ladybird/Kernel/PCI/Access.cpp
Liav A 27bf91ab87 Revert "Kernel/PCI: Allow to set the PCI IRQ line of a device"
This reverts commit 36a82188a8.

This register is write-only for the firmware (BIOS), and read-only for
us so we shouldn't set the PCI IRQ line never.
The firmware figured out the IRQ routing to the PIC for us, so changing
it won't affect anything. I was mistaken when I thought that changing
the value of this register will allow us to change its interrupt line,
like when changing a PCI BAR to relocate device resources as desired
with the requirements of the OS.
2021-04-03 11:57:23 +02:00

316 lines
9.9 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/IOAccess.h>
namespace Kernel {
namespace PCI {
static Access* s_access;
inline void write8(Address address, u32 field, u8 value) { Access::the().write8_field(address, field, value); }
inline void write16(Address address, u32 field, u16 value) { Access::the().write16_field(address, field, value); }
inline void write32(Address address, u32 field, u32 value) { Access::the().write32_field(address, field, value); }
inline u8 read8(Address address, u32 field) { return Access::the().read8_field(address, field); }
inline u16 read16(Address address, u32 field) { return Access::the().read16_field(address, field); }
inline u32 read32(Address address, u32 field) { return Access::the().read32_field(address, field); }
Access& Access::the()
{
if (s_access == nullptr) {
VERIFY_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here!
}
return *s_access;
}
bool Access::is_initialized()
{
return (s_access != nullptr);
}
UNMAP_AFTER_INIT Access::Access()
{
s_access = this;
}
PhysicalID Access::get_physical_id(Address address) const
{
for (auto physical_id : m_physical_ids) {
if (physical_id.address().seg() == address.seg()
&& physical_id.address().bus() == address.bus()
&& physical_id.address().device() == address.device()
&& physical_id.address().function() == address.function()) {
return physical_id;
}
}
VERIFY_NOT_REACHED();
}
u8 Access::early_read8_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 8-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in8(PCI_VALUE_PORT + (field & 3));
}
u16 Access::early_read16_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 16-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in16(PCI_VALUE_PORT + (field & 2));
}
u32 Access::early_read32_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 32-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in32(PCI_VALUE_PORT);
}
u16 Access::early_read_type(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading type for {}", address);
return (early_read8_field(address, PCI_CLASS) << 8u) | early_read8_field(address, PCI_SUBCLASS);
}
void Access::enumerate_functions(int type, u8 bus, u8 device, u8 function, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating function type={}, bus={}, device={}, function={}", type, bus, device, function);
Address address(0, bus, device, function);
if (type == -1 || type == early_read_type(address))
callback(address, { early_read16_field(address, PCI_VENDOR_ID), early_read16_field(address, PCI_DEVICE_ID) });
if (early_read_type(address) == PCI_TYPE_BRIDGE && recursive) {
u8 secondary_bus = early_read8_field(address, PCI_SECONDARY_BUS);
dbgln_if(PCI_DEBUG, "PCI: Found secondary bus: {}", secondary_bus);
VERIFY(secondary_bus != bus);
enumerate_bus(type, secondary_bus, callback, recursive);
}
}
void Access::enumerate_device(int type, u8 bus, u8 device, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating device type={}, bus={}, device={}", type, bus, device);
Address address(0, bus, device, 0);
if (early_read16_field(address, PCI_VENDOR_ID) == PCI_NONE)
return;
enumerate_functions(type, bus, device, 0, callback, recursive);
if (!(early_read8_field(address, PCI_HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
Address address(0, bus, device, function);
if (early_read16_field(address, PCI_VENDOR_ID) != PCI_NONE)
enumerate_functions(type, bus, device, function, callback, recursive);
}
}
void Access::enumerate_bus(int type, u8 bus, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating bus type={}, bus={}", type, bus);
for (u8 device = 0; device < 32; ++device)
enumerate_device(type, bus, device, callback, recursive);
}
void Access::enumerate(Function<void(Address, ID)>& callback) const
{
for (auto& physical_id : m_physical_ids) {
callback(physical_id.address(), physical_id.id());
}
}
void enumerate(Function<void(Address, ID)> callback)
{
Access::the().enumerate(callback);
}
Optional<u8> get_capabilities_pointer(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities pointer for {}", address);
if (PCI::read16(address, PCI_STATUS) & (1 << 4)) {
dbgln_if(PCI_DEBUG, "PCI: Found capabilities pointer for {}", address);
return PCI::read8(address, PCI_CAPABILITIES_POINTER);
}
dbgln_if(PCI_DEBUG, "PCI: No capabilities pointer for {}", address);
return {};
}
PhysicalID get_physical_id(Address address)
{
return Access::the().get_physical_id(address);
}
Vector<Capability> get_capabilities(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities for {}", address);
auto capabilities_pointer = PCI::get_capabilities_pointer(address);
if (!capabilities_pointer.has_value()) {
dbgln_if(PCI_DEBUG, "PCI: No capabilities for {}", address);
return {};
}
Vector<Capability> capabilities;
auto capability_pointer = capabilities_pointer.value();
while (capability_pointer != 0) {
dbgln_if(PCI_DEBUG, "PCI: Reading in capability at {:#02x} for {}", capability_pointer, address);
u16 capability_header = PCI::read16(address, capability_pointer);
u8 capability_id = capability_header & 0xff;
capability_pointer = capability_header >> 8;
capabilities.append({ capability_id, capability_pointer });
}
return capabilities;
}
void raw_access(Address address, u32 field, size_t access_size, u32 value)
{
VERIFY(access_size != 0);
if (access_size == 1) {
write8(address, field, value);
return;
}
if (access_size == 2) {
write16(address, field, value);
return;
}
if (access_size == 4) {
write32(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
ID get_id(Address address)
{
return { read16(address, PCI_VENDOR_ID), read16(address, PCI_DEVICE_ID) };
}
void enable_interrupt_line(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) & ~(1 << 10));
}
void disable_interrupt_line(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) | 1 << 10);
}
u8 get_interrupt_line(Address address)
{
return read8(address, PCI_INTERRUPT_LINE);
}
u32 get_BAR0(Address address)
{
return read32(address, PCI_BAR0);
}
u32 get_BAR1(Address address)
{
return read32(address, PCI_BAR1);
}
u32 get_BAR2(Address address)
{
return read32(address, PCI_BAR2);
}
u32 get_BAR3(Address address)
{
return read16(address, PCI_BAR3);
}
u32 get_BAR4(Address address)
{
return read32(address, PCI_BAR4);
}
u32 get_BAR5(Address address)
{
return read32(address, PCI_BAR5);
}
u8 get_revision_id(Address address)
{
return read8(address, PCI_REVISION_ID);
}
u8 get_subclass(Address address)
{
return read8(address, PCI_SUBCLASS);
}
u8 get_class(Address address)
{
return read8(address, PCI_CLASS);
}
u8 get_programming_interface(Address address)
{
return read8(address, PCI_PROG_IF);
}
u16 get_subsystem_id(Address address)
{
return read16(address, PCI_SUBSYSTEM_ID);
}
u16 get_subsystem_vendor_id(Address address)
{
return read16(address, PCI_SUBSYSTEM_VENDOR_ID);
}
void enable_bus_mastering(Address address)
{
auto value = read16(address, PCI_COMMAND);
value |= (1 << 2);
value |= (1 << 0);
write16(address, PCI_COMMAND, value);
}
void disable_bus_mastering(Address address)
{
auto value = read16(address, PCI_COMMAND);
value &= ~(1 << 2);
value |= (1 << 0);
write16(address, PCI_COMMAND, value);
}
size_t get_BAR_space_size(Address address, u8 bar_number)
{
// See PCI Spec 2.3, Page 222
VERIFY(bar_number < 6);
u8 field = (PCI_BAR0 + (bar_number << 2));
u32 bar_reserved = read32(address, field);
write32(address, field, 0xFFFFFFFF);
u32 space_size = read32(address, field);
write32(address, field, bar_reserved);
space_size &= 0xfffffff0;
space_size = (~space_size) + 1;
return space_size;
}
}
}