ladybird/Userland/Libraries/LibGfx/Path.cpp
Nicholas-Baron 73dd293ec4 Everywhere: Add -Wdouble-promotion warning
This warning informs of float-to-double conversions. The best solution
seems to be to do math *either* in 32-bit *or* in 64-bit, and only to
cross over when absolutely necessary.
2021-04-16 19:01:54 +02:00

334 lines
11 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashTable.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
#include <math.h>
namespace Gfx {
void Path::elliptical_arc_to(const FloatPoint& point, const FloatPoint& radii, double x_axis_rotation, bool large_arc, bool sweep)
{
auto next_point = point;
double rx = radii.x();
double ry = radii.y();
double x_axis_rotation_c = cos(x_axis_rotation);
double x_axis_rotation_s = sin(x_axis_rotation);
// Find the last point
FloatPoint last_point { 0, 0 };
if (!m_segments.is_empty())
last_point = m_segments.last().point();
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
append_segment<LineSegment>(next_point);
return;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// POSSIBLY HACK: Handle the case where both points are the same.
auto same_endpoints = next_point == last_point;
if (same_endpoints) {
if (!large_arc) {
// Nothing is going to be drawn anyway.
return;
}
// Move the endpoint by a small amount to avoid division by zero.
next_point.move_by(0.01f, 0.01f);
}
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = pow(x1p, 2.0);
double y1p_sq = pow(y1p, 2.0);
double rx_sq = pow(rx, 2.0);
double ry_sq = pow(ry, 2.0);
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = sqrt(numerator / denominator);
}
if (large_arc == sweep)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (!sweep && theta_delta > 0.0) {
theta_delta -= 2 * M_PI;
} else if (sweep && theta_delta < 0) {
theta_delta += 2 * M_PI;
}
elliptical_arc_to(
next_point,
{ cx, cy },
{ rx, ry },
x_axis_rotation,
theta_1,
theta_delta);
}
void Path::close()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
auto& last_point = m_segments.last().point();
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
auto& segment = m_segments[i];
if (segment.type() == Segment::Type::MoveTo) {
if (last_point == segment.point())
return;
append_segment<LineSegment>(segment.point());
return;
}
}
}
void Path::close_all_subpaths()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
Optional<FloatPoint> cursor, start_of_subpath;
bool is_first_point_in_subpath { false };
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo: {
if (cursor.has_value() && !is_first_point_in_subpath) {
// This is a move from a subpath to another
// connect the two ends of this subpath before
// moving on to the next one
VERIFY(start_of_subpath.has_value());
append_segment<MoveSegment>(cursor.value());
append_segment<LineSegment>(start_of_subpath.value());
}
is_first_point_in_subpath = true;
cursor = segment.point();
break;
}
case Segment::Type::LineTo:
case Segment::Type::QuadraticBezierCurveTo:
case Segment::Type::EllipticalArcTo:
if (is_first_point_in_subpath) {
start_of_subpath = cursor;
is_first_point_in_subpath = false;
}
cursor = segment.point();
break;
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
break;
}
}
}
String Path::to_string() const
{
StringBuilder builder;
builder.append("Path { ");
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo:
builder.append("MoveTo");
break;
case Segment::Type::LineTo:
builder.append("LineTo");
break;
case Segment::Type::QuadraticBezierCurveTo:
builder.append("QuadraticBezierCurveTo");
break;
case Segment::Type::EllipticalArcTo:
builder.append("EllipticalArcTo");
break;
case Segment::Type::Invalid:
builder.append("Invalid");
break;
}
builder.appendf("(%s", segment.point().to_string().characters());
switch (segment.type()) {
case Segment::Type::QuadraticBezierCurveTo:
builder.append(", ");
builder.append(static_cast<const QuadraticBezierCurveSegment&>(segment).through().to_string());
break;
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<const EllipticalArcSegment&>(segment);
builder.appendff(", {}, {}, {}, {}, {}",
arc.radii().to_string().characters(),
arc.center().to_string().characters(),
arc.x_axis_rotation(),
arc.theta_1(),
arc.theta_delta());
break;
}
default:
break;
}
builder.append(") ");
}
builder.append("}");
return builder.to_string();
}
void Path::segmentize_path()
{
Vector<SplitLineSegment> segments;
float min_x = 0;
float min_y = 0;
float max_x = 0;
float max_y = 0;
auto add_point_to_bbox = [&](const Gfx::FloatPoint& point) {
float x = point.x();
float y = point.y();
min_x = min(min_x, x);
min_y = min(min_y, y);
max_x = max(max_x, x);
max_y = max(max_y, y);
};
auto add_line = [&](const auto& p0, const auto& p1) {
float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x();
auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x()));
if (p0.y() < p1.y()) {
swap(ymin, ymax);
swap(x_of_ymin, x_of_ymax);
}
segments.append({ FloatPoint(p0.x(), p0.y()),
FloatPoint(p1.x(), p1.y()),
slope == 0 ? 0 : 1 / slope,
x_of_ymin,
ymax, ymin, x_of_ymax });
add_point_to_bbox(p1);
};
FloatPoint cursor { 0, 0 };
bool first = true;
for (auto& segment : m_segments) {
switch (segment.type()) {
case Segment::Type::MoveTo:
if (first) {
min_x = segment.point().x();
min_y = segment.point().y();
max_x = segment.point().x();
max_y = segment.point().y();
} else {
add_point_to_bbox(segment.point());
}
cursor = segment.point();
break;
case Segment::Type::LineTo: {
add_line(cursor, segment.point());
cursor = segment.point();
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto& control = static_cast<QuadraticBezierCurveSegment&>(segment).through();
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point(), [&](const FloatPoint& p0, const FloatPoint& p1) {
add_line(p0, p1);
});
cursor = segment.point();
break;
}
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<EllipticalArcSegment&>(segment);
Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](const FloatPoint& p0, const FloatPoint& p1) {
add_line(p0, p1);
});
cursor = segment.point();
break;
}
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
}
first = false;
}
// sort segments by ymax
quick_sort(segments, [](const auto& line0, const auto& line1) {
return line1.maximum_y < line0.maximum_y;
});
m_split_lines = move(segments);
m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y };
}
}