ladybird/Userland/DevTools/UserspaceEmulator/MallocTracer.cpp
Tobias Christiansen c4a9f0db82 UserspaceEmulator: Improve detection of memory leaks
Previous a mallocation was marked as 'reachable' when any other
mallocation or memory region had a pointer to that mallocation. However
there could be the situation that two mallocations have pointers to each
other while still being unreachable from anywhere else. They would be
marked as 'reachable' regardless.

This patch replaces the old way of detemining whether a mallocation is
reachable by analyzing the dependencies of the different mallocations
using a graph-approach. Now mallocations are only reachable if pointed
to by other reachable mallocations or other memory regions.

A nice bonus is that this gets rid of a nested for_each_mallocation, so
the complexity of leak finding becomes linear instead of quadratic.
2021-04-12 18:02:16 +02:00

435 lines
17 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobi@tobyase.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "MallocTracer.h"
#include "Emulator.h"
#include "MmapRegion.h"
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <mallocdefs.h>
#include <string.h>
#include <unistd.h>
namespace UserspaceEmulator {
MallocTracer::MallocTracer(Emulator& emulator)
: m_emulator(emulator)
{
}
template<typename Callback>
inline void MallocTracer::for_each_mallocation(Callback callback) const
{
m_emulator.mmu().for_each_region([&](auto& region) {
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block()) {
auto* malloc_data = static_cast<MmapRegion&>(region).malloc_metadata();
for (auto& mallocation : malloc_data->mallocations) {
if (mallocation.used && callback(mallocation) == IterationDecision::Break)
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
}
void MallocTracer::target_did_malloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
memset(shadow_bits, 0, size);
if (auto* existing_mallocation = find_mallocation(address)) {
VERIFY(existing_mallocation->freed);
existing_mallocation->size = size;
existing_mallocation->freed = false;
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
existing_mallocation->free_backtrace.clear();
return;
}
if (!mmap_region.is_malloc_block()) {
auto chunk_size = mmap_region.read32(offsetof(CommonHeader, m_size)).value();
mmap_region.set_malloc_metadata({},
adopt_own(*new MallocRegionMetadata {
.region = mmap_region,
.address = mmap_region.base(),
.chunk_size = chunk_size,
.mallocations = {},
}));
auto& malloc_data = *mmap_region.malloc_metadata();
bool is_chunked_block = malloc_data.chunk_size <= size_classes[num_size_classes - 1];
if (is_chunked_block)
malloc_data.mallocations.resize((ChunkedBlock::block_size - sizeof(ChunkedBlock)) / malloc_data.chunk_size);
else
malloc_data.mallocations.resize(1);
// Mark the containing mmap region as a malloc block!
mmap_region.set_malloc(true);
}
auto* mallocation = mmap_region.malloc_metadata()->mallocation_for_address(address);
VERIFY(mallocation);
*mallocation = { address, size, true, false, m_emulator.raw_backtrace(), Vector<FlatPtr>() };
}
ALWAYS_INLINE Mallocation* MallocRegionMetadata::mallocation_for_address(FlatPtr address) const
{
auto index = chunk_index_for_address(address);
if (!index.has_value())
return nullptr;
return &const_cast<Mallocation&>(this->mallocations[index.value()]);
}
ALWAYS_INLINE Optional<size_t> MallocRegionMetadata::chunk_index_for_address(FlatPtr address) const
{
bool is_chunked_block = chunk_size <= size_classes[num_size_classes - 1];
if (!is_chunked_block) {
// This is a BigAllocationBlock
return 0;
}
auto offset_into_block = address - this->address;
if (offset_into_block < sizeof(ChunkedBlock))
return 0;
auto chunk_offset = offset_into_block - sizeof(ChunkedBlock);
auto chunk_index = chunk_offset / this->chunk_size;
if (chunk_index >= mallocations.size())
return {};
return chunk_index;
}
void MallocTracer::target_did_free(Badge<Emulator>, FlatPtr address)
{
if (!address)
return;
if (m_emulator.is_in_loader_code())
return;
if (auto* mallocation = find_mallocation(address)) {
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mDouble free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has already been passed to free()", getpid(), address);
m_emulator.dump_backtrace();
} else {
mallocation->freed = true;
mallocation->free_backtrace = m_emulator.raw_backtrace();
}
return;
}
reportln("\n=={}== \033[31;1mInvalid free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has never been returned by malloc()", getpid(), address);
m_emulator.dump_backtrace();
}
void MallocTracer::target_did_realloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
VERIFY(mmap_region.is_malloc_block());
auto* existing_mallocation = find_mallocation(address);
VERIFY(existing_mallocation);
VERIFY(!existing_mallocation->freed);
size_t old_size = existing_mallocation->size;
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
if (size > old_size) {
memset(shadow_bits + old_size, 1, size - old_size);
} else {
memset(shadow_bits + size, 1, old_size - size);
}
existing_mallocation->size = size;
// FIXME: Should we track malloc/realloc backtrace separately perhaps?
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
}
Mallocation* MallocTracer::find_mallocation(FlatPtr address)
{
auto* region = m_emulator.mmu().find_region({ 0x23, address });
if (!region)
return nullptr;
return find_mallocation(*region, address);
}
Mallocation* MallocTracer::find_mallocation_before(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address >= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address > found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
Mallocation* MallocTracer::find_mallocation_after(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address <= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address < found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
void MallocTracer::audit_read(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free() || m_emulator.is_in_libsystem()) {
return;
}
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::audit_write(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free())
return;
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::populate_memory_graph()
{
// Create Node for each live Mallocation
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
m_memory_graph.set(mallocation.address, {});
return IterationDecision::Continue;
});
// Find pointers from each memory region to another
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
size_t pointers_in_mallocation = mallocation.size / sizeof(u32);
auto& edges_from_mallocation = m_memory_graph.find(mallocation.address)->value;
for (size_t i = 0; i < pointers_in_mallocation; ++i) {
auto value = m_emulator.mmu().read32({ 0x23, mallocation.address + i * sizeof(u32) });
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
#if REACHABLE_DEBUG
reportln("region/mallocation {:p} is reachable from other mallocation {:p}", other_address, mallocation.address);
#endif
edges_from_mallocation.edges_from_node.append(other_address);
}
}
return IterationDecision::Continue;
});
// Find mallocations that are pointed to by other regions
Vector<FlatPtr> reachable_mallocations = {};
m_emulator.mmu().for_each_region([&](auto& region) {
// Skip the stack
if (region.is_stack())
return IterationDecision::Continue;
if (region.is_text())
return IterationDecision::Continue;
if (!region.is_readable())
return IterationDecision::Continue;
// Skip malloc blocks
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block())
return IterationDecision::Continue;
size_t pointers_in_region = region.size() / sizeof(u32);
for (size_t i = 0; i < pointers_in_region; ++i) {
auto value = region.read32(i * sizeof(u32));
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
#if REACHABLE_DEBUG
reportln("region/mallocation {:p} is reachable from region {:p}-{:p}", other_address, region.base(), region.end() - 1);
#endif
m_memory_graph.find(other_address)->value.is_reachable = true;
reachable_mallocations.append(other_address);
}
}
return IterationDecision::Continue;
});
// Propagate reachability
// There are probably better ways to do that
Vector<FlatPtr> visited = {};
for (size_t i = 0; i < reachable_mallocations.size(); ++i) {
auto reachable = reachable_mallocations.at(i);
if (visited.contains_slow(reachable))
continue;
visited.append(reachable);
auto& mallocation_node = m_memory_graph.find(reachable)->value;
if (!mallocation_node.is_reachable)
mallocation_node.is_reachable = true;
for (auto& edge : mallocation_node.edges_from_node) {
reachable_mallocations.append(edge);
}
}
}
void MallocTracer::dump_memory_graph()
{
for (auto& key : m_memory_graph.keys()) {
auto value = m_memory_graph.find(key)->value;
dbgln("Block {:p} [{}reachable] ({} edges)", key, !value.is_reachable ? "not " : "", value.edges_from_node.size());
for (auto& edge : value.edges_from_node) {
dbgln(" -> {:p}", edge);
}
}
}
void MallocTracer::dump_leak_report()
{
TemporaryChange change(m_auditing_enabled, false);
size_t bytes_leaked = 0;
size_t leaks_found = 0;
populate_memory_graph();
#if REACHABLE_DEBUG
dump_memory_graph();
#endif
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
auto& value = m_memory_graph.find(mallocation.address)->value;
if (value.is_reachable)
return IterationDecision::Continue;
++leaks_found;
bytes_leaked += mallocation.size;
reportln("\n=={}== \033[31;1mLeak\033[0m, {}-byte allocation at address {:p}", getpid(), mallocation.size, mallocation.address);
m_emulator.dump_backtrace(mallocation.malloc_backtrace);
return IterationDecision::Continue;
});
if (!leaks_found)
reportln("\n=={}== \033[32;1mNo leaks found!\033[0m", getpid());
else
reportln("\n=={}== \033[31;1m{} leak(s) found: {} byte(s) leaked\033[0m", getpid(), leaks_found, bytes_leaked);
}
}