mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-26 03:02:27 -05:00
4ff4ac11b9
We don't need to check if a function parameter is already declared while creating bindings for them because we deduplicate their names by storing them in a hash table in one of the previous steps. This change makes React-Redux-TodoMVC test in Speedometer run 2% faster.
1165 lines
57 KiB
C++
1165 lines
57 KiB
C++
/*
|
|
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
|
|
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
|
|
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2023, Shannon Booth <shannon@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/Function.h>
|
|
#include <LibJS/AST.h>
|
|
#include <LibJS/Bytecode/BasicBlock.h>
|
|
#include <LibJS/Bytecode/Generator.h>
|
|
#include <LibJS/Bytecode/Interpreter.h>
|
|
#include <LibJS/Runtime/AbstractOperations.h>
|
|
#include <LibJS/Runtime/Array.h>
|
|
#include <LibJS/Runtime/AsyncFunctionDriverWrapper.h>
|
|
#include <LibJS/Runtime/AsyncGenerator.h>
|
|
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
|
|
#include <LibJS/Runtime/Error.h>
|
|
#include <LibJS/Runtime/ExecutionContext.h>
|
|
#include <LibJS/Runtime/FunctionEnvironment.h>
|
|
#include <LibJS/Runtime/GeneratorObject.h>
|
|
#include <LibJS/Runtime/GlobalEnvironment.h>
|
|
#include <LibJS/Runtime/GlobalObject.h>
|
|
#include <LibJS/Runtime/NativeFunction.h>
|
|
#include <LibJS/Runtime/PromiseCapability.h>
|
|
#include <LibJS/Runtime/PromiseConstructor.h>
|
|
#include <LibJS/Runtime/Value.h>
|
|
|
|
namespace JS {
|
|
|
|
NonnullGCPtr<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, DeprecatedFlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
{
|
|
Object* prototype = nullptr;
|
|
switch (kind) {
|
|
case FunctionKind::Normal:
|
|
prototype = realm.intrinsics().function_prototype();
|
|
break;
|
|
case FunctionKind::Generator:
|
|
prototype = realm.intrinsics().generator_function_prototype();
|
|
break;
|
|
case FunctionKind::Async:
|
|
prototype = realm.intrinsics().async_function_prototype();
|
|
break;
|
|
case FunctionKind::AsyncGenerator:
|
|
prototype = realm.intrinsics().async_generator_function_prototype();
|
|
break;
|
|
}
|
|
return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, move(local_variables_names), parent_environment, private_environment, *prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name));
|
|
}
|
|
|
|
NonnullGCPtr<ECMAScriptFunctionObject> ECMAScriptFunctionObject::create(Realm& realm, DeprecatedFlyString name, Object& prototype, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> parameters, i32 m_function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
{
|
|
return realm.heap().allocate<ECMAScriptFunctionObject>(realm, move(name), move(source_text), ecmascript_code, move(parameters), m_function_length, move(local_variables_names), parent_environment, private_environment, prototype, kind, is_strict, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function, move(class_field_initializer_name));
|
|
}
|
|
|
|
ECMAScriptFunctionObject::ECMAScriptFunctionObject(DeprecatedFlyString name, DeprecatedString source_text, Statement const& ecmascript_code, Vector<FunctionParameter> formal_parameters, i32 function_length, Vector<DeprecatedFlyString> local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, Object& prototype, FunctionKind kind, bool strict, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function, Variant<PropertyKey, PrivateName, Empty> class_field_initializer_name)
|
|
: FunctionObject(prototype)
|
|
, m_name(move(name))
|
|
, m_function_length(function_length)
|
|
, m_local_variables_names(move(local_variables_names))
|
|
, m_environment(parent_environment)
|
|
, m_private_environment(private_environment)
|
|
, m_formal_parameters(move(formal_parameters))
|
|
, m_ecmascript_code(ecmascript_code)
|
|
, m_realm(&prototype.shape().realm())
|
|
, m_source_text(move(source_text))
|
|
, m_class_field_initializer_name(move(class_field_initializer_name))
|
|
, m_strict(strict)
|
|
, m_might_need_arguments_object(might_need_arguments_object)
|
|
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
|
|
, m_is_arrow_function(is_arrow_function)
|
|
, m_kind(kind)
|
|
{
|
|
// NOTE: This logic is from OrdinaryFunctionCreate, https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
|
|
|
|
// 9. If thisMode is lexical-this, set F.[[ThisMode]] to lexical.
|
|
if (m_is_arrow_function)
|
|
m_this_mode = ThisMode::Lexical;
|
|
// 10. Else if Strict is true, set F.[[ThisMode]] to strict.
|
|
else if (m_strict)
|
|
m_this_mode = ThisMode::Strict;
|
|
else
|
|
// 11. Else, set F.[[ThisMode]] to global.
|
|
m_this_mode = ThisMode::Global;
|
|
|
|
// 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
|
|
m_script_or_module = vm().get_active_script_or_module();
|
|
|
|
// 15.1.3 Static Semantics: IsSimpleParameterList, https://tc39.es/ecma262/#sec-static-semantics-issimpleparameterlist
|
|
m_has_simple_parameter_list = all_of(m_formal_parameters, [&](auto& parameter) {
|
|
if (parameter.is_rest)
|
|
return false;
|
|
if (parameter.default_value)
|
|
return false;
|
|
if (!parameter.binding.template has<NonnullRefPtr<Identifier const>>())
|
|
return false;
|
|
return true;
|
|
});
|
|
|
|
// NOTE: The following steps are from FunctionDeclarationInstantiation that could be executed once
|
|
// and then reused in all subsequent function instantiations.
|
|
|
|
// 2. Let code be func.[[ECMAScriptCode]].
|
|
ScopeNode const* scope_body = nullptr;
|
|
if (is<ScopeNode>(*m_ecmascript_code))
|
|
scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());
|
|
|
|
// 3. Let strict be func.[[Strict]].
|
|
|
|
// 4. Let formals be func.[[FormalParameters]].
|
|
auto const& formals = m_formal_parameters;
|
|
|
|
// 5. Let parameterNames be the BoundNames of formals.
|
|
// 6. If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
|
|
|
|
// NOTE: This loop performs step 5, 6, and 8.
|
|
for (auto const& parameter : formals) {
|
|
if (parameter.default_value)
|
|
m_has_parameter_expressions = true;
|
|
|
|
parameter.binding.visit(
|
|
[&](Identifier const& identifier) {
|
|
if (m_parameter_names.set(identifier.string()) != AK::HashSetResult::InsertedNewEntry)
|
|
m_has_duplicates = true;
|
|
},
|
|
[&](NonnullRefPtr<BindingPattern const> const& pattern) {
|
|
if (pattern->contains_expression())
|
|
m_has_parameter_expressions = true;
|
|
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(pattern->for_each_bound_identifier([&](auto& identifier) {
|
|
if (m_parameter_names.set(identifier.string()) != AK::HashSetResult::InsertedNewEntry)
|
|
m_has_duplicates = true;
|
|
}));
|
|
});
|
|
}
|
|
|
|
// 15. Let argumentsObjectNeeded be true.
|
|
m_arguments_object_needed = m_might_need_arguments_object;
|
|
|
|
// 16. If func.[[ThisMode]] is lexical, then
|
|
if (this_mode() == ThisMode::Lexical) {
|
|
// a. NOTE: Arrow functions never have an arguments object.
|
|
// b. Set argumentsObjectNeeded to false.
|
|
m_arguments_object_needed = false;
|
|
}
|
|
// 17. Else if parameterNames contains "arguments", then
|
|
else if (m_parameter_names.contains(vm().names.arguments.as_string())) {
|
|
// a. Set argumentsObjectNeeded to false.
|
|
m_arguments_object_needed = false;
|
|
}
|
|
|
|
HashTable<DeprecatedFlyString> function_names;
|
|
|
|
// 18. Else if hasParameterExpressions is false, then
|
|
// a. If functionNames contains "arguments" or lexicalNames contains "arguments", then
|
|
// i. Set argumentsObjectNeeded to false.
|
|
// NOTE: The block below is a combination of step 14 and step 18.
|
|
if (scope_body) {
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(scope_body->for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
|
|
if (function_names.set(function.name()) == AK::HashSetResult::InsertedNewEntry)
|
|
m_functions_to_initialize.append(function);
|
|
}));
|
|
|
|
auto const& arguments_name = vm().names.arguments.as_string();
|
|
|
|
if (!m_has_parameter_expressions && function_names.contains(arguments_name))
|
|
m_arguments_object_needed = false;
|
|
|
|
if (!m_has_parameter_expressions && m_arguments_object_needed) {
|
|
// NOTE: Nothing in the callback throws an exception.
|
|
MUST(scope_body->for_each_lexically_declared_identifier([&](auto const& identifier) {
|
|
if (identifier.string() == arguments_name)
|
|
m_arguments_object_needed = false;
|
|
}));
|
|
}
|
|
} else {
|
|
m_arguments_object_needed = false;
|
|
}
|
|
|
|
HashTable<DeprecatedFlyString> parameter_bindings;
|
|
|
|
// 22. If argumentsObjectNeeded is true, then
|
|
if (m_arguments_object_needed) {
|
|
// f. Let parameterBindings be the list-concatenation of parameterNames and « "arguments" ».
|
|
parameter_bindings = m_parameter_names;
|
|
parameter_bindings.set(vm().names.arguments.as_string());
|
|
} else {
|
|
parameter_bindings = m_parameter_names;
|
|
// a. Let parameterBindings be parameterNames.
|
|
}
|
|
|
|
HashTable<DeprecatedFlyString> instantiated_var_names;
|
|
|
|
// 27. If hasParameterExpressions is false, then
|
|
if (!m_has_parameter_expressions) {
|
|
// b. Let instantiatedVarNames be a copy of the List parameterBindings.
|
|
instantiated_var_names = parameter_bindings;
|
|
|
|
if (scope_body) {
|
|
// c. For each element n of varNames, do
|
|
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
|
|
// i. If instantiatedVarNames does not contain n, then
|
|
if (instantiated_var_names.set(id.string()) == AK::HashSetResult::InsertedNewEntry) {
|
|
// 1. Append n to instantiatedVarNames.
|
|
// Following steps will be executed in function_declaration_instantiation:
|
|
// 2. Perform ! env.CreateMutableBinding(n, false).
|
|
// 3. Perform ! env.InitializeBinding(n, undefined).
|
|
m_var_names_to_initialize_binding.append({
|
|
.identifier = id,
|
|
.parameter_binding = parameter_bindings.contains(id.string()),
|
|
.function_name = function_names.contains(id.string()),
|
|
});
|
|
}
|
|
}));
|
|
}
|
|
} else {
|
|
// 28. Else,
|
|
// NOTE: Steps a, b, c and d are executed in function_declaration_instantiation.
|
|
// e. For each element n of varNames, do
|
|
if (scope_body) {
|
|
MUST(scope_body->for_each_var_declared_identifier([&](auto const& id) {
|
|
// 1. Append n to instantiatedVarNames.
|
|
// Following steps will be executed in function_declaration_instantiation:
|
|
// 2. Perform ! env.CreateMutableBinding(n, false).
|
|
// 3. Perform ! env.InitializeBinding(n, undefined).
|
|
if (instantiated_var_names.set(id.string()) == AK::HashSetResult::InsertedNewEntry) {
|
|
m_var_names_to_initialize_binding.append({
|
|
.identifier = id,
|
|
.parameter_binding = parameter_bindings.contains(id.string()),
|
|
.function_name = function_names.contains(id.string()),
|
|
});
|
|
}
|
|
}));
|
|
}
|
|
}
|
|
|
|
if (!m_strict && scope_body) {
|
|
MUST(scope_body->for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
|
|
auto function_name = function_declaration.name();
|
|
if (parameter_bindings.contains(function_name))
|
|
return;
|
|
|
|
if (!instantiated_var_names.contains(function_name) && function_name != vm().names.arguments.as_string()) {
|
|
m_function_names_to_initialize_binding.append(function_name);
|
|
instantiated_var_names.set(function_name);
|
|
}
|
|
|
|
function_declaration.set_should_do_additional_annexB_steps();
|
|
}));
|
|
}
|
|
}
|
|
|
|
void ECMAScriptFunctionObject::initialize(Realm& realm)
|
|
{
|
|
auto& vm = this->vm();
|
|
Base::initialize(realm);
|
|
// Note: The ordering of these properties must be: length, name, prototype which is the order
|
|
// they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances .
|
|
// This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
|
|
// which must give the properties in chronological order which in this case is the order they
|
|
// are defined in the spec.
|
|
|
|
MUST(define_property_or_throw(vm.names.length, { .value = Value(m_function_length), .writable = false, .enumerable = false, .configurable = true }));
|
|
MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name.is_null() ? "" : m_name), .writable = false, .enumerable = false, .configurable = true }));
|
|
|
|
if (!m_is_arrow_function) {
|
|
Object* prototype = nullptr;
|
|
switch (m_kind) {
|
|
case FunctionKind::Normal:
|
|
prototype = vm.heap().allocate<Object>(realm, realm.intrinsics().new_ordinary_function_prototype_object_shape());
|
|
MUST(prototype->define_property_or_throw(vm.names.constructor, { .value = this, .writable = true, .enumerable = false, .configurable = true }));
|
|
break;
|
|
case FunctionKind::Generator:
|
|
// prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png)
|
|
prototype = Object::create(realm, realm.intrinsics().generator_function_prototype_prototype());
|
|
break;
|
|
case FunctionKind::Async:
|
|
break;
|
|
case FunctionKind::AsyncGenerator:
|
|
prototype = Object::create(realm, realm.intrinsics().async_generator_function_prototype_prototype());
|
|
break;
|
|
}
|
|
// 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances
|
|
// AsyncFunction instances do not have a prototype property as they are not constructible.
|
|
if (m_kind != FunctionKind::Async)
|
|
define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
|
|
}
|
|
}
|
|
|
|
// 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist
|
|
ThrowCompletionOr<Value> ECMAScriptFunctionObject::internal_call(Value this_argument, MarkedVector<Value> arguments_list)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// NOTE: No-op, kept by the VM in its execution context stack.
|
|
|
|
ExecutionContext callee_context(heap());
|
|
|
|
callee_context.local_variables.resize(m_local_variables_names.size());
|
|
|
|
// Non-standard
|
|
callee_context.arguments.extend(move(arguments_list));
|
|
callee_context.instruction_stream_iterator = vm.bytecode_interpreter().instruction_stream_iterator();
|
|
|
|
// 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
|
|
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
|
|
TRY(prepare_for_ordinary_call(callee_context, nullptr));
|
|
|
|
// 3. Assert: calleeContext is now the running execution context.
|
|
VERIFY(&vm.running_execution_context() == &callee_context);
|
|
|
|
// 4. If F.[[IsClassConstructor]] is true, then
|
|
if (m_is_class_constructor) {
|
|
// a. Let error be a newly created TypeError object.
|
|
// b. NOTE: error is created in calleeContext with F's associated Realm Record.
|
|
auto throw_completion = vm.throw_completion<TypeError>(ErrorType::ClassConstructorWithoutNew, m_name);
|
|
|
|
// c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// d. Return ThrowCompletion(error).
|
|
return throw_completion;
|
|
}
|
|
|
|
// 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
|
|
ordinary_call_bind_this(callee_context, this_argument);
|
|
|
|
// 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
|
|
auto result = ordinary_call_evaluate_body();
|
|
|
|
// 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// 8. If result.[[Type]] is return, return result.[[Value]].
|
|
if (result.type() == Completion::Type::Return)
|
|
return *result.value();
|
|
|
|
// 9. ReturnIfAbrupt(result).
|
|
if (result.is_abrupt()) {
|
|
VERIFY(result.is_error());
|
|
return result;
|
|
}
|
|
|
|
// 10. Return undefined.
|
|
return js_undefined();
|
|
}
|
|
|
|
// 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
|
|
ThrowCompletionOr<NonnullGCPtr<Object>> ECMAScriptFunctionObject::internal_construct(MarkedVector<Value> arguments_list, FunctionObject& new_target)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// NOTE: No-op, kept by the VM in its execution context stack.
|
|
|
|
// 2. Let kind be F.[[ConstructorKind]].
|
|
auto kind = m_constructor_kind;
|
|
|
|
GCPtr<Object> this_argument;
|
|
|
|
// 3. If kind is base, then
|
|
if (kind == ConstructorKind::Base) {
|
|
// a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%").
|
|
this_argument = TRY(ordinary_create_from_constructor<Object>(vm, new_target, &Intrinsics::object_prototype, ConstructWithPrototypeTag::Tag));
|
|
}
|
|
|
|
ExecutionContext callee_context(heap());
|
|
|
|
callee_context.local_variables.resize(m_local_variables_names.size());
|
|
|
|
// Non-standard
|
|
callee_context.arguments.extend(move(arguments_list));
|
|
callee_context.instruction_stream_iterator = vm.bytecode_interpreter().instruction_stream_iterator();
|
|
|
|
// 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
|
|
// NOTE: We throw if the end of the native stack is reached, so unlike in the spec this _does_ need an exception check.
|
|
TRY(prepare_for_ordinary_call(callee_context, &new_target));
|
|
|
|
// 5. Assert: calleeContext is now the running execution context.
|
|
VERIFY(&vm.running_execution_context() == &callee_context);
|
|
|
|
// 6. If kind is base, then
|
|
if (kind == ConstructorKind::Base) {
|
|
// a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
|
|
ordinary_call_bind_this(callee_context, this_argument);
|
|
|
|
// b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)).
|
|
auto initialize_result = this_argument->initialize_instance_elements(*this);
|
|
|
|
// c. If initializeResult is an abrupt completion, then
|
|
if (initialize_result.is_throw_completion()) {
|
|
// i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// ii. Return ? initializeResult.
|
|
return initialize_result.throw_completion();
|
|
}
|
|
}
|
|
|
|
// 7. Let constructorEnv be the LexicalEnvironment of calleeContext.
|
|
auto constructor_env = callee_context.lexical_environment;
|
|
|
|
// 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)).
|
|
auto result = ordinary_call_evaluate_body();
|
|
|
|
// 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// 10. If result.[[Type]] is return, then
|
|
if (result.type() == Completion::Type::Return) {
|
|
// FIXME: This is leftover from untangling the call/construct mess - doesn't belong here in any way, but removing it breaks derived classes.
|
|
// Likely fixed by making ClassDefinitionEvaluation fully spec compliant.
|
|
if (kind == ConstructorKind::Derived && result.value()->is_object()) {
|
|
auto prototype = TRY(new_target.get(vm.names.prototype));
|
|
if (prototype.is_object())
|
|
TRY(result.value()->as_object().internal_set_prototype_of(&prototype.as_object()));
|
|
}
|
|
// EOF (End of FIXME)
|
|
|
|
// a. If Type(result.[[Value]]) is Object, return result.[[Value]].
|
|
if (result.value()->is_object())
|
|
return result.value()->as_object();
|
|
|
|
// b. If kind is base, return thisArgument.
|
|
if (kind == ConstructorKind::Base)
|
|
return *this_argument;
|
|
|
|
// c. If result.[[Value]] is not undefined, throw a TypeError exception.
|
|
if (!result.value()->is_undefined())
|
|
return vm.throw_completion<TypeError>(ErrorType::DerivedConstructorReturningInvalidValue);
|
|
}
|
|
// 11. Else, ReturnIfAbrupt(result).
|
|
else if (result.is_abrupt()) {
|
|
VERIFY(result.is_error());
|
|
return result;
|
|
}
|
|
|
|
// 12. Let thisBinding be ? constructorEnv.GetThisBinding().
|
|
auto this_binding = TRY(constructor_env->get_this_binding(vm));
|
|
|
|
// 13. Assert: Type(thisBinding) is Object.
|
|
VERIFY(this_binding.is_object());
|
|
|
|
// 14. Return thisBinding.
|
|
return this_binding.as_object();
|
|
}
|
|
|
|
void ECMAScriptFunctionObject::visit_edges(Visitor& visitor)
|
|
{
|
|
Base::visit_edges(visitor);
|
|
visitor.visit(m_environment);
|
|
visitor.visit(m_private_environment);
|
|
visitor.visit(m_realm);
|
|
visitor.visit(m_home_object);
|
|
|
|
for (auto& field : m_fields) {
|
|
if (auto* property_key_ptr = field.name.get_pointer<PropertyKey>(); property_key_ptr && property_key_ptr->is_symbol())
|
|
visitor.visit(property_key_ptr->as_symbol());
|
|
}
|
|
|
|
m_script_or_module.visit(
|
|
[](Empty) {},
|
|
[&](auto& script_or_module) {
|
|
visitor.visit(script_or_module.ptr());
|
|
});
|
|
}
|
|
|
|
// 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod
|
|
void ECMAScriptFunctionObject::make_method(Object& home_object)
|
|
{
|
|
// 1. Set F.[[HomeObject]] to homeObject.
|
|
m_home_object = &home_object;
|
|
|
|
// 2. Return unused.
|
|
}
|
|
|
|
// 10.2.11 FunctionDeclarationInstantiation ( func, argumentsList ), https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
|
|
ThrowCompletionOr<void> ECMAScriptFunctionObject::function_declaration_instantiation()
|
|
{
|
|
auto& vm = this->vm();
|
|
auto& realm = *vm.current_realm();
|
|
|
|
// 1. Let calleeContext be the running execution context.
|
|
auto& callee_context = vm.running_execution_context();
|
|
|
|
// 2. Let code be func.[[ECMAScriptCode]].
|
|
ScopeNode const* scope_body = nullptr;
|
|
if (is<ScopeNode>(*m_ecmascript_code))
|
|
scope_body = static_cast<ScopeNode const*>(m_ecmascript_code.ptr());
|
|
|
|
// NOTE: Following steps were executed in ECMAScriptFunctionObject constructor.
|
|
// 3. Let strict be func.[[Strict]].
|
|
// 4. Let formals be func.[[FormalParameters]].
|
|
// 5. Let parameterNames be the BoundNames of formals.
|
|
// 6. If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
|
|
|
|
// 7. Let simpleParameterList be IsSimpleParameterList of formals.
|
|
bool const simple_parameter_list = has_simple_parameter_list();
|
|
|
|
// NOTE: Following steps were executed in ECMAScriptFunctionObject constructor.
|
|
// 8. Let hasParameterExpressions be ContainsExpression of formals.
|
|
// 9. Let varNames be the VarDeclaredNames of code.
|
|
// 10. Let varDeclarations be the VarScopedDeclarations of code.
|
|
// 11. Let lexicalNames be the LexicallyDeclaredNames of code.
|
|
// 12. Let functionNames be a new empty List.
|
|
// 13. Let functionsToInitialize be a new empty List.
|
|
// 14. For each element d of varDeclarations, in reverse List order, do
|
|
// 15. Let argumentsObjectNeeded be true.
|
|
// 16. If func.[[ThisMode]] is lexical, then
|
|
// 17. Else if parameterNames contains "arguments", then
|
|
// 18. Else if hasParameterExpressions is false, then
|
|
|
|
GCPtr<Environment> environment;
|
|
|
|
// 19. If strict is true or hasParameterExpressions is false, then
|
|
if (m_strict || !m_has_parameter_expressions) {
|
|
// a. NOTE: Only a single Environment Record is needed for the parameters, since calls to eval in strict mode code cannot create new bindings which are visible outside of the eval.
|
|
// b. Let env be the LexicalEnvironment of calleeContext.
|
|
environment = callee_context.lexical_environment;
|
|
}
|
|
// 20. Else,
|
|
else {
|
|
// a. NOTE: A separate Environment Record is needed to ensure that bindings created by direct eval calls in the formal parameter list are outside the environment where parameters are declared.
|
|
|
|
// b. Let calleeEnv be the LexicalEnvironment of calleeContext.
|
|
auto callee_env = callee_context.lexical_environment;
|
|
|
|
// c. Let env be NewDeclarativeEnvironment(calleeEnv).
|
|
environment = new_declarative_environment(*callee_env);
|
|
|
|
// d. Assert: The VariableEnvironment of calleeContext is calleeEnv.
|
|
VERIFY(callee_context.variable_environment == callee_context.lexical_environment);
|
|
|
|
// e. Set the LexicalEnvironment of calleeContext to env.
|
|
callee_context.lexical_environment = environment;
|
|
}
|
|
|
|
// 21. For each String paramName of parameterNames, do
|
|
for (auto const& parameter_name : m_parameter_names) {
|
|
// a. Let alreadyDeclared be ! env.HasBinding(paramName).
|
|
|
|
// b. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do not have parameter default values or rest parameters.
|
|
|
|
// c. If alreadyDeclared is false, then
|
|
// NOTE: alreadyDeclared is always false because we use hash table for parameterNames
|
|
// i. Perform ! env.CreateMutableBinding(paramName, false).
|
|
MUST(environment->create_mutable_binding(vm, parameter_name, false));
|
|
|
|
// ii. If hasDuplicates is true, then
|
|
if (m_has_duplicates) {
|
|
// 1. Perform ! env.InitializeBinding(paramName, undefined).
|
|
MUST(environment->initialize_binding(vm, parameter_name, js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
}
|
|
}
|
|
|
|
// 22. If argumentsObjectNeeded is true, then
|
|
if (m_arguments_object_needed) {
|
|
Object* arguments_object;
|
|
|
|
// a. If strict is true or simpleParameterList is false, then
|
|
if (m_strict || !simple_parameter_list) {
|
|
// i. Let ao be CreateUnmappedArgumentsObject(argumentsList).
|
|
arguments_object = create_unmapped_arguments_object(vm, vm.running_execution_context().arguments);
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. NOTE: A mapped argument object is only provided for non-strict functions that don't have a rest parameter, any parameter default value initializers, or any destructured parameters.
|
|
|
|
// ii. Let ao be CreateMappedArgumentsObject(func, formals, argumentsList, env).
|
|
arguments_object = create_mapped_arguments_object(vm, *this, formal_parameters(), vm.running_execution_context().arguments, *environment);
|
|
}
|
|
|
|
// c. If strict is true, then
|
|
if (m_strict) {
|
|
// i. Perform ! env.CreateImmutableBinding("arguments", false).
|
|
MUST(environment->create_immutable_binding(vm, vm.names.arguments.as_string(), false));
|
|
|
|
// ii. NOTE: In strict mode code early errors prevent attempting to assign to this binding, so its mutability is not observable.
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. Perform ! env.CreateMutableBinding("arguments", false).
|
|
MUST(environment->create_mutable_binding(vm, vm.names.arguments.as_string(), false));
|
|
}
|
|
|
|
// c. Perform ! env.InitializeBinding("arguments", ao).
|
|
MUST(environment->initialize_binding(vm, vm.names.arguments.as_string(), arguments_object, Environment::InitializeBindingHint::Normal));
|
|
|
|
// f. Let parameterBindings be the list-concatenation of parameterNames and « "arguments" ».
|
|
}
|
|
// 23. Else,
|
|
else {
|
|
// a. Let parameterBindings be parameterNames.
|
|
}
|
|
|
|
// NOTE: We now treat parameterBindings as parameterNames.
|
|
|
|
// 24. Let iteratorRecord be CreateListIteratorRecord(argumentsList).
|
|
// 25. If hasDuplicates is true, then
|
|
// a. Perform ? IteratorBindingInitialization of formals with arguments iteratorRecord and undefined.
|
|
// 26. Else,
|
|
// a. Perform ? IteratorBindingInitialization of formals with arguments iteratorRecord and env.
|
|
// NOTE: The spec makes an iterator here to do IteratorBindingInitialization but we just do it manually
|
|
auto& execution_context_arguments = vm.running_execution_context().arguments;
|
|
|
|
size_t default_parameter_index = 0;
|
|
for (size_t i = 0; i < m_formal_parameters.size(); ++i) {
|
|
auto& parameter = m_formal_parameters[i];
|
|
if (parameter.default_value)
|
|
++default_parameter_index;
|
|
|
|
TRY(parameter.binding.visit(
|
|
[&](auto const& param) -> ThrowCompletionOr<void> {
|
|
Value argument_value;
|
|
if (parameter.is_rest) {
|
|
auto array = MUST(Array::create(realm, 0));
|
|
for (size_t rest_index = i; rest_index < execution_context_arguments.size(); ++rest_index)
|
|
array->indexed_properties().append(execution_context_arguments[rest_index]);
|
|
argument_value = array;
|
|
} else if (i < execution_context_arguments.size() && !execution_context_arguments[i].is_undefined()) {
|
|
argument_value = execution_context_arguments[i];
|
|
} else if (parameter.default_value) {
|
|
auto value_and_frame = vm.bytecode_interpreter().run_and_return_frame(realm, *m_default_parameter_bytecode_executables[default_parameter_index - 1], nullptr);
|
|
if (value_and_frame.value.is_error())
|
|
return value_and_frame.value.release_error();
|
|
// Resulting value is in the accumulator.
|
|
argument_value = value_and_frame.frame->registers.at(0);
|
|
} else {
|
|
argument_value = js_undefined();
|
|
}
|
|
|
|
Environment* used_environment = m_has_duplicates ? nullptr : environment;
|
|
|
|
if constexpr (IsSame<NonnullRefPtr<Identifier const> const&, decltype(param)>) {
|
|
if (param->is_local()) {
|
|
callee_context.local_variables[param->local_variable_index()] = argument_value;
|
|
return {};
|
|
}
|
|
Reference reference = TRY(vm.resolve_binding(param->string(), used_environment));
|
|
// Here the difference from hasDuplicates is important
|
|
if (m_has_duplicates)
|
|
return reference.put_value(vm, argument_value);
|
|
return reference.initialize_referenced_binding(vm, argument_value);
|
|
}
|
|
if constexpr (IsSame<NonnullRefPtr<BindingPattern const> const&, decltype(param)>) {
|
|
// Here the difference from hasDuplicates is important
|
|
return vm.binding_initialization(param, argument_value, used_environment);
|
|
}
|
|
}));
|
|
}
|
|
|
|
GCPtr<Environment> var_environment;
|
|
|
|
// 27. If hasParameterExpressions is false, then
|
|
if (!m_has_parameter_expressions) {
|
|
// a. NOTE: Only a single Environment Record is needed for the parameters and top-level vars.
|
|
|
|
// b. Let instantiatedVarNames be a copy of the List parameterBindings.
|
|
// NOTE: Done in implementation of step 27.c.i.1 below
|
|
|
|
if (scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_var_declared_name`.
|
|
|
|
// c. For each element n of varNames, do
|
|
for (auto const& variable_to_initialize : m_var_names_to_initialize_binding) {
|
|
auto const& id = variable_to_initialize.identifier;
|
|
// NOTE: Following steps were executed in ECMAScriptFunctionObject constructor.
|
|
// i. If instantiatedVarNames does not contain n, then
|
|
// 1. Append n to instantiatedVarNames.
|
|
if (id.is_local()) {
|
|
callee_context.local_variables[id.local_variable_index()] = js_undefined();
|
|
} else {
|
|
// 2. Perform ! env.CreateMutableBinding(n, false).
|
|
// 3. Perform ! env.InitializeBinding(n, undefined).
|
|
MUST(environment->create_mutable_binding(vm, id.string(), false));
|
|
MUST(environment->initialize_binding(vm, id.string(), js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
}
|
|
}
|
|
}
|
|
|
|
// d.Let varEnv be env
|
|
var_environment = environment;
|
|
}
|
|
// 28. Else,
|
|
else {
|
|
// a. NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the formal parameter list do not have visibility of declarations in the function body.
|
|
|
|
// b. Let varEnv be NewDeclarativeEnvironment(env).
|
|
var_environment = new_declarative_environment(*environment);
|
|
|
|
// c. Set the VariableEnvironment of calleeContext to varEnv.
|
|
callee_context.variable_environment = var_environment;
|
|
|
|
// d. Let instantiatedVarNames be a new empty List.
|
|
// NOTE: Already done above.
|
|
|
|
if (scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding`, `get_binding_value` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_var_declared_name`.
|
|
|
|
// e. For each element n of varNames, do
|
|
for (auto const& variable_to_initialize : m_var_names_to_initialize_binding) {
|
|
auto const& id = variable_to_initialize.identifier;
|
|
|
|
// NOTE: Following steps were executed in ECMAScriptFunctionObject constructor.
|
|
// i. If instantiatedVarNames does not contain n, then
|
|
// 1. Append n to instantiatedVarNames.
|
|
|
|
// 2. Perform ! varEnv.CreateMutableBinding(n, false).
|
|
MUST(var_environment->create_mutable_binding(vm, id.string(), false));
|
|
|
|
Value initial_value;
|
|
|
|
// 3. If parameterBindings does not contain n, or if functionNames contains n, then
|
|
if (!variable_to_initialize.parameter_binding || variable_to_initialize.function_name) {
|
|
// a. Let initialValue be undefined.
|
|
initial_value = js_undefined();
|
|
}
|
|
// 4. Else,
|
|
else {
|
|
// a. Let initialValue be ! env.GetBindingValue(n, false).
|
|
if (id.is_local()) {
|
|
initial_value = callee_context.local_variables[id.local_variable_index()];
|
|
} else {
|
|
initial_value = MUST(environment->get_binding_value(vm, id.string(), false));
|
|
}
|
|
}
|
|
|
|
// 5. Perform ! varEnv.InitializeBinding(n, initialValue).
|
|
if (id.is_local()) {
|
|
// NOTE: Local variables are supported only in bytecode interpreter
|
|
callee_context.local_variables[id.local_variable_index()] = initial_value;
|
|
} else {
|
|
MUST(var_environment->initialize_binding(vm, id.string(), initial_value, Environment::InitializeBindingHint::Normal));
|
|
}
|
|
|
|
// 6. NOTE: A var with the same name as a formal parameter initially has the same value as the corresponding initialized parameter.
|
|
}
|
|
}
|
|
}
|
|
|
|
// 29. NOTE: Annex B.3.2.1 adds additional steps at this point.
|
|
// B.3.2.1 Changes to FunctionDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
|
|
if (!m_strict && scope_body) {
|
|
// NOTE: Due to the use of MUST with `create_mutable_binding` and `initialize_binding` below,
|
|
// an exception should not result from `for_each_function_hoistable_with_annexB_extension`.
|
|
for (auto const& function_name : m_function_names_to_initialize_binding) {
|
|
MUST(var_environment->create_mutable_binding(vm, function_name, false));
|
|
MUST(var_environment->initialize_binding(vm, function_name, js_undefined(), Environment::InitializeBindingHint::Normal));
|
|
}
|
|
}
|
|
|
|
GCPtr<Environment> lex_environment;
|
|
|
|
// 30. If strict is false, then
|
|
if (!m_strict) {
|
|
// Optimization: We avoid creating empty top-level declarative environments in non-strict mode, if both of these conditions are true:
|
|
// 1. there is no direct call to eval() within this function
|
|
// 2. there are no lexical declarations that would go into the environment
|
|
bool can_elide_declarative_environment = !m_contains_direct_call_to_eval && (!scope_body || !scope_body->has_lexical_declarations());
|
|
if (can_elide_declarative_environment) {
|
|
lex_environment = var_environment;
|
|
} else {
|
|
// a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
|
|
// b. NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that a direct eval
|
|
// can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level
|
|
// lexically scoped declarations. This is not needed for strict functions because a strict direct eval always places
|
|
// all declarations into a new Environment Record.
|
|
lex_environment = new_declarative_environment(*var_environment);
|
|
}
|
|
}
|
|
// 31. Else,
|
|
else {
|
|
// a. let lexEnv be varEnv.
|
|
lex_environment = var_environment;
|
|
}
|
|
|
|
// 32. Set the LexicalEnvironment of calleeContext to lexEnv.
|
|
callee_context.lexical_environment = lex_environment;
|
|
|
|
if (!scope_body)
|
|
return {};
|
|
|
|
// 33. Let lexDeclarations be the LexicallyScopedDeclarations of code.
|
|
// 34. For each element d of lexDeclarations, do
|
|
// NOTE: Due to the use of MUST in the callback, an exception should not result from `for_each_lexically_scoped_declaration`.
|
|
MUST(scope_body->for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
|
|
// NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
|
|
// an exception should not result from `for_each_bound_name`.
|
|
|
|
// a. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
|
|
|
|
// b. For each element dn of the BoundNames of d, do
|
|
MUST(declaration.for_each_bound_identifier([&](auto const& id) {
|
|
if (id.is_local()) {
|
|
// NOTE: Local variables are supported only in bytecode interpreter
|
|
return;
|
|
}
|
|
|
|
// i. If IsConstantDeclaration of d is true, then
|
|
if (declaration.is_constant_declaration()) {
|
|
// 1. Perform ! lexEnv.CreateImmutableBinding(dn, true).
|
|
MUST(lex_environment->create_immutable_binding(vm, id.string(), true));
|
|
}
|
|
// ii. Else,
|
|
else {
|
|
// 1. Perform ! lexEnv.CreateMutableBinding(dn, false).
|
|
MUST(lex_environment->create_mutable_binding(vm, id.string(), false));
|
|
}
|
|
}));
|
|
}));
|
|
|
|
// 35. Let privateEnv be the PrivateEnvironment of calleeContext.
|
|
auto private_environment = callee_context.private_environment;
|
|
|
|
// 36. For each Parse Node f of functionsToInitialize, do
|
|
for (auto& declaration : m_functions_to_initialize) {
|
|
// a. Let fn be the sole element of the BoundNames of f.
|
|
// b. Let fo be InstantiateFunctionObject of f with arguments lexEnv and privateEnv.
|
|
auto function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), declaration.local_variables_names(), lex_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
|
|
|
|
// c. Perform ! varEnv.SetMutableBinding(fn, fo, false).
|
|
if (declaration.name_identifier()->is_local()) {
|
|
callee_context.local_variables[declaration.name_identifier()->local_variable_index()] = function;
|
|
} else {
|
|
MUST(var_environment->set_mutable_binding(vm, declaration.name(), function, false));
|
|
}
|
|
}
|
|
|
|
if (is<DeclarativeEnvironment>(*lex_environment))
|
|
static_cast<DeclarativeEnvironment*>(lex_environment.ptr())->shrink_to_fit();
|
|
if (is<DeclarativeEnvironment>(*var_environment))
|
|
static_cast<DeclarativeEnvironment*>(var_environment.ptr())->shrink_to_fit();
|
|
|
|
// 37. Return unused.
|
|
return {};
|
|
}
|
|
|
|
// 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall
|
|
ThrowCompletionOr<void> ECMAScriptFunctionObject::prepare_for_ordinary_call(ExecutionContext& callee_context, Object* new_target)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// Non-standard
|
|
callee_context.is_strict_mode = m_strict;
|
|
|
|
// 1. Let callerContext be the running execution context.
|
|
// 2. Let calleeContext be a new ECMAScript code execution context.
|
|
|
|
// NOTE: In the specification, PrepareForOrdinaryCall "returns" a new callee execution context.
|
|
// To avoid heap allocations, we put our ExecutionContext objects on the C++ stack instead.
|
|
// Whoever calls us should put an ExecutionContext on their stack and pass that as the `callee_context`.
|
|
|
|
// 3. Set the Function of calleeContext to F.
|
|
callee_context.function = this;
|
|
callee_context.function_name = m_name;
|
|
|
|
// 4. Let calleeRealm be F.[[Realm]].
|
|
auto callee_realm = m_realm;
|
|
// NOTE: This non-standard fallback is needed until we can guarantee that literally
|
|
// every function has a realm - especially in LibWeb that's sometimes not the case
|
|
// when a function is created while no JS is running, as we currently need to rely on
|
|
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
|
|
// If there's no 'current realm' either, we can't continue and crash.
|
|
if (!callee_realm)
|
|
callee_realm = vm.current_realm();
|
|
VERIFY(callee_realm);
|
|
|
|
// 5. Set the Realm of calleeContext to calleeRealm.
|
|
callee_context.realm = callee_realm;
|
|
|
|
// 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
|
|
callee_context.script_or_module = m_script_or_module;
|
|
|
|
// 7. Let localEnv be NewFunctionEnvironment(F, newTarget).
|
|
auto local_environment = new_function_environment(*this, new_target);
|
|
|
|
// 8. Set the LexicalEnvironment of calleeContext to localEnv.
|
|
callee_context.lexical_environment = local_environment;
|
|
|
|
// 9. Set the VariableEnvironment of calleeContext to localEnv.
|
|
callee_context.variable_environment = local_environment;
|
|
|
|
// 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]].
|
|
callee_context.private_environment = m_private_environment;
|
|
|
|
// 11. If callerContext is not already suspended, suspend callerContext.
|
|
// FIXME: We don't have this concept yet.
|
|
|
|
// 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
|
|
TRY(vm.push_execution_context(callee_context, {}));
|
|
|
|
// 13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
|
|
// 14. Return calleeContext.
|
|
// NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack.
|
|
return {};
|
|
}
|
|
|
|
// 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis
|
|
void ECMAScriptFunctionObject::ordinary_call_bind_this(ExecutionContext& callee_context, Value this_argument)
|
|
{
|
|
auto& vm = this->vm();
|
|
|
|
// 1. Let thisMode be F.[[ThisMode]].
|
|
auto this_mode = m_this_mode;
|
|
|
|
// If thisMode is lexical, return unused.
|
|
if (this_mode == ThisMode::Lexical)
|
|
return;
|
|
|
|
// 3. Let calleeRealm be F.[[Realm]].
|
|
auto callee_realm = m_realm;
|
|
// NOTE: This non-standard fallback is needed until we can guarantee that literally
|
|
// every function has a realm - especially in LibWeb that's sometimes not the case
|
|
// when a function is created while no JS is running, as we currently need to rely on
|
|
// that (:acid2:, I know - see set_event_handler_attribute() for an example).
|
|
// If there's no 'current realm' either, we can't continue and crash.
|
|
if (!callee_realm)
|
|
callee_realm = vm.current_realm();
|
|
VERIFY(callee_realm);
|
|
|
|
// 4. Let localEnv be the LexicalEnvironment of calleeContext.
|
|
auto local_env = callee_context.lexical_environment;
|
|
|
|
Value this_value;
|
|
|
|
// 5. If thisMode is strict, let thisValue be thisArgument.
|
|
if (this_mode == ThisMode::Strict) {
|
|
this_value = this_argument;
|
|
}
|
|
// 6. Else,
|
|
else {
|
|
// a. If thisArgument is undefined or null, then
|
|
if (this_argument.is_nullish()) {
|
|
// i. Let globalEnv be calleeRealm.[[GlobalEnv]].
|
|
// ii. Assert: globalEnv is a global Environment Record.
|
|
auto& global_env = callee_realm->global_environment();
|
|
|
|
// iii. Let thisValue be globalEnv.[[GlobalThisValue]].
|
|
this_value = &global_env.global_this_value();
|
|
}
|
|
// b. Else,
|
|
else {
|
|
// i. Let thisValue be ! ToObject(thisArgument).
|
|
this_value = MUST(this_argument.to_object(vm));
|
|
|
|
// ii. NOTE: ToObject produces wrapper objects using calleeRealm.
|
|
VERIFY(vm.current_realm() == callee_realm);
|
|
}
|
|
}
|
|
|
|
// 7. Assert: localEnv is a function Environment Record.
|
|
// 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized.
|
|
// 9. Perform ! localEnv.BindThisValue(thisValue).
|
|
MUST(verify_cast<FunctionEnvironment>(*local_env).bind_this_value(vm, this_value));
|
|
|
|
// 10. Return unused.
|
|
}
|
|
|
|
// 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start
|
|
template<typename T>
|
|
void async_function_start(VM& vm, PromiseCapability const& promise_capability, T const& async_function_body)
|
|
{
|
|
// 1. Let runningContext be the running execution context.
|
|
auto& running_context = vm.running_execution_context();
|
|
|
|
// 2. Let asyncContext be a copy of runningContext.
|
|
auto async_context = running_context.copy();
|
|
|
|
// 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.
|
|
|
|
// 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext).
|
|
async_block_start(vm, async_function_body, promise_capability, async_context);
|
|
|
|
// 5. Return unused.
|
|
}
|
|
|
|
// 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart
|
|
// 12.7.1.1 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/proposal-explicit-resource-management/#sec-asyncblockstart
|
|
// 1.2.1.1 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/proposal-array-from-async/#sec-asyncblockstart
|
|
template<typename T>
|
|
void async_block_start(VM& vm, T const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context)
|
|
{
|
|
// NOTE: This function is a combination between two proposals, so does not exactly match spec steps of either.
|
|
|
|
auto& realm = *vm.current_realm();
|
|
|
|
// 1. Assert: promiseCapability is a PromiseCapability Record.
|
|
|
|
// 2. Let runningContext be the running execution context.
|
|
auto& running_context = vm.running_execution_context();
|
|
|
|
// 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the following steps will be performed:
|
|
auto execution_steps = NativeFunction::create(realm, "", [&realm, &async_body, &promise_capability, &async_context](auto& vm) -> ThrowCompletionOr<Value> {
|
|
Completion result;
|
|
|
|
// a. If asyncBody is a Parse Node, then
|
|
if constexpr (!IsCallableWithArguments<T, Completion>) {
|
|
// a. Let result be the result of evaluating asyncBody.
|
|
// FIXME: Cache this executable somewhere.
|
|
auto maybe_executable = Bytecode::compile(vm, async_body, FunctionKind::Async, "AsyncBlockStart"sv);
|
|
if (maybe_executable.is_error())
|
|
result = maybe_executable.release_error();
|
|
else
|
|
result = vm.bytecode_interpreter().run_and_return_frame(realm, *maybe_executable.value(), nullptr).value;
|
|
}
|
|
// b. Else,
|
|
else {
|
|
(void)realm;
|
|
|
|
// i. Assert: asyncBody is an Abstract Closure with no parameters.
|
|
static_assert(IsCallableWithArguments<T, Completion>);
|
|
|
|
// ii. Let result be asyncBody().
|
|
result = async_body();
|
|
}
|
|
|
|
// c. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
|
|
|
|
// d. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context.
|
|
vm.pop_execution_context();
|
|
|
|
// NOTE: This does not work for Array.fromAsync, likely due to conflicts between that proposal and Explicit Resource Management proposal.
|
|
if constexpr (!IsCallableWithArguments<T, Completion>) {
|
|
// e. Let env be asyncContext's LexicalEnvironment.
|
|
auto env = async_context.lexical_environment;
|
|
|
|
// f. Set result to DisposeResources(env, result).
|
|
result = dispose_resources(vm, verify_cast<DeclarativeEnvironment>(env.ptr()), result);
|
|
} else {
|
|
(void)async_context;
|
|
}
|
|
|
|
// g. If result.[[Type]] is normal, then
|
|
if (result.type() == Completion::Type::Normal) {
|
|
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
|
|
MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined()));
|
|
}
|
|
// h. Else if result.[[Type]] is return, then
|
|
else if (result.type() == Completion::Type::Return) {
|
|
// i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
|
|
MUST(call(vm, *promise_capability.resolve(), js_undefined(), *result.value()));
|
|
}
|
|
// i. Else,
|
|
else {
|
|
// i. Assert: result.[[Type]] is throw.
|
|
VERIFY(result.type() == Completion::Type::Throw);
|
|
|
|
// ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).
|
|
MUST(call(vm, *promise_capability.reject(), js_undefined(), *result.value()));
|
|
}
|
|
// j. Return unused.
|
|
// NOTE: We don't support returning an empty/optional/unused value here.
|
|
return js_undefined();
|
|
});
|
|
|
|
// 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
|
|
auto push_result = vm.push_execution_context(async_context, {});
|
|
if (push_result.is_error())
|
|
return;
|
|
|
|
// 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
|
|
auto result = call(vm, *execution_steps, async_context.this_value.is_empty() ? js_undefined() : async_context.this_value);
|
|
|
|
// 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context.
|
|
VERIFY(&vm.running_execution_context() == &running_context);
|
|
|
|
// 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 3.g above.
|
|
VERIFY(result.has_value() && result.value().is_undefined());
|
|
|
|
// 8. Return unused.
|
|
}
|
|
|
|
template void async_block_start(VM&, NonnullRefPtr<Statement const> const& async_body, PromiseCapability const&, ExecutionContext&);
|
|
template void async_function_start(VM&, PromiseCapability const&, NonnullRefPtr<Statement const> const& async_function_body);
|
|
|
|
template void async_block_start(VM&, SafeFunction<Completion()> const& async_body, PromiseCapability const&, ExecutionContext&);
|
|
template void async_function_start(VM&, PromiseCapability const&, SafeFunction<Completion()> const& async_function_body);
|
|
|
|
// 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody
|
|
// 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody
|
|
Completion ECMAScriptFunctionObject::ordinary_call_evaluate_body()
|
|
{
|
|
auto& vm = this->vm();
|
|
auto& realm = *vm.current_realm();
|
|
|
|
// NOTE: There's a subtle ordering issue here:
|
|
// - We have to compile the default parameter values before instantiating the function.
|
|
// - We have to instantiate the function before compiling the function body.
|
|
// This is why FunctionDeclarationInstantiation is invoked in the middle.
|
|
// The issue is that FunctionDeclarationInstantiation may mark certain functions as hoisted
|
|
// per Annex B. This affects code generation for FunctionDeclaration nodes.
|
|
|
|
if (!m_bytecode_executable) {
|
|
size_t default_parameter_index = 0;
|
|
for (auto& parameter : m_formal_parameters) {
|
|
if (!parameter.default_value)
|
|
continue;
|
|
auto executable = TRY(Bytecode::compile(vm, *parameter.default_value, FunctionKind::Normal, DeprecatedString::formatted("default parameter #{} for {}", default_parameter_index, m_name)));
|
|
m_default_parameter_bytecode_executables.append(move(executable));
|
|
}
|
|
}
|
|
|
|
auto declaration_result = function_declaration_instantiation();
|
|
|
|
if (m_kind == FunctionKind::Normal || m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator) {
|
|
if (declaration_result.is_error())
|
|
return declaration_result.release_error();
|
|
}
|
|
|
|
if (!m_bytecode_executable)
|
|
m_bytecode_executable = TRY(Bytecode::compile(vm, *m_ecmascript_code, m_kind, m_name));
|
|
|
|
if (m_kind == FunctionKind::Async) {
|
|
if (declaration_result.is_throw_completion()) {
|
|
auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));
|
|
MUST(call(vm, *promise_capability->reject(), js_undefined(), *declaration_result.throw_completion().value()));
|
|
return Completion { Completion::Type::Return, promise_capability->promise(), {} };
|
|
}
|
|
}
|
|
|
|
auto result_and_frame = vm.bytecode_interpreter().run_and_return_frame(realm, *m_bytecode_executable, nullptr);
|
|
|
|
VERIFY(result_and_frame.frame != nullptr);
|
|
if (result_and_frame.value.is_error())
|
|
return result_and_frame.value.release_error();
|
|
|
|
auto result = result_and_frame.value.release_value();
|
|
|
|
// NOTE: Running the bytecode should eventually return a completion.
|
|
// Until it does, we assume "return" and include the undefined fallback from the call site.
|
|
if (m_kind == FunctionKind::Normal)
|
|
return { Completion::Type::Return, result.value_or(js_undefined()), {} };
|
|
|
|
if (m_kind == FunctionKind::AsyncGenerator) {
|
|
auto async_generator_object = TRY(AsyncGenerator::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame)));
|
|
return { Completion::Type::Return, async_generator_object, {} };
|
|
}
|
|
|
|
auto generator_object = TRY(GeneratorObject::create(realm, result, this, vm.running_execution_context().copy(), move(*result_and_frame.frame)));
|
|
|
|
// NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise
|
|
// See AwaitExpression::generate_bytecode() for the transformation.
|
|
if (m_kind == FunctionKind::Async)
|
|
return { Completion::Type::Return, AsyncFunctionDriverWrapper::create(realm, generator_object), {} };
|
|
|
|
VERIFY(m_kind == FunctionKind::Generator);
|
|
return { Completion::Type::Return, generator_object, {} };
|
|
}
|
|
|
|
void ECMAScriptFunctionObject::set_name(DeprecatedFlyString const& name)
|
|
{
|
|
VERIFY(!name.is_null());
|
|
auto& vm = this->vm();
|
|
m_name = name;
|
|
MUST(define_property_or_throw(vm.names.name, { .value = PrimitiveString::create(vm, m_name), .writable = false, .enumerable = false, .configurable = true }));
|
|
}
|
|
}
|