeGuard.h>
|
|
# include <AK/ScopeLogger.h>
|
|
#endif
|
|
|
|
namespace regex {
|
|
|
|
using Detail::Block;
|
|
|
|
template<typename Parser>
|
|
void Regex<Parser>::run_optimization_passes()
|
|
{
|
|
parser_result.bytecode.flatten();
|
|
|
|
auto blocks = split_basic_blocks(parser_result.bytecode);
|
|
if (attempt_rewrite_entire_match_as_substring_search(blocks))
|
|
return;
|
|
|
|
// Rewrite fork loops as atomic groups
|
|
// e.g. a*b -> (ATOMIC a*)b
|
|
attempt_rewrite_loops_as_atomic_groups(blocks);
|
|
|
|
// FIXME: "There are a few more conditions this can be true in (e.g. within an arbitrarily nested capture group)"
|
|
MatchState state;
|
|
auto& opcode = parser_result.bytecode.get_opcode(state);
|
|
if (opcode.opcode_id() == OpCodeId::CheckBegin)
|
|
parser_result.optimization_data.only_start_of_line = true;
|
|
|
|
parser_result.bytecode.flatten();
|
|
}
|
|
|
|
template<typename Parser>
|
|
typename Regex<Parser>::BasicBlockList Regex<Parser>::split_basic_blocks(ByteCode const& bytecode)
|
|
{
|
|
BasicBlockList block_boundaries;
|
|
size_t end_of_last_block = 0;
|
|
|
|
auto bytecode_size = bytecode.size();
|
|
|
|
MatchState state;
|
|
state.instruction_position = 0;
|
|
auto check_jump = [&]<typename T>(OpCode const& opcode) {
|
|
auto& op = static_cast<T const&>(opcode);
|
|
ssize_t jump_offset = op.size() + op.offset();
|
|
if (jump_offset >= 0) {
|
|
block_boundaries.append({ end_of_last_block, state.instruction_position, "Jump ahead"sv });
|
|
end_of_last_block = state.instruction_position + opcode.size();
|
|
} else {
|
|
// This op jumps back, see if that's within this "block".
|
|
if (jump_offset + state.instruction_position > end_of_last_block) {
|
|
// Split the block!
|
|
block_boundaries.append({ end_of_last_block, jump_offset + state.instruction_position, "Jump back 1"sv });
|
|
block_boundaries.append({ jump_offset + state.instruction_position, state.instruction_position, "Jump back 2"sv });
|
|
end_of_last_block = state.instruction_position + opcode.size();
|
|
} else {
|
|
// Nope, it's just a jump to another block
|
|
block_boundaries.append({ end_of_last_block, state.instruction_position, "Jump"sv });
|
|
end_of_last_block = state.instruction_position + opcode.size();
|
|
}
|
|
}
|
|
};
|
|
for (;;) {
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Jump:
|
|
check_jump.template operator()<OpCode_Jump>(opcode);
|
|
break;
|
|
case OpCodeId::JumpNonEmpty:
|
|
check_jump.template operator()<OpCode_JumpNonEmpty>(opcode);
|
|
break;
|
|
case OpCodeId::ForkJump:
|
|
check_jump.template operator()<OpCode_ForkJump>(opcode);
|
|
break;
|
|
case OpCodeId::ForkStay:
|
|
check_jump.template operator()<OpCode_ForkStay>(opcode);
|
|
break;
|
|
case OpCodeId::FailForks:
|
|
block_boundaries.append({ end_of_last_block, state.instruction_position, "FailForks"sv });
|
|
end_of_last_block = state.instruction_position + opcode.size();
|
|
break;
|
|
case OpCodeId::Repeat: {
|
|
// Repeat produces two blocks, one containing its repeated expr, and one after that.
|
|
auto& repeat = static_cast<OpCode_Repeat const&>(opcode);
|
|
auto repeat_start = state.instruction_position - repeat.offset();
|
|
if (repeat_start > end_of_last_block)
|
|
block_boundaries.append({ end_of_last_block, repeat_start, "Repeat"sv });
|
|
block_boundaries.append({ repeat_start, state.instruction_position, "Repeat after"sv });
|
|
end_of_last_block = state.instruction_position + opcode.size();
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
auto next_ip = state.instruction_position + opcode.size();
|
|
if (next_ip < bytecode_size)
|
|
state.instruction_position = next_ip;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (end_of_last_block < bytecode_size)
|
|
block_boundaries.append({ end_of_last_block, bytecode_size, "End"sv });
|
|
|
|
quick_sort(block_boundaries, [](auto& a, auto& b) { return a.start < b.start; });
|
|
|
|
return block_boundaries;
|
|
}
|
|
|
|
static bool has_overlap(Vector<CompareTypeAndValuePair> const& lhs, Vector<CompareTypeAndValuePair> const& rhs)
|
|
{
|
|
|
|
// We have to fully interpret the two sequences to determine if they overlap (that is, keep track of inversion state and what ranges they cover).
|
|
bool inverse { false };
|
|
bool temporary_inverse { false };
|
|
bool reset_temporary_inverse { false };
|
|
|
|
auto current_lhs_inversion_state = [&]() -> bool { return temporary_inverse ^ inverse; };
|
|
|
|
RedBlackTree<u32, u32> lhs_ranges;
|
|
RedBlackTree<u32, u32> lhs_negated_ranges;
|
|
HashTable<CharClass> lhs_char_classes;
|
|
HashTable<CharClass> lhs_negated_char_classes;
|
|
|
|
auto has_any_unicode_property = false;
|
|
HashTable<Unicode::GeneralCategory> lhs_unicode_general_categories;
|
|
HashTable<Unicode::Property> lhs_unicode_properties;
|
|
HashTable<Unicode::Script> lhs_unicode_scripts;
|
|
HashTable<Unicode::Script> lhs_unicode_script_extensions;
|
|
HashTable<Unicode::GeneralCategory> lhs_negated_unicode_general_categories;
|
|
HashTable<Unicode::Property> lhs_negated_unicode_properties;
|
|
HashTable<Unicode::Script> lhs_negated_unicode_scripts;
|
|
HashTable<Unicode::Script> lhs_negated_unicode_script_extensions;
|
|
|
|
auto any_unicode_property_matches = [&](u32 code_point) {
|
|
if (any_of(lhs_negated_unicode_general_categories, [code_point](auto category) { return Unicode::code_point_has_general_category(code_point, category); }))
|
|
return false;
|
|
if (any_of(lhs_negated_unicode_properties, [code_point](auto property) { return Unicode::code_point_has_property(code_point, property); }))
|
|
return false;
|
|
if (any_of(lhs_negated_unicode_scripts, [code_point](auto script) { return Unicode::code_point_has_script(code_point, script); }))
|
|
return false;
|
|
if (any_of(lhs_negated_unicode_script_extensions, [code_point](auto script) { return Unicode::code_point_has_script_extension(code_point, script); }))
|
|
return false;
|
|
|
|
if (any_of(lhs_unicode_general_categories, [code_point](auto category) { return Unicode::code_point_has_general_category(code_point, category); }))
|
|
return true;
|
|
if (any_of(lhs_unicode_properties, [code_point](auto property) { return Unicode::code_point_has_property(code_point, property); }))
|
|
return true;
|
|
if (any_of(lhs_unicode_scripts, [code_point](auto script) { return Unicode::code_point_has_script(code_point, script); }))
|
|
return true;
|
|
if (any_of(lhs_unicode_script_extensions, [code_point](auto script) { return Unicode::code_point_has_script_extension(code_point, script); }))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto range_contains = [&]<typename T>(T& value) -> bool {
|
|
u32 start;
|
|
u32 end;
|
|
|
|
if constexpr (IsSame<T, CharRange>) {
|
|
start = value.from;
|
|
end = value.to;
|
|
} else {
|
|
start = value;
|
|
end = value;
|
|
}
|
|
|
|
if (has_any_unicode_property) {
|
|
// We have some properties, and a range is present
|
|
// Instead of checking every single code point in the range, assume it's a match.
|
|
return start != end || any_unicode_property_matches(start);
|
|
}
|
|
|
|
auto* max = lhs_ranges.find_smallest_not_below(start);
|
|
return max && *max <= end;
|
|
};
|
|
|
|
auto char_class_contains = [&](CharClass const& value) -> bool {
|
|
if (lhs_char_classes.contains(value))
|
|
return true;
|
|
|
|
if (lhs_negated_char_classes.contains(value))
|
|
return false;
|
|
|
|
if (lhs_ranges.is_empty())
|
|
return false;
|
|
|
|
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it) {
|
|
auto start = it.key();
|
|
auto end = *it;
|
|
for (u32 ch = start; ch <= end; ++ch) {
|
|
if (OpCode_Compare::matches_character_class(value, ch, false))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
for (auto const& pair : lhs) {
|
|
if (reset_temporary_inverse) {
|
|
reset_temporary_inverse = false;
|
|
temporary_inverse = false;
|
|
} else {
|
|
reset_temporary_inverse = true;
|
|
}
|
|
|
|
switch (pair.type) {
|
|
case CharacterCompareType::Inverse:
|
|
inverse = !inverse;
|
|
break;
|
|
case CharacterCompareType::TemporaryInverse:
|
|
temporary_inverse = true;
|
|
reset_temporary_inverse = false;
|
|
break;
|
|
case CharacterCompareType::AnyChar:
|
|
// Special case: if not inverted, AnyChar is always in the range.
|
|
if (!current_lhs_inversion_state())
|
|
return true;
|
|
break;
|
|
case CharacterCompareType::Char:
|
|
if (!current_lhs_inversion_state())
|
|
lhs_ranges.insert(pair.value, pair.value);
|
|
else
|
|
lhs_negated_ranges.insert(pair.value, pair.value);
|
|
break;
|
|
case CharacterCompareType::String:
|
|
// FIXME: We just need to look at the last character of this string, but we only have the first character here.
|
|
// Just bail out to avoid false positives.
|
|
return true;
|
|
case CharacterCompareType::CharClass:
|
|
if (!current_lhs_inversion_state())
|
|
lhs_char_classes.set(static_cast<CharClass>(pair.value));
|
|
else
|
|
lhs_negated_char_classes.set(static_cast<CharClass>(pair.value));
|
|
break;
|
|
case CharacterCompareType::CharRange: {
|
|
auto range = CharRange(pair.value);
|
|
if (!current_lhs_inversion_state())
|
|
lhs_ranges.insert(range.from, range.to);
|
|
else
|
|
lhs_negated_ranges.insert(range.from, range.to);
|
|
break;
|
|
}
|
|
case CharacterCompareType::LookupTable:
|
|
// We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
|
|
return true;
|
|
case CharacterCompareType::Reference:
|
|
// We've handled this before coming here.
|
|
break;
|
|
case CharacterCompareType::Property:
|
|
has_any_unicode_property = true;
|
|
if (!current_lhs_inversion_state())
|
|
lhs_unicode_properties.set(static_cast<Unicode::Property>(pair.value));
|
|
else
|
|
lhs_negated_unicode_properties.set(static_cast<Unicode::Property>(pair.value));
|
|
break;
|
|
case CharacterCompareType::GeneralCategory:
|
|
has_any_unicode_property = true;
|
|
if (!current_lhs_inversion_state())
|
|
lhs_unicode_general_categories.set(static_cast<Unicode::GeneralCategory>(pair.value));
|
|
else
|
|
lhs_negated_unicode_general_categories.set(static_cast<Unicode::GeneralCategory>(pair.value));
|
|
break;
|
|
case CharacterCompareType::Script:
|
|
has_any_unicode_property = true;
|
|
if (!current_lhs_inversion_state())
|
|
lhs_unicode_scripts.set(static_cast<Unicode::Script>(pair.value));
|
|
else
|
|
lhs_negated_unicode_scripts.set(static_cast<Unicode::Script>(pair.value));
|
|
break;
|
|
case CharacterCompareType::ScriptExtension:
|
|
has_any_unicode_property = true;
|
|
if (!current_lhs_inversion_state())
|
|
lhs_unicode_script_extensions.set(static_cast<Unicode::Script>(pair.value));
|
|
else
|
|
lhs_negated_unicode_script_extensions.set(static_cast<Unicode::Script>(pair.value));
|
|
break;
|
|
case CharacterCompareType::Or:
|
|
case CharacterCompareType::EndAndOr:
|
|
// These are the default behaviour for [...], so we don't need to do anything (unless we add support for 'And' below).
|
|
break;
|
|
case CharacterCompareType::And:
|
|
// FIXME: These are too difficult to handle, so bail out.
|
|
return true;
|
|
case CharacterCompareType::Undefined:
|
|
case CharacterCompareType::RangeExpressionDummy:
|
|
// These do not occur in valid bytecode.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
if constexpr (REGEX_DEBUG) {
|
|
dbgln("lhs ranges:");
|
|
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it)
|
|
dbgln(" {}..{}", it.key(), *it);
|
|
dbgln("lhs negated ranges:");
|
|
for (auto it = lhs_negated_ranges.begin(); it != lhs_negated_ranges.end(); ++it)
|
|
dbgln(" {}..{}", it.key(), *it);
|
|
}
|
|
|
|
temporary_inverse = false;
|
|
reset_temporary_inverse = false;
|
|
inverse = false;
|
|
auto in_or = false; // We're in an OR block, so we should wait for the EndAndOr to decide if we would match.
|
|
auto matched_in_or = false;
|
|
auto inverse_matched_in_or = false;
|
|
|
|
for (auto const& pair : rhs) {
|
|
if (reset_temporary_inverse) {
|
|
reset_temporary_inverse = false;
|
|
temporary_inverse = false;
|
|
} else {
|
|
reset_temporary_inverse = true;
|
|
}
|
|
|
|
if constexpr (REGEX_DEBUG) {
|
|
dbgln("check {} ({}) [inverted? {}] against {{", character_compare_type_name(pair.type), pair.value, current_lhs_inversion_state());
|
|
for (auto it = lhs_ranges.begin(); it != lhs_ranges.end(); ++it)
|
|
dbgln(" {}..{}", it.key(), *it);
|
|
for (auto it = lhs_negated_ranges.begin(); it != lhs_negated_ranges.end(); ++it)
|
|
dbgln(" ^[{}..{}]", it.key(), *it);
|
|
for (auto& char_class : lhs_char_classes)
|
|
dbgln(" {}", character_class_name(char_class));
|
|
for (auto& char_class : lhs_negated_char_classes)
|
|
dbgln(" ^{}", character_class_name(char_class));
|
|
dbgln("}}, in or: {}, matched in or: {}, inverse matched in or: {}", in_or, matched_in_or, inverse_matched_in_or);
|
|
}
|
|
|
|
switch (pair.type) {
|
|
case CharacterCompareType::Inverse:
|
|
inverse = !inverse;
|
|
break;
|
|
case CharacterCompareType::TemporaryInverse:
|
|
temporary_inverse = true;
|
|
reset_temporary_inverse = false;
|
|
break;
|
|
case CharacterCompareType::AnyChar:
|
|
// Special case: if not inverted, AnyChar is always in the range.
|
|
if (!in_or && !current_lhs_inversion_state())
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or = true;
|
|
inverse_matched_in_or = false;
|
|
}
|
|
break;
|
|
case CharacterCompareType::Char: {
|
|
auto matched = range_contains(pair.value);
|
|
if (!in_or && (current_lhs_inversion_state() ^ matched))
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or |= matched;
|
|
inverse_matched_in_or |= !matched;
|
|
}
|
|
break;
|
|
}
|
|
case CharacterCompareType::String:
|
|
// FIXME: We just need to look at the last character of this string, but we only have the first character here.
|
|
// Just bail out to avoid false positives.
|
|
return true;
|
|
case CharacterCompareType::CharClass: {
|
|
auto contains = char_class_contains(static_cast<CharClass>(pair.value));
|
|
if (!in_or && (current_lhs_inversion_state() ^ contains))
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= !contains;
|
|
}
|
|
break;
|
|
}
|
|
case CharacterCompareType::CharRange: {
|
|
auto range = CharRange(pair.value);
|
|
auto contains = range_contains(range);
|
|
if (!in_or && (contains ^ current_lhs_inversion_state()))
|
|
return true;
|
|
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= !contains;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case CharacterCompareType::LookupTable:
|
|
// We've transformed this into a series of ranges in flat_compares(), so bail out if we see it.
|
|
return true;
|
|
case CharacterCompareType::Reference:
|
|
// We've handled this before coming here.
|
|
break;
|
|
case CharacterCompareType::Property:
|
|
// The only reasonable scenario where we can check these properties without spending too much time is if:
|
|
// - the ranges are empty
|
|
// - the char classes are empty
|
|
// - the unicode properties are empty or contain only this property
|
|
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
|
|
return true;
|
|
if (has_any_unicode_property && !lhs_unicode_properties.is_empty() && !lhs_negated_unicode_properties.is_empty()) {
|
|
auto contains = lhs_unicode_properties.contains(static_cast<Unicode::Property>(pair.value));
|
|
if (!in_or && (current_lhs_inversion_state() ^ contains))
|
|
return true;
|
|
|
|
auto inverse_contains = lhs_negated_unicode_properties.contains(static_cast<Unicode::Property>(pair.value));
|
|
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
|
|
return true;
|
|
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= inverse_contains;
|
|
}
|
|
}
|
|
break;
|
|
case CharacterCompareType::GeneralCategory:
|
|
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
|
|
return true;
|
|
if (has_any_unicode_property && !lhs_unicode_general_categories.is_empty() && !lhs_negated_unicode_general_categories.is_empty()) {
|
|
auto contains = lhs_unicode_general_categories.contains(static_cast<Unicode::GeneralCategory>(pair.value));
|
|
if (!in_or && (current_lhs_inversion_state() ^ contains))
|
|
return true;
|
|
auto inverse_contains = lhs_negated_unicode_general_categories.contains(static_cast<Unicode::GeneralCategory>(pair.value));
|
|
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= inverse_contains;
|
|
}
|
|
}
|
|
break;
|
|
case CharacterCompareType::Script:
|
|
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
|
|
return true;
|
|
if (has_any_unicode_property && !lhs_unicode_scripts.is_empty() && !lhs_negated_unicode_scripts.is_empty()) {
|
|
auto contains = lhs_unicode_scripts.contains(static_cast<Unicode::Script>(pair.value));
|
|
if (!in_or && (current_lhs_inversion_state() ^ contains))
|
|
return true;
|
|
auto inverse_contains = lhs_negated_unicode_scripts.contains(static_cast<Unicode::Script>(pair.value));
|
|
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= inverse_contains;
|
|
}
|
|
}
|
|
break;
|
|
case CharacterCompareType::ScriptExtension:
|
|
if (!lhs_ranges.is_empty() || !lhs_negated_ranges.is_empty() || !lhs_char_classes.is_empty() || !lhs_negated_char_classes.is_empty())
|
|
return true;
|
|
if (has_any_unicode_property && !lhs_unicode_script_extensions.is_empty() && !lhs_negated_unicode_script_extensions.is_empty()) {
|
|
auto contains = lhs_unicode_script_extensions.contains(static_cast<Unicode::Script>(pair.value));
|
|
if (!in_or && (current_lhs_inversion_state() ^ contains))
|
|
return true;
|
|
auto inverse_contains = lhs_negated_unicode_script_extensions.contains(static_cast<Unicode::Script>(pair.value));
|
|
if (!in_or && !(current_lhs_inversion_state() ^ inverse_contains))
|
|
return true;
|
|
if (in_or) {
|
|
matched_in_or |= contains;
|
|
inverse_matched_in_or |= inverse_contains;
|
|
}
|
|
}
|
|
break;
|
|
case CharacterCompareType::Or:
|
|
in_or = true;
|
|
break;
|
|
case CharacterCompareType::EndAndOr:
|
|
// FIXME: Handle And when we support it below.
|
|
VERIFY(in_or);
|
|
in_or = false;
|
|
if (current_lhs_inversion_state()) {
|
|
if (!inverse_matched_in_or)
|
|
return true;
|
|
} else {
|
|
if (matched_in_or)
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
case CharacterCompareType::And:
|
|
// FIXME: These are too difficult to handle, so bail out.
|
|
return true;
|
|
case CharacterCompareType::Undefined:
|
|
case CharacterCompareType::RangeExpressionDummy:
|
|
// These do not occur in valid bytecode.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
enum class AtomicRewritePreconditionResult {
|
|
SatisfiedWithProperHeader,
|
|
SatisfiedWithEmptyHeader,
|
|
NotSatisfied,
|
|
};
|
|
static AtomicRewritePreconditionResult block_satisfies_atomic_rewrite_precondition(ByteCode const& bytecode, Block const& repeated_block, Block const& following_block)
|
|
{
|
|
Vector<Vector<CompareTypeAndValuePair>> repeated_values;
|
|
MatchState state;
|
|
auto has_seen_actionable_opcode = false;
|
|
for (state.instruction_position = repeated_block.start; state.instruction_position < repeated_block.end;) {
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Compare: {
|
|
has_seen_actionable_opcode = true;
|
|
auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
|
|
if (repeated_values.is_empty() && any_of(compares, [](auto& compare) { return compare.type == CharacterCompareType::AnyChar; }))
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
repeated_values.append(move(compares));
|
|
break;
|
|
}
|
|
case OpCodeId::CheckBegin:
|
|
case OpCodeId::CheckEnd:
|
|
has_seen_actionable_opcode = true;
|
|
if (repeated_values.is_empty())
|
|
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
|
|
break;
|
|
case OpCodeId::CheckBoundary:
|
|
// FIXME: What should we do with these? for now, let's fail.
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
case OpCodeId::Restore:
|
|
case OpCodeId::GoBack:
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
case OpCodeId::ForkJump:
|
|
case OpCodeId::ForkReplaceJump:
|
|
case OpCodeId::JumpNonEmpty:
|
|
// We could attempt to recursively resolve the follow set, but pretending that this just goes nowhere is faster.
|
|
if (!has_seen_actionable_opcode)
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
dbgln_if(REGEX_DEBUG, "Found {} entries in reference", repeated_values.size());
|
|
|
|
bool following_block_has_at_least_one_compare = false;
|
|
// Find the first compare in the following block, it must NOT match any of the values in `repeated_values'.
|
|
auto final_instruction = following_block.start;
|
|
for (state.instruction_position = following_block.start; state.instruction_position < following_block.end;) {
|
|
final_instruction = state.instruction_position;
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Compare: {
|
|
following_block_has_at_least_one_compare = true;
|
|
// We found a compare, let's see what it has.
|
|
auto compares = static_cast<OpCode_Compare const&>(opcode).flat_compares();
|
|
if (compares.is_empty())
|
|
break;
|
|
|
|
if (any_of(compares, [&](auto& compare) {
|
|
return compare.type == CharacterCompareType::AnyChar || compare.type == CharacterCompareType::Reference;
|
|
}))
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
|
|
if (any_of(repeated_values, [&](auto& repeated_value) { return has_overlap(compares, repeated_value); }))
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
|
|
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
|
|
}
|
|
case OpCodeId::CheckBegin:
|
|
case OpCodeId::CheckEnd:
|
|
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader; // Nothing can match the end!
|
|
case OpCodeId::CheckBoundary:
|
|
// FIXME: What should we do with these? For now, consider them a failure.
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
case OpCodeId::ForkJump:
|
|
case OpCodeId::ForkReplaceJump:
|
|
case OpCodeId::JumpNonEmpty:
|
|
// See note in the previous switch, same cases.
|
|
if (!following_block_has_at_least_one_compare)
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
|
|
// If the following block falls through, we can't rewrite it.
|
|
state.instruction_position = final_instruction;
|
|
switch (bytecode.get_opcode(state).opcode_id()) {
|
|
case OpCodeId::Jump:
|
|
case OpCodeId::JumpNonEmpty:
|
|
case OpCodeId::ForkJump:
|
|
case OpCodeId::ForkReplaceJump:
|
|
break;
|
|
default:
|
|
return AtomicRewritePreconditionResult::NotSatisfied;
|
|
}
|
|
|
|
if (following_block_has_at_least_one_compare)
|
|
return AtomicRewritePreconditionResult::SatisfiedWithProperHeader;
|
|
return AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader;
|
|
}
|
|
|
|
template<typename Parser>
|
|
bool Regex<Parser>::attempt_rewrite_entire_match_as_substring_search(BasicBlockList const& basic_blocks)
|
|
{
|
|
// If there's no jumps, we can probably rewrite this as a substring search (Compare { string = str }).
|
|
if (basic_blocks.size() > 1)
|
|
return false;
|
|
|
|
if (basic_blocks.is_empty()) {
|
|
parser_result.optimization_data.pure_substring_search = ""sv;
|
|
return true; // Empty regex, sure.
|
|
}
|
|
|
|
auto& bytecode = parser_result.bytecode;
|
|
|
|
auto is_unicode = parser_result.options.has_flag_set(AllFlags::Unicode);
|
|
|
|
// We have a single basic block, let's see if it's a series of character or string compares.
|
|
StringBuilder final_string;
|
|
MatchState state;
|
|
while (state.instruction_position < bytecode.size()) {
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Compare: {
|
|
auto& compare = static_cast<OpCode_Compare const&>(opcode);
|
|
for (auto& flat_compare : compare.flat_compares()) {
|
|
if (flat_compare.type != CharacterCompareType::Char)
|
|
return false;
|
|
|
|
if (is_unicode || flat_compare.value <= 0x7f)
|
|
final_string.append_code_point(flat_compare.value);
|
|
else
|
|
final_string.append(bit_cast<char>(static_cast<u8>(flat_compare.value)));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
|
|
parser_result.optimization_data.pure_substring_search = final_string.to_byte_string();
|
|
return true;
|
|
}
|
|
|
|
template<typename Parser>
|
|
void Regex<Parser>::attempt_rewrite_loops_as_atomic_groups(BasicBlockList const& basic_blocks)
|
|
{
|
|
auto& bytecode = parser_result.bytecode;
|
|
if constexpr (REGEX_DEBUG) {
|
|
RegexDebug dbg;
|
|
dbg.print_bytecode(*this);
|
|
for (auto const& block : basic_blocks)
|
|
dbgln("block from {} to {} (comment: {})", block.start, block.end, block.comment);
|
|
}
|
|
|
|
// A pattern such as:
|
|
// bb0 | RE0
|
|
// | ForkX bb0
|
|
// -------------------------
|
|
// bb1 | RE1
|
|
// can be rewritten as:
|
|
// -------------------------
|
|
// bb0 | RE0
|
|
// | ForkReplaceX bb0
|
|
// -------------------------
|
|
// bb1 | RE1
|
|
// provided that first(RE1) not-in end(RE0), which is to say
|
|
// that RE1 cannot start with whatever RE0 has matched (ever).
|
|
//
|
|
// Alternatively, a second form of this pattern can also occur:
|
|
// bb0 | *
|
|
// | ForkX bb2
|
|
// ------------------------
|
|
// bb1 | RE0
|
|
// | Jump bb0
|
|
// ------------------------
|
|
// bb2 | RE1
|
|
// which can be transformed (with the same preconditions) to:
|
|
// bb0 | *
|
|
// | ForkReplaceX bb2
|
|
// ------------------------
|
|
// bb1 | RE0
|
|
// | Jump bb0
|
|
// ------------------------
|
|
// bb2 | RE1
|
|
|
|
enum class AlternateForm {
|
|
DirectLoopWithoutHeader, // loop without proper header, a block forking to itself. i.e. the first form.
|
|
DirectLoopWithoutHeaderAndEmptyFollow, // loop without proper header, a block forking to itself. i.e. the first form but with RE1 being empty.
|
|
DirectLoopWithHeader, // loop with proper header, i.e. the second form.
|
|
};
|
|
struct CandidateBlock {
|
|
Block forking_block;
|
|
Optional<Block> new_target_block;
|
|
AlternateForm form;
|
|
};
|
|
Vector<CandidateBlock> candidate_blocks;
|
|
|
|
auto is_an_eligible_jump = [](OpCode const& opcode, size_t ip, size_t block_start, AlternateForm alternate_form) {
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::JumpNonEmpty: {
|
|
auto const& op = static_cast<OpCode_JumpNonEmpty const&>(opcode);
|
|
auto form = op.form();
|
|
if (form != OpCodeId::Jump && alternate_form == AlternateForm::DirectLoopWithHeader)
|
|
return false;
|
|
if (form != OpCodeId::ForkJump && form != OpCodeId::ForkStay && alternate_form == AlternateForm::DirectLoopWithoutHeader)
|
|
return false;
|
|
return op.offset() + ip + opcode.size() == block_start;
|
|
}
|
|
case OpCodeId::ForkJump:
|
|
if (alternate_form == AlternateForm::DirectLoopWithHeader)
|
|
return false;
|
|
return static_cast<OpCode_ForkJump const&>(opcode).offset() + ip + opcode.size() == block_start;
|
|
case OpCodeId::ForkStay:
|
|
if (alternate_form == AlternateForm::DirectLoopWithHeader)
|
|
return false;
|
|
return static_cast<OpCode_ForkStay const&>(opcode).offset() + ip + opcode.size() == block_start;
|
|
case OpCodeId::Jump:
|
|
// Infinite loop does *not* produce forks.
|
|
if (alternate_form == AlternateForm::DirectLoopWithoutHeader)
|
|
return false;
|
|
if (alternate_form == AlternateForm::DirectLoopWithHeader)
|
|
return static_cast<OpCode_Jump const&>(opcode).offset() + ip + opcode.size() == block_start;
|
|
VERIFY_NOT_REACHED();
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
for (size_t i = 0; i < basic_blocks.size(); ++i) {
|
|
auto forking_block = basic_blocks[i];
|
|
Optional<Block> fork_fallback_block;
|
|
if (i + 1 < basic_blocks.size())
|
|
fork_fallback_block = basic_blocks[i + 1];
|
|
MatchState state;
|
|
// Check if the last instruction in this block is a jump to the block itself:
|
|
{
|
|
state.instruction_position = forking_block.end;
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithoutHeader)) {
|
|
// We've found RE0 (and RE1 is just the following block, if any), let's see if the precondition applies.
|
|
// if RE1 is empty, there's no first(RE1), so this is an automatic pass.
|
|
if (!fork_fallback_block.has_value()
|
|
|| (fork_fallback_block->end == fork_fallback_block->start && block_satisfies_atomic_rewrite_precondition(bytecode, forking_block, *fork_fallback_block) != AtomicRewritePreconditionResult::NotSatisfied)) {
|
|
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
|
|
break;
|
|
}
|
|
|
|
auto precondition = block_satisfies_atomic_rewrite_precondition(bytecode, forking_block, *fork_fallback_block);
|
|
if (precondition == AtomicRewritePreconditionResult::SatisfiedWithProperHeader) {
|
|
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeader });
|
|
break;
|
|
}
|
|
if (precondition == AtomicRewritePreconditionResult::SatisfiedWithEmptyHeader) {
|
|
candidate_blocks.append({ forking_block, fork_fallback_block, AlternateForm::DirectLoopWithoutHeaderAndEmptyFollow });
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Check if the last instruction in the last block is a direct jump to this block
|
|
if (fork_fallback_block.has_value()) {
|
|
state.instruction_position = fork_fallback_block->end;
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.start, AlternateForm::DirectLoopWithHeader)) {
|
|
// We've found bb1 and bb0, let's just make sure that bb0 forks to bb2.
|
|
state.instruction_position = forking_block.end;
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
if (opcode.opcode_id() == OpCodeId::ForkJump || opcode.opcode_id() == OpCodeId::ForkStay) {
|
|
Optional<Block> block_following_fork_fallback;
|
|
if (i + 2 < basic_blocks.size())
|
|
block_following_fork_fallback = basic_blocks[i + 2];
|
|
if (!block_following_fork_fallback.has_value()
|
|
|| block_satisfies_atomic_rewrite_precondition(bytecode, *fork_fallback_block, *block_following_fork_fallback) != AtomicRewritePreconditionResult::NotSatisfied) {
|
|
candidate_blocks.append({ forking_block, {}, AlternateForm::DirectLoopWithHeader });
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// We've found a slightly degenerate case, where the next block jumps back to the _jump_ instruction in the forking block.
|
|
// This is a direct loop without a proper header that is posing as a loop with a header.
|
|
if (is_an_eligible_jump(opcode, state.instruction_position, forking_block.end, AlternateForm::DirectLoopWithHeader)) {
|
|
// We've found bb1 and bb0, let's just make sure that bb0 forks to bb2.
|
|
state.instruction_position = forking_block.end;
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
if (opcode.opcode_id() == OpCodeId::ForkJump || opcode.opcode_id() == OpCodeId::ForkStay) {
|
|
Optional<Block> block_following_fork_fallback;
|
|
if (i + 2 < basic_blocks.size())
|
|
block_following_fork_fallback = basic_blocks[i + 2];
|
|
if (!block_following_fork_fallback.has_value()
|
|
|| block_satisfies_atomic_rewrite_precondition(bytecode, *fork_fallback_block, *block_following_fork_fallback) != AtomicRewritePreconditionResult::NotSatisfied) {
|
|
candidate_blocks.append({ forking_block, {}, AlternateForm::DirectLoopWithoutHeader });
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dbgln_if(REGEX_DEBUG, "Found {} candidate blocks", candidate_blocks.size());
|
|
if (candidate_blocks.is_empty()) {
|
|
dbgln_if(REGEX_DEBUG, "Failed to find anything for {}", pattern_value);
|
|
return;
|
|
}
|
|
|
|
RedBlackTree<size_t, size_t> needed_patches;
|
|
|
|
// Reverse the blocks, so we can patch the bytecode without messing with the latter patches.
|
|
quick_sort(candidate_blocks, [](auto& a, auto& b) { return b.forking_block.start > a.forking_block.start; });
|
|
for (auto& candidate : candidate_blocks) {
|
|
// Note that both forms share a ForkReplace patch in forking_block.
|
|
// Patch the ForkX in forking_block to be a ForkReplaceX instead.
|
|
auto& opcode_id = bytecode[candidate.forking_block.end];
|
|
if (opcode_id == (ByteCodeValueType)OpCodeId::ForkStay) {
|
|
opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
|
|
} else if (opcode_id == (ByteCodeValueType)OpCodeId::ForkJump) {
|
|
opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
|
|
} else if (opcode_id == (ByteCodeValueType)OpCodeId::JumpNonEmpty) {
|
|
auto& jump_opcode_id = bytecode[candidate.forking_block.end + 3];
|
|
if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkStay)
|
|
jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceStay;
|
|
else if (jump_opcode_id == (ByteCodeValueType)OpCodeId::ForkJump)
|
|
jump_opcode_id = (ByteCodeValueType)OpCodeId::ForkReplaceJump;
|
|
else
|
|
VERIFY_NOT_REACHED();
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
if (!needed_patches.is_empty()) {
|
|
MatchState state;
|
|
auto bytecode_size = bytecode.size();
|
|
state.instruction_position = 0;
|
|
struct Patch {
|
|
ssize_t value;
|
|
size_t offset;
|
|
bool should_negate { false };
|
|
};
|
|
for (;;) {
|
|
if (state.instruction_position >= bytecode_size)
|
|
break;
|
|
|
|
auto& opcode = bytecode.get_opcode(state);
|
|
Stack<Patch, 2> patch_points;
|
|
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Jump:
|
|
patch_points.push({ static_cast<OpCode_Jump const&>(opcode).offset(), state.instruction_position + 1 });
|
|
break;
|
|
case OpCodeId::JumpNonEmpty:
|
|
patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).offset(), state.instruction_position + 1 });
|
|
patch_points.push({ static_cast<OpCode_JumpNonEmpty const&>(opcode).checkpoint(), state.instruction_position + 2 });
|
|
break;
|
|
case OpCodeId::ForkJump:
|
|
patch_points.push({ static_cast<OpCode_ForkJump const&>(opcode).offset(), state.instruction_position + 1 });
|
|
break;
|
|
case OpCodeId::ForkStay:
|
|
patch_points.push({ static_cast<OpCode_ForkStay const&>(opcode).offset(), state.instruction_position + 1 });
|
|
break;
|
|
case OpCodeId::Repeat:
|
|
patch_points.push({ -(ssize_t) static_cast<OpCode_Repeat const&>(opcode).offset(), state.instruction_position + 1, true });
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
while (!patch_points.is_empty()) {
|
|
auto& patch_point = patch_points.top();
|
|
auto target_offset = patch_point.value + state.instruction_position + opcode.size();
|
|
|
|
constexpr auto do_patch = [](auto& patch_it, auto& patch_point, auto& target_offset, auto& bytecode, auto ip) {
|
|
if (patch_it.key() == ip)
|
|
return;
|
|
|
|
if (patch_point.value < 0 && target_offset <= patch_it.key() && ip > patch_it.key())
|
|
bytecode[patch_point.offset] += (patch_point.should_negate ? 1 : -1) * (*patch_it);
|
|
else if (patch_point.value > 0 && target_offset >= patch_it.key() && ip < patch_it.key())
|
|
bytecode[patch_point.offset] += (patch_point.should_negate ? -1 : 1) * (*patch_it);
|
|
};
|
|
|
|
if (auto patch_it = needed_patches.find_largest_not_above_iterator(target_offset); !patch_it.is_end())
|
|
do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);
|
|
else if (auto patch_it = needed_patches.find_largest_not_above_iterator(state.instruction_position); !patch_it.is_end())
|
|
do_patch(patch_it, patch_point, target_offset, bytecode, state.instruction_position);
|
|
|
|
patch_points.pop();
|
|
}
|
|
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
}
|
|
|
|
if constexpr (REGEX_DEBUG) {
|
|
warnln("Transformed to:");
|
|
RegexDebug dbg;
|
|
dbg.print_bytecode(*this);
|
|
}
|
|
}
|
|
|
|
void Optimizer::append_alternation(ByteCode& target, ByteCode&& left, ByteCode&& right)
|
|
{
|
|
Array<ByteCode, 2> alternatives;
|
|
alternatives[0] = move(left);
|
|
alternatives[1] = move(right);
|
|
|
|
append_alternation(target, alternatives);
|
|
}
|
|
|
|
template<typename K, typename V, typename KTraits>
|
|
using OrderedHashMapForTrie = OrderedHashMap<K, V, KTraits>;
|
|
|
|
void Optimizer::append_alternation(ByteCode& target, Span<ByteCode> alternatives)
|
|
{
|
|
if (alternatives.size() == 0)
|
|
return;
|
|
|
|
if (alternatives.size() == 1)
|
|
return target.extend(move(alternatives[0]));
|
|
|
|
if (all_of(alternatives, [](auto& x) { return x.is_empty(); }))
|
|
return;
|
|
|
|
for (auto& entry : alternatives)
|
|
entry.flatten();
|
|
|
|
#if REGEX_DEBUG
|
|
ScopeLogger<true> log;
|
|
warnln("Alternations:");
|
|
RegexDebug dbg;
|
|
for (auto& entry : alternatives) {
|
|
warnln("----------");
|
|
dbg.print_bytecode(entry);
|
|
}
|
|
ScopeGuard print_at_end {
|
|
[&] {
|
|
warnln("======================");
|
|
RegexDebug dbg;
|
|
dbg.print_bytecode(target);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
// First, find incoming jump edges.
|
|
// We need them for two reasons:
|
|
// - We need to distinguish between insn-A-jumped-to-by-insn-B and insn-A-jumped-to-by-insn-C (as otherwise we'd break trie invariants)
|
|
// - We need to know which jumps to patch when we're done
|
|
|
|
struct JumpEdge {
|
|
Span<ByteCodeValueType const> jump_insn;
|
|
};
|
|
Vector<HashMap<size_t, Vector<JumpEdge>>> incoming_jump_edges_for_each_alternative;
|
|
incoming_jump_edges_for_each_alternative.resize(alternatives.size());
|
|
|
|
auto has_any_backwards_jump = false;
|
|
|
|
MatchState state;
|
|
|
|
for (size_t i = 0; i < alternatives.size(); ++i) {
|
|
auto& alternative = alternatives[i];
|
|
// Add a jump to the "end" of the block; this is implicit in the bytecode, but we need it to be explicit in the trie.
|
|
// Jump{offset=0}
|
|
alternative.append(static_cast<ByteCodeValueType>(OpCodeId::Jump));
|
|
alternative.append(0);
|
|
|
|
auto& incoming_jump_edges = incoming_jump_edges_for_each_alternative[i];
|
|
|
|
auto alternative_bytes = alternative.spans<1>().singular_span();
|
|
for (state.instruction_position = 0; state.instruction_position < alternative.size();) {
|
|
auto& opcode = alternative.get_opcode(state);
|
|
auto opcode_bytes = alternative_bytes.slice(state.instruction_position, opcode.size());
|
|
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Jump:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_Jump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_Jump const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::JumpNonEmpty:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_JumpNonEmpty const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_JumpNonEmpty const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::ForkJump:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_ForkJump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_ForkJump const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::ForkStay:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_ForkStay const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_ForkStay const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::ForkReplaceJump:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_ForkReplaceJump const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_ForkReplaceJump const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::ForkReplaceStay:
|
|
incoming_jump_edges.ensure(static_cast<OpCode_ForkReplaceStay const&>(opcode).offset() + state.instruction_position).append({ opcode_bytes });
|
|
has_any_backwards_jump |= static_cast<OpCode_ForkReplaceStay const&>(opcode).offset() < 0;
|
|
break;
|
|
case OpCodeId::Repeat:
|
|
incoming_jump_edges.ensure(state.instruction_position - static_cast<OpCode_Repeat const&>(opcode).offset()).append({ opcode_bytes });
|
|
has_any_backwards_jump = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
}
|
|
|
|
struct QualifiedIP {
|
|
size_t alternative_index;
|
|
size_t instruction_position;
|
|
};
|
|
using Tree = Trie<DisjointSpans<ByteCodeValueType const>, Vector<QualifiedIP>, Traits<DisjointSpans<ByteCodeValueType const>>, void, OrderedHashMapForTrie>;
|
|
Tree trie { {} }; // Root node is empty, key{ instruction_bytes, dependent_instruction_bytes... } -> IP
|
|
|
|
size_t common_hits = 0;
|
|
size_t total_nodes = 0;
|
|
size_t total_bytecode_entries_in_tree = 0;
|
|
for (size_t i = 0; i < alternatives.size(); ++i) {
|
|
auto& alternative = alternatives[i];
|
|
auto& incoming_jump_edges = incoming_jump_edges_for_each_alternative[i];
|
|
|
|
auto* active_node = ≜
|
|
auto alternative_span = alternative.spans<1>().singular_span();
|
|
for (state.instruction_position = 0; state.instruction_position < alternative_span.size();) {
|
|
total_nodes += 1;
|
|
auto& opcode = alternative.get_opcode(state);
|
|
auto opcode_bytes = alternative_span.slice(state.instruction_position, opcode.size());
|
|
Vector<Span<ByteCodeValueType const>> node_key_bytes;
|
|
node_key_bytes.append(opcode_bytes);
|
|
|
|
if (auto edges = incoming_jump_edges.get(state.instruction_position); edges.has_value()) {
|
|
for (auto& edge : *edges)
|
|
node_key_bytes.append(edge.jump_insn);
|
|
}
|
|
|
|
active_node = static_cast<decltype(active_node)>(MUST(active_node->ensure_child(DisjointSpans<ByteCodeValueType const> { move(node_key_bytes) })));
|
|
|
|
if (active_node->has_metadata()) {
|
|
active_node->metadata_value().append({ i, state.instruction_position });
|
|
common_hits += 1;
|
|
} else {
|
|
active_node->set_metadata(Vector<QualifiedIP> { QualifiedIP { i, state.instruction_position } });
|
|
total_bytecode_entries_in_tree += opcode.size();
|
|
}
|
|
state.instruction_position += opcode.size();
|
|
}
|
|
}
|
|
|
|
if constexpr (REGEX_DEBUG) {
|
|
Function<void(decltype(trie)&, size_t)> print_tree = [&](decltype(trie)& node, size_t indent = 0) mutable {
|
|
ByteString name = "(no ip)";
|
|
ByteString insn;
|
|
if (node.has_metadata()) {
|
|
name = ByteString::formatted(
|
|
"{}@{} ({} node{})",
|
|
node.metadata_value().first().instruction_position,
|
|
node.metadata_value().first().alternative_index,
|
|
node.metadata_value().size(),
|
|
node.metadata_value().size() == 1 ? "" : "s");
|
|
|
|
MatchState state;
|
|
state.instruction_position = node.metadata_value().first().instruction_position;
|
|
auto& opcode = alternatives[node.metadata_value().first().alternative_index].get_opcode(state);
|
|
insn = ByteString::formatted("{} {}", opcode.to_byte_string(), opcode.arguments_string());
|
|
}
|
|
dbgln("{:->{}}| {} -- {}", "", indent * 2, name, insn);
|
|
for (auto& child : node.children())
|
|
print_tree(static_cast<decltype(trie)&>(*child.value), indent + 1);
|
|
};
|
|
|
|
print_tree(trie, 0);
|
|
}
|
|
|
|
// This is really only worth it if we don't blow up the size by the 2-extra-instruction-per-node scheme, similarly, if no nodes are shared, we're better off not using a tree.
|
|
auto tree_cost = (total_nodes - common_hits) * 2;
|
|
auto chain_cost = total_nodes + alternatives.size() * 2;
|
|
dbgln_if(REGEX_DEBUG, "Total nodes: {}, common hits: {} (tree cost = {}, chain cost = {})", total_nodes, common_hits, tree_cost, chain_cost);
|
|
|
|
if (common_hits == 0 || tree_cost > chain_cost) {
|
|
// It's better to lay these out as a normal sequence of instructions.
|
|
auto patch_start = target.size();
|
|
for (size_t i = 1; i < alternatives.size(); ++i) {
|
|
target.empend(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
|
|
target.empend(0u); // To be filled later.
|
|
}
|
|
|
|
size_t size_to_jump = 0;
|
|
bool seen_one_empty = false;
|
|
for (size_t i = alternatives.size(); i > 0; --i) {
|
|
auto& entry = alternatives[i - 1];
|
|
if (entry.is_empty()) {
|
|
if (seen_one_empty)
|
|
continue;
|
|
seen_one_empty = true;
|
|
}
|
|
|
|
auto is_first = i == 1;
|
|
auto instruction_size = entry.size() + (is_first ? 0 : 2); // Jump; -> +2
|
|
size_to_jump += instruction_size;
|
|
|
|
if (!is_first)
|
|
target[patch_start + (i - 2) * 2 + 1] = size_to_jump + (alternatives.size() - i) * 2;
|
|
|
|
dbgln_if(REGEX_DEBUG, "{} size = {}, cum={}", i - 1, instruction_size, size_to_jump);
|
|
}
|
|
|
|
seen_one_empty = false;
|
|
for (size_t i = alternatives.size(); i > 0; --i) {
|
|
auto& chunk = alternatives[i - 1];
|
|
if (chunk.is_empty()) {
|
|
if (seen_one_empty)
|
|
continue;
|
|
seen_one_empty = true;
|
|
}
|
|
|
|
ByteCode* previous_chunk = nullptr;
|
|
size_t j = i - 1;
|
|
auto seen_one_empty_before = chunk.is_empty();
|
|
while (j >= 1) {
|
|
--j;
|
|
auto& candidate_chunk = alternatives[j];
|
|
if (candidate_chunk.is_empty()) {
|
|
if (seen_one_empty_before)
|
|
continue;
|
|
}
|
|
previous_chunk = &candidate_chunk;
|
|
break;
|
|
}
|
|
|
|
size_to_jump -= chunk.size() + (previous_chunk ? 2 : 0);
|
|
|
|
target.extend(move(chunk));
|
|
target.empend(static_cast<ByteCodeValueType>(OpCodeId::Jump));
|
|
target.empend(size_to_jump); // Jump to the _END label
|
|
}
|
|
} else {
|
|
target.ensure_capacity(total_bytecode_entries_in_tree + common_hits * 6);
|
|
|
|
auto node_is = [](Tree const* node, QualifiedIP ip) {
|
|
if (!node->has_metadata())
|
|
return false;
|
|
for (auto& node_ip : node->metadata_value()) {
|
|
if (node_ip.alternative_index == ip.alternative_index && node_ip.instruction_position == ip.instruction_position)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
struct Patch {
|
|
QualifiedIP source_ip;
|
|
size_t target_ip;
|
|
bool done { false };
|
|
};
|
|
Vector<Patch> patch_locations;
|
|
patch_locations.ensure_capacity(total_nodes);
|
|
|
|
auto add_patch_point = [&](Tree const* node, size_t target_ip) {
|
|
if (!node->has_metadata())
|
|
return;
|
|
auto& node_ip = node->metadata_value().first();
|
|
patch_locations.append({ node_ip, target_ip });
|
|
};
|
|
|
|
Queue<Tree*> nodes_to_visit;
|
|
nodes_to_visit.enqueue(&trie);
|
|
|
|
HashMap<size_t, NonnullOwnPtr<RedBlackTree<u64, u64>>> instruction_positions;
|
|
if (has_any_backwards_jump)
|
|
MUST(instruction_positions.try_ensure_capacity(alternatives.size()));
|
|
|
|
auto ip_mapping_for_alternative = [&](size_t i) -> RedBlackTree<u64, u64>& {
|
|
return *instruction_positions.ensure(i, [] {
|
|
return make<RedBlackTree<u64, u64>>();
|
|
});
|
|
};
|
|
|
|
// each node:
|
|
// node.re
|
|
// forkjump child1
|
|
// forkjump child2
|
|
// ...
|
|
while (!nodes_to_visit.is_empty()) {
|
|
auto const* node = nodes_to_visit.dequeue();
|
|
for (auto& patch : patch_locations) {
|
|
if (!patch.done && node_is(node, patch.source_ip)) {
|
|
auto value = static_cast<ByteCodeValueType>(target.size() - patch.target_ip - 1);
|
|
if (value == 0)
|
|
target[patch.target_ip - 1] = static_cast<ByteCodeValueType>(OpCodeId::Jump);
|
|
target[patch.target_ip] = value;
|
|
patch.done = true;
|
|
}
|
|
}
|
|
|
|
if (!node->value().individual_spans().is_empty()) {
|
|
auto insn_bytes = node->value().individual_spans().first();
|
|
|
|
target.ensure_capacity(target.size() + insn_bytes.size());
|
|
state.instruction_position = target.size();
|
|
target.append(insn_bytes);
|
|
|
|
if (has_any_backwards_jump) {
|
|
for (auto& ip : node->metadata_value())
|
|
ip_mapping_for_alternative(ip.alternative_index).insert(ip.instruction_position, state.instruction_position);
|
|
}
|
|
|
|
auto& opcode = target.get_opcode(state);
|
|
|
|
ssize_t jump_offset;
|
|
auto is_jump = true;
|
|
auto patch_location = state.instruction_position + 1;
|
|
bool should_negate = false;
|
|
|
|
switch (opcode.opcode_id()) {
|
|
case OpCodeId::Jump:
|
|
jump_offset = static_cast<OpCode_Jump const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::JumpNonEmpty:
|
|
jump_offset = static_cast<OpCode_JumpNonEmpty const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::ForkJump:
|
|
jump_offset = static_cast<OpCode_ForkJump const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::ForkStay:
|
|
jump_offset = static_cast<OpCode_ForkStay const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::ForkReplaceJump:
|
|
jump_offset = static_cast<OpCode_ForkReplaceJump const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::ForkReplaceStay:
|
|
jump_offset = static_cast<OpCode_ForkReplaceStay const&>(opcode).offset();
|
|
break;
|
|
case OpCodeId::Repeat:
|
|
jump_offset = static_cast<ssize_t>(0) - static_cast<ssize_t>(static_cast<OpCode_Repeat const&>(opcode).offset()) - static_cast<ssize_t>(opcode.size());
|
|
should_negate = true;
|
|
break;
|
|
default:
|
|
is_jump = false;
|
|
break;
|
|
}
|
|
|
|
if (is_jump) {
|
|
VERIFY(node->has_metadata());
|
|
QualifiedIP ip = node->metadata_value().first();
|
|
auto intended_jump_ip = ip.instruction_position + jump_offset + opcode.size();
|
|
if (jump_offset < 0) {
|
|
VERIFY(has_any_backwards_jump);
|
|
// We should've already seen this instruction, so we can just patch it in.
|
|
auto& ip_mapping = ip_mapping_for_alternative(ip.alternative_index);
|
|
auto target_ip = ip_mapping.find(intended_jump_ip);
|
|
if (!target_ip) {
|
|
RegexDebug dbg;
|
|
size_t x = 0;
|
|
for (auto& entry : alternatives) {
|
|
warnln("----------- {} ----------", x++);
|
|
dbg.print_bytecode(entry);
|
|
}
|
|
|
|
dbgln("Regex Tree / Unknown backwards jump: {}@{} -> {}",
|
|
ip.instruction_position,
|
|
ip.alternative_index,
|
|
intended_jump_ip);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
ssize_t target_value = *target_ip - patch_location - 1;
|
|
if (should_negate)
|
|
target_value = -target_value + 2; // from -1 to +1.
|
|
target[patch_location] = static_cast<ByteCodeValueType>(target_value);
|
|
} else {
|
|
patch_locations.append({ QualifiedIP { ip.alternative_index, intended_jump_ip }, patch_location });
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto const& child : node->children()) {
|
|
auto* child_node = static_cast<Tree*>(child.value.ptr());
|
|
target.append(static_cast<ByteCodeValueType>(OpCodeId::ForkJump));
|
|
add_patch_point(child_node, target.size());
|
|
target.append(static_cast<ByteCodeValueType>(0));
|
|
nodes_to_visit.enqueue(child_node);
|
|
}
|
|
}
|
|
|
|
for (auto& patch : patch_locations) {
|
|
if (patch.done)
|
|
continue;
|
|
|
|
auto& alternative = alternatives[patch.source_ip.alternative_index];
|
|
if (patch.source_ip.instruction_position >= alternative.size()) {
|
|
// This just wants to jump to the end of the alternative, which is fine.
|
|
// Patch it to jump to the end of the target instead.
|
|
target[patch.target_ip] = static_cast<ByteCodeValueType>(target.size() - patch.target_ip - 1);
|
|
continue;
|
|
}
|
|
|
|
dbgln("Regex Tree / Unpatched jump: {}@{} -> {}@{}",
|
|
patch.source_ip.instruction_position,
|
|
patch.source_ip.alternative_index,
|
|
patch.target_ip,
|
|
target[patch.target_ip]);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
}
|
|
|
|
enum class LookupTableInsertionOutcome {
|
|
Successful,
|
|
ReplaceWithAnyChar,
|
|
TemporaryInversionNeeded,
|
|
PermanentInversionNeeded,
|
|
FlushOnInsertion,
|
|
FinishFlushOnInsertion,
|
|
CannotPlaceInTable,
|
|
};
|
|
static LookupTableInsertionOutcome insert_into_lookup_table(RedBlackTree<ByteCodeValueType, CharRange>& table, CompareTypeAndValuePair pair)
|
|
{
|
|
switch (pair.type) {
|
|
case CharacterCompareType::Inverse:
|
|
return LookupTableInsertionOutcome::PermanentInversionNeeded;
|
|
case CharacterCompareType::TemporaryInverse:
|
|
return LookupTableInsertionOutcome::TemporaryInversionNeeded;
|
|
case CharacterCompareType::AnyChar:
|
|
return LookupTableInsertionOutcome::ReplaceWithAnyChar;
|
|
case CharacterCompareType::CharClass:
|
|
return LookupTableInsertionOutcome::CannotPlaceInTable;
|
|
case CharacterCompareType::Char:
|
|
table.insert(pair.value, { (u32)pair.value, (u32)pair.value });
|
|
break;
|
|
case CharacterCompareType::CharRange: {
|
|
CharRange range { pair.value };
|
|
table.insert(range.from, range);
|
|
break;
|
|
}
|
|
case CharacterCompareType::EndAndOr:
|
|
return LookupTableInsertionOutcome::FinishFlushOnInsertion;
|
|
case CharacterCompareType::And:
|
|
return LookupTableInsertionOutcome::FlushOnInsertion;
|
|
case CharacterCompareType::Reference:
|
|
case CharacterCompareType::Property:
|
|
case CharacterCompareType::GeneralCategory:
|
|
case CharacterCompareType::Script:
|
|
case CharacterCompareType::ScriptExtension:
|
|
case CharacterCompareType::Or:
|
|
return LookupTableInsertionOutcome::CannotPlaceInTable;
|
|
case CharacterCompareType::Undefined:
|
|
case CharacterCompareType::RangeExpressionDummy:
|
|
case CharacterCompareType::String:
|
|
case CharacterCompareType::LookupTable:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
return LookupTableInsertionOutcome::Successful;
|
|
}
|
|
|
|
void Optimizer::append_character_class(ByteCode& target, Vector<CompareTypeAndValuePair>&& pairs)
|
|
{
|
|
ByteCode arguments;
|
|
size_t argument_count = 0;
|
|
|
|
if (pairs.size() <= 1) {
|
|
for (auto& pair : pairs) {
|
|
arguments.append(to_underlying(pair.type));
|
|
if (pair.type != CharacterCompareType::AnyChar
|
|
&& pair.type != CharacterCompareType::TemporaryInverse
|
|
&& pair.type != CharacterCompareType::Inverse
|
|
&& pair.type != CharacterCompareType::And
|
|
&& pair.type != CharacterCompareType::Or
|
|
&& pair.type != CharacterCompareType::EndAndOr)
|
|
arguments.append(pair.value);
|
|
++argument_count;
|
|
}
|
|
} else {
|
|
RedBlackTree<ByteCodeValueType, CharRange> table;
|
|
RedBlackTree<ByteCodeValueType, CharRange> inverted_table;
|
|
auto* current_table = &table;
|
|
auto* current_inverted_table = &inverted_table;
|
|
bool invert_for_next_iteration = false;
|
|
bool is_currently_inverted = false;
|
|
|
|
auto flush_tables = [&] {
|
|
auto append_table = [&](auto& table) {
|
|
++argument_count;
|
|
arguments.append(to_underlying(CharacterCompareType::LookupTable));
|
|
auto size_index = arguments.size();
|
|
arguments.append(0);
|
|
Optional<CharRange> active_range;
|
|
size_t range_count = 0;
|
|
for (auto& range : table) {
|
|
if (!active_range.has_value()) {
|
|
active_range = range;
|
|
continue;
|
|
}
|
|
|
|
if (range.from <= active_range->to + 1 && range.to + 1 >= active_range->from) {
|
|
active_range = CharRange { min(range.from, active_range->from), max(range.to, active_range->to) };
|
|
} else {
|
|
++range_count;
|
|
arguments.append(active_range.release_value());
|
|
active_range = range;
|
|
}
|
|
}
|
|
if (active_range.has_value()) {
|
|
++range_count;
|
|
arguments.append(active_range.release_value());
|
|
}
|
|
arguments[size_index] = range_count;
|
|
};
|
|
|
|
auto contains_regular_table = !table.is_empty();
|
|
auto contains_inverted_table = !inverted_table.is_empty();
|
|
if (contains_regular_table)
|
|
append_table(table);
|
|
|
|
if (contains_inverted_table) {
|
|
++argument_count;
|
|
arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
|
|
append_table(inverted_table);
|
|
}
|
|
|
|
table.clear();
|
|
inverted_table.clear();
|
|
};
|
|
|
|
auto flush_on_every_insertion = false;
|
|
for (auto& value : pairs) {
|
|
auto should_invert_after_this_iteration = invert_for_next_iteration;
|
|
invert_for_next_iteration = false;
|
|
|
|
auto insertion_result = insert_into_lookup_table(*current_table, value);
|
|
switch (insertion_result) {
|
|
case LookupTableInsertionOutcome::Successful:
|
|
if (flush_on_every_insertion)
|
|
flush_tables();
|
|
break;
|
|
case LookupTableInsertionOutcome::ReplaceWithAnyChar: {
|
|
table.clear();
|
|
inverted_table.clear();
|
|
arguments.append(to_underlying(CharacterCompareType::AnyChar));
|
|
++argument_count;
|
|
break;
|
|
}
|
|
case LookupTableInsertionOutcome::TemporaryInversionNeeded:
|
|
swap(current_table, current_inverted_table);
|
|
invert_for_next_iteration = true;
|
|
is_currently_inverted = !is_currently_inverted;
|
|
break;
|
|
case LookupTableInsertionOutcome::PermanentInversionNeeded:
|
|
flush_tables();
|
|
arguments.append(to_underlying(CharacterCompareType::Inverse));
|
|
++argument_count;
|
|
break;
|
|
case LookupTableInsertionOutcome::FlushOnInsertion:
|
|
case LookupTableInsertionOutcome::FinishFlushOnInsertion:
|
|
flush_tables();
|
|
flush_on_every_insertion = insertion_result == LookupTableInsertionOutcome::FlushOnInsertion;
|
|
[[fallthrough]];
|
|
case LookupTableInsertionOutcome::CannotPlaceInTable:
|
|
if (is_currently_inverted) {
|
|
arguments.append(to_underlying(CharacterCompareType::TemporaryInverse));
|
|
++argument_count;
|
|
}
|
|
arguments.append(to_underlying(value.type));
|
|
|
|
if (value.type != CharacterCompareType::AnyChar
|
|
&& value.type != CharacterCompareType::TemporaryInverse
|
|
&& value.type != CharacterCompareType::Inverse
|
|
&& value.type != CharacterCompareType::And
|
|
&& value.type != CharacterCompareType::Or
|
|
&& value.type != CharacterCompareType::EndAndOr)
|
|
arguments.append(value.value);
|
|
++argument_count;
|
|
break;
|
|
}
|
|
|
|
if (should_invert_after_this_iteration) {
|
|
swap(current_table, current_inverted_table);
|
|
is_currently_inverted = !is_currently_inverted;
|
|
}
|
|
}
|
|
|
|
flush_tables();
|
|
}
|
|
|
|
target.empend(static_cast<ByteCodeValueType>(OpCodeId::Compare));
|
|
target.empend(argument_count); // number of arguments
|
|
target.empend(arguments.size()); // size of arguments
|
|
target.extend(move(arguments));
|
|
}
|
|
|
|
template void Regex<PosixBasicParser>::run_optimization_passes();
|
|
template void Regex<PosixExtendedParser>::run_optimization_passes();
|
|
template void Regex<ECMA262Parser>::run_optimization_passes();
|
|
}
|