ladybird/Libraries/LibJS/AST.cpp
Andreas Kling 3bfb0534be LibGC: Rename MarkedVector => RootVector
Let's try to make it a bit more clear that this is a Vector of GC roots.
2024-12-26 19:10:44 +01:00

1884 lines
66 KiB
C++

/*
* Copyright (c) 2020-2024, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021-2022, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Demangle.h>
#include <AK/HashTable.h>
#include <AK/QuickSort.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <AK/TemporaryChange.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibGC/ConservativeVector.h>
#include <LibGC/RootVector.h>
#include <LibJS/AST.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/FunctionEnvironment.h>
#include <LibJS/Runtime/GlobalEnvironment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Iterator.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/ObjectEnvironment.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/PromiseCapability.h>
#include <LibJS/Runtime/PromiseConstructor.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/ValueInlines.h>
#include <typeinfo>
namespace JS {
ASTNode::ASTNode(SourceRange source_range)
: m_start_offset(source_range.start.offset)
, m_source_code(source_range.code)
, m_end_offset(source_range.end.offset)
{
}
SourceRange ASTNode::source_range() const
{
return m_source_code->range_from_offsets(m_start_offset, m_end_offset);
}
ByteString ASTNode::class_name() const
{
// NOTE: We strip the "JS::" prefix.
auto const* typename_ptr = typeid(*this).name();
return demangle({ typename_ptr, strlen(typename_ptr) }).substring(4);
}
static void print_indent(int indent)
{
out("{}", ByteString::repeated(' ', indent * 2));
}
static void update_function_name(Value value, DeprecatedFlyString const& name)
{
if (!value.is_function())
return;
auto& function = value.as_function();
if (is<ECMAScriptFunctionObject>(function) && function.name().is_empty())
static_cast<ECMAScriptFunctionObject&>(function).set_name(name);
}
void LabelledStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(Label)");
print_indent(indent + 2);
outln("\"{}\"", m_label);
print_indent(indent + 1);
outln("(Labelled item)");
m_labelled_item->dump(indent + 2);
}
// 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression
Value FunctionExpression::instantiate_ordinary_function_expression(VM& vm, DeprecatedFlyString given_name) const
{
auto& realm = *vm.current_realm();
if (given_name.is_empty())
given_name = "";
auto has_own_name = !name().is_empty();
auto const used_name = has_own_name ? name() : given_name.view();
auto environment = GC::Ref { *vm.running_execution_context().lexical_environment };
if (has_own_name) {
VERIFY(environment);
environment = new_declarative_environment(*environment);
MUST(environment->create_immutable_binding(vm, name(), false));
}
auto private_environment = vm.running_execution_context().private_environment;
auto closure = ECMAScriptFunctionObject::create(realm, used_name, source_text(), body(), parameters(), function_length(), local_variables_names(), environment, private_environment, kind(), is_strict_mode(),
parsing_insights(), is_arrow_function());
// FIXME: 6. Perform SetFunctionName(closure, name).
// FIXME: 7. Perform MakeConstructor(closure).
if (has_own_name)
MUST(environment->initialize_binding(vm, name(), closure, Environment::InitializeBindingHint::Normal));
return closure;
}
Optional<ByteString> CallExpression::expression_string() const
{
if (is<Identifier>(*m_callee))
return static_cast<Identifier const&>(*m_callee).string();
if (is<MemberExpression>(*m_callee))
return static_cast<MemberExpression const&>(*m_callee).to_string_approximation();
return {};
}
static ThrowCompletionOr<ClassElementName> class_key_to_property_name(VM& vm, Expression const& key, Value prop_key)
{
if (is<PrivateIdentifier>(key)) {
auto& private_identifier = static_cast<PrivateIdentifier const&>(key);
auto private_environment = vm.running_execution_context().private_environment;
VERIFY(private_environment);
return ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) };
}
VERIFY(!prop_key.is_empty());
if (prop_key.is_object())
prop_key = TRY(prop_key.to_primitive(vm, Value::PreferredType::String));
auto property_key = TRY(PropertyKey::from_value(vm, prop_key));
return ClassElementName { property_key };
}
// 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> ClassMethod::class_element_evaluation(VM& vm, Object& target, Value property_key) const
{
auto property_key_or_private_name = TRY(class_key_to_property_name(vm, *m_key, property_key));
auto& method_function = *ECMAScriptFunctionObject::create(*vm.current_realm(), m_function->name(), m_function->source_text(), m_function->body(), m_function->parameters(), m_function->function_length(), m_function->local_variables_names(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function->kind(), m_function->is_strict_mode(),
m_function->parsing_insights(), m_function->is_arrow_function());
auto method_value = Value(&method_function);
method_function.make_method(target);
auto set_function_name = [&](ByteString prefix = "") {
auto name = property_key_or_private_name.visit(
[&](PropertyKey const& property_key) -> ByteString {
if (property_key.is_symbol()) {
auto description = property_key.as_symbol()->description();
if (!description.has_value() || description->is_empty())
return "";
return ByteString::formatted("[{}]", *description);
} else {
return property_key.to_string();
}
},
[&](PrivateName const& private_name) -> ByteString {
return private_name.description;
});
update_function_name(method_value, ByteString::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", name));
};
if (property_key_or_private_name.has<PropertyKey>()) {
auto& property_key = property_key_or_private_name.get<PropertyKey>();
switch (kind()) {
case ClassMethod::Kind::Method:
set_function_name();
TRY(target.define_property_or_throw(property_key, { .value = method_value, .writable = true, .enumerable = false, .configurable = true }));
break;
case ClassMethod::Kind::Getter:
set_function_name("get");
TRY(target.define_property_or_throw(property_key, { .get = &method_function, .enumerable = true, .configurable = true }));
break;
case ClassMethod::Kind::Setter:
set_function_name("set");
TRY(target.define_property_or_throw(property_key, { .set = &method_function, .enumerable = true, .configurable = true }));
break;
default:
VERIFY_NOT_REACHED();
}
return ClassValue { normal_completion({}) };
} else {
auto& private_name = property_key_or_private_name.get<PrivateName>();
switch (kind()) {
case Kind::Method:
set_function_name();
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } };
case Kind::Getter:
set_function_name("get");
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Value(Accessor::create(vm, &method_function, nullptr)) } };
case Kind::Setter:
set_function_name("set");
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Value(Accessor::create(vm, nullptr, &method_function)) } };
default:
VERIFY_NOT_REACHED();
}
}
}
void ClassFieldInitializerStatement::dump(int) const
{
// This should not be dumped as it is never part of an actual AST.
VERIFY_NOT_REACHED();
}
// 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> ClassField::class_element_evaluation(VM& vm, Object& target, Value property_key) const
{
auto& realm = *vm.current_realm();
auto property_key_or_private_name = TRY(class_key_to_property_name(vm, *m_key, property_key));
GC::Ptr<ECMAScriptFunctionObject> initializer;
if (m_initializer) {
auto copy_initializer = m_initializer;
auto name = property_key_or_private_name.visit(
[&](PropertyKey const& property_key) -> ByteString {
return property_key.is_number() ? property_key.to_string() : property_key.to_string_or_symbol().to_display_string();
},
[&](PrivateName const& private_name) -> ByteString {
return private_name.description;
});
// FIXME: A potential optimization is not creating the functions here since these are never directly accessible.
auto function_code = create_ast_node<ClassFieldInitializerStatement>(m_initializer->source_range(), copy_initializer.release_nonnull(), name);
FunctionParsingInsights parsing_insights;
parsing_insights.uses_this_from_environment = true;
parsing_insights.uses_this = true;
initializer = ECMAScriptFunctionObject::create(realm, "field", ByteString::empty(), *function_code, {}, 0, {}, vm.lexical_environment(), vm.running_execution_context().private_environment, FunctionKind::Normal, true, parsing_insights, false, property_key_or_private_name);
initializer->make_method(target);
}
return ClassValue {
ClassFieldDefinition {
move(property_key_or_private_name),
move(initializer),
}
};
}
static Optional<DeprecatedFlyString> nullopt_or_private_identifier_description(Expression const& expression)
{
if (is<PrivateIdentifier>(expression))
return static_cast<PrivateIdentifier const&>(expression).string();
return {};
}
Optional<DeprecatedFlyString> ClassField::private_bound_identifier() const
{
return nullopt_or_private_identifier_description(*m_key);
}
Optional<DeprecatedFlyString> ClassMethod::private_bound_identifier() const
{
return nullopt_or_private_identifier_description(*m_key);
}
// 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation
ThrowCompletionOr<ClassElement::ClassValue> StaticInitializer::class_element_evaluation(VM& vm, Object& home_object, Value) const
{
auto& realm = *vm.current_realm();
// 1. Let lex be the running execution context's LexicalEnvironment.
auto lexical_environment = vm.running_execution_context().lexical_environment;
// 2. Let privateEnv be the running execution context's PrivateEnvironment.
auto private_environment = vm.running_execution_context().private_environment;
// 3. Let sourceText be the empty sequence of Unicode code points.
// 4. Let formalParameters be an instance of the production FormalParameters : [empty] .
// 5. Let bodyFunction be OrdinaryFunctionCreate(%Function.prototype%, sourceText, formalParameters, ClassStaticBlockBody, non-lexical-this, lex, privateEnv).
// Note: The function bodyFunction is never directly accessible to ECMAScript code.
FunctionParsingInsights parsing_insights;
parsing_insights.uses_this_from_environment = true;
parsing_insights.uses_this = true;
auto body_function = ECMAScriptFunctionObject::create(realm, ByteString::empty(), ByteString::empty(), *m_function_body, {}, 0, m_function_body->local_variables_names(), lexical_environment, private_environment, FunctionKind::Normal, true, parsing_insights, false);
// 6. Perform MakeMethod(bodyFunction, homeObject).
body_function->make_method(home_object);
// 7. Return the ClassStaticBlockDefinition Record { [[BodyFunction]]: bodyFunction }.
return ClassValue { normal_completion(body_function) };
}
ThrowCompletionOr<ECMAScriptFunctionObject*> ClassExpression::create_class_constructor(VM& vm, Environment* class_environment, Environment* environment, Value super_class, ReadonlySpan<Value> element_keys, Optional<DeprecatedFlyString> const& binding_name, DeprecatedFlyString const& class_name) const
{
auto& realm = *vm.current_realm();
// We might not set the lexical environment but we always want to restore it eventually.
ArmedScopeGuard restore_environment = [&] {
vm.running_execution_context().lexical_environment = environment;
};
vm.running_execution_context().lexical_environment = class_environment;
auto proto_parent = GC::Ptr { realm.intrinsics().object_prototype() };
auto constructor_parent = realm.intrinsics().function_prototype();
if (!m_super_class.is_null()) {
if (super_class.is_null()) {
proto_parent = nullptr;
} else if (!super_class.is_constructor()) {
return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueNotAConstructorOrNull, super_class.to_string_without_side_effects());
} else {
auto super_class_prototype = TRY(super_class.get(vm, vm.names.prototype));
if (!super_class_prototype.is_null() && !super_class_prototype.is_object())
return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueInvalidPrototype, super_class_prototype.to_string_without_side_effects());
if (super_class_prototype.is_null())
proto_parent = nullptr;
else
proto_parent = super_class_prototype.as_object();
constructor_parent = super_class.as_object();
}
}
auto prototype = Object::create_prototype(realm, proto_parent);
VERIFY(prototype);
// FIXME: Step 14.a is done in the parser. By using a synthetic super(...args) which does not call @@iterator of %Array.prototype%
auto const& constructor = *m_constructor;
auto parsing_insights = constructor.parsing_insights();
parsing_insights.uses_this_from_environment = true;
parsing_insights.uses_this = true;
auto class_constructor = ECMAScriptFunctionObject::create(
realm,
constructor.name(),
constructor.source_text(),
constructor.body(),
constructor.parameters(),
constructor.function_length(),
constructor.local_variables_names(),
vm.lexical_environment(),
vm.running_execution_context().private_environment,
constructor.kind(),
constructor.is_strict_mode(),
parsing_insights,
constructor.is_arrow_function());
class_constructor->set_name(class_name);
class_constructor->set_home_object(prototype);
class_constructor->set_is_class_constructor();
class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
TRY(class_constructor->internal_set_prototype_of(constructor_parent));
if (!m_super_class.is_null())
class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived);
prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable);
using StaticElement = Variant<ClassFieldDefinition, GC::Ref<ECMAScriptFunctionObject>>;
GC::ConservativeVector<PrivateElement> static_private_methods(vm.heap());
GC::ConservativeVector<PrivateElement> instance_private_methods(vm.heap());
GC::ConservativeVector<ClassFieldDefinition> instance_fields(vm.heap());
GC::ConservativeVector<StaticElement> static_elements(vm.heap());
for (size_t element_index = 0; element_index < m_elements.size(); element_index++) {
auto const& element = m_elements[element_index];
// Note: All ClassElementEvaluation start with evaluating the name (or we fake it).
auto element_value = TRY(element->class_element_evaluation(vm, element->is_static() ? *class_constructor : *prototype, element_keys[element_index]));
if (element_value.has<PrivateElement>()) {
auto& container = element->is_static() ? static_private_methods : instance_private_methods;
auto& private_element = element_value.get<PrivateElement>();
auto added_to_existing = false;
// FIXME: We can skip this loop in most cases.
for (auto& existing : container) {
if (existing.key == private_element.key) {
VERIFY(existing.kind == PrivateElement::Kind::Accessor);
VERIFY(private_element.kind == PrivateElement::Kind::Accessor);
auto& accessor = private_element.value.as_accessor();
if (!accessor.getter())
existing.value.as_accessor().set_setter(accessor.setter());
else
existing.value.as_accessor().set_getter(accessor.getter());
added_to_existing = true;
}
}
if (!added_to_existing)
container.append(move(element_value.get<PrivateElement>()));
} else if (auto* class_field_definition_ptr = element_value.get_pointer<ClassFieldDefinition>()) {
if (element->is_static())
static_elements.append(move(*class_field_definition_ptr));
else
instance_fields.append(move(*class_field_definition_ptr));
} else if (element->class_element_kind() == ClassElement::ElementKind::StaticInitializer) {
// We use Completion to hold the ClassStaticBlockDefinition Record.
VERIFY(element_value.has<Completion>() && element_value.get<Completion>().value().has_value());
auto& element_object = element_value.get<Completion>().value()->as_object();
VERIFY(is<ECMAScriptFunctionObject>(element_object));
static_elements.append(GC::Ref { static_cast<ECMAScriptFunctionObject&>(element_object) });
}
}
vm.running_execution_context().lexical_environment = environment;
restore_environment.disarm();
if (binding_name.has_value())
MUST(class_environment->initialize_binding(vm, binding_name.value(), class_constructor, Environment::InitializeBindingHint::Normal));
for (auto& field : instance_fields)
class_constructor->add_field(field);
for (auto& private_method : instance_private_methods)
class_constructor->add_private_method(private_method);
for (auto& method : static_private_methods)
TRY(class_constructor->private_method_or_accessor_add(move(method)));
for (auto& element : static_elements) {
TRY(element.visit(
[&](ClassFieldDefinition& field) -> ThrowCompletionOr<void> {
return TRY(class_constructor->define_field(field));
},
[&](GC::Root<ECMAScriptFunctionObject> static_block_function) -> ThrowCompletionOr<void> {
VERIFY(!static_block_function.is_null());
// We discard any value returned here.
TRY(call(vm, *static_block_function.cell(), class_constructor));
return {};
}));
}
class_constructor->set_source_text(source_text());
return { class_constructor };
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
outln("{}", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_children.is_empty()) {
print_indent(indent + 1);
outln("(Children)");
for (auto& child : children())
child->dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
char const* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::StrictlyEquals:
op_string = "===";
break;
case BinaryOp::StrictlyInequals:
op_string = "!==";
break;
case BinaryOp::LooselyEquals:
op_string = "==";
break;
case BinaryOp::LooselyInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
outln("{}", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
outln("{}", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
char const* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
outln("{}", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
outln("{}", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
char const* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
outln("{}", class_name());
print_indent(indent + 1);
outln("{}", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
if (is<NewExpression>(*this))
outln("CallExpression [new]");
else
outln("CallExpression");
m_callee->dump(indent + 1);
for (auto& argument : arguments())
argument.value->dump(indent + 1);
}
void SuperCall::dump(int indent) const
{
print_indent(indent);
outln("SuperCall");
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void ClassDeclaration::dump(int indent) const
{
ASTNode::dump(indent);
m_class_expression->dump(indent + 1);
}
ThrowCompletionOr<void> ClassDeclaration::for_each_bound_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
if (!m_class_expression->m_name)
return {};
return callback(*m_class_expression->m_name);
}
void ClassExpression::dump(int indent) const
{
print_indent(indent);
outln("ClassExpression: \"{}\"", name());
print_indent(indent);
outln("(Constructor)");
m_constructor->dump(indent + 1);
if (!m_super_class.is_null()) {
print_indent(indent);
outln("(Super Class)");
m_super_class->dump(indent + 1);
}
print_indent(indent);
outln("(Elements)");
for (auto& method : m_elements)
method->dump(indent + 1);
}
void ClassMethod::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Key)");
m_key->dump(indent + 1);
char const* kind_string = nullptr;
switch (m_kind) {
case Kind::Method:
kind_string = "Method";
break;
case Kind::Getter:
kind_string = "Getter";
break;
case Kind::Setter:
kind_string = "Setter";
break;
}
print_indent(indent);
outln("Kind: {}", kind_string);
print_indent(indent);
outln("Static: {}", is_static());
print_indent(indent);
outln("(Function)");
m_function->dump(indent + 1);
}
void ClassField::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Key)");
m_key->dump(indent + 1);
print_indent(indent);
outln("Static: {}", is_static());
if (m_initializer) {
print_indent(indent);
outln("(Initializer)");
m_initializer->dump(indent + 1);
}
}
void StaticInitializer::dump(int indent) const
{
ASTNode::dump(indent);
m_function_body->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
outln("StringLiteral \"{}\"", m_value);
}
void SuperExpression::dump(int indent) const
{
print_indent(indent);
outln("super");
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
outln("NumericLiteral {}", m_value);
}
void BigIntLiteral::dump(int indent) const
{
print_indent(indent);
outln("BigIntLiteral {}", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
outln("BooleanLiteral {}", m_value);
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
outln("null");
}
bool BindingPattern::contains_expression() const
{
for (auto& entry : entries) {
if (entry.name.has<NonnullRefPtr<Expression const>>())
return true;
if (entry.initializer)
return true;
if (auto binding_ptr = entry.alias.get_pointer<NonnullRefPtr<BindingPattern const>>(); binding_ptr && (*binding_ptr)->contains_expression())
return true;
}
return false;
}
ThrowCompletionOr<void> BindingPattern::for_each_bound_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
for (auto const& entry : entries) {
auto const& alias = entry.alias;
if (alias.has<NonnullRefPtr<Identifier const>>()) {
TRY(callback(alias.get<NonnullRefPtr<Identifier const>>()));
} else if (alias.has<NonnullRefPtr<BindingPattern const>>()) {
TRY(alias.get<NonnullRefPtr<BindingPattern const>>()->for_each_bound_identifier(forward<decltype(callback)>(callback)));
} else {
auto const& name = entry.name;
if (name.has<NonnullRefPtr<Identifier const>>())
TRY(callback(name.get<NonnullRefPtr<Identifier const>>()));
}
}
return {};
}
void BindingPattern::dump(int indent) const
{
print_indent(indent);
outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object");
for (auto& entry : entries) {
print_indent(indent + 1);
outln("(Property)");
if (kind == Kind::Object) {
print_indent(indent + 2);
outln("(Identifier)");
if (entry.name.has<NonnullRefPtr<Identifier const>>()) {
entry.name.get<NonnullRefPtr<Identifier const>>()->dump(indent + 3);
} else if (entry.name.has<NonnullRefPtr<Expression const>>()) {
entry.name.get<NonnullRefPtr<Expression const>>()->dump(indent + 3);
} else {
VERIFY(entry.name.has<Empty>());
print_indent(indent + 3);
outln("<empty>");
}
} else if (entry.is_elision()) {
print_indent(indent + 2);
outln("(Elision)");
continue;
}
print_indent(indent + 2);
outln("(Pattern{})", entry.is_rest ? " rest=true" : "");
if (entry.alias.has<NonnullRefPtr<Identifier const>>()) {
entry.alias.get<NonnullRefPtr<Identifier const>>()->dump(indent + 3);
} else if (entry.alias.has<NonnullRefPtr<BindingPattern const>>()) {
entry.alias.get<NonnullRefPtr<BindingPattern const>>()->dump(indent + 3);
} else if (entry.alias.has<NonnullRefPtr<MemberExpression const>>()) {
entry.alias.get<NonnullRefPtr<MemberExpression const>>()->dump(indent + 3);
} else {
print_indent(indent + 3);
outln("<empty>");
}
if (entry.initializer) {
print_indent(indent + 2);
outln("(Initializer)");
entry.initializer->dump(indent + 3);
}
}
}
void FunctionNode::dump(int indent, ByteString const& class_name) const
{
print_indent(indent);
auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator;
auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator;
outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name());
if (m_parsing_insights.contains_direct_call_to_eval) {
print_indent(indent + 1);
outln("\033[31;1m(direct eval)\033[0m");
}
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
outln("(Parameters)");
for (auto& parameter : m_parameters) {
parameter.binding.visit(
[&](Identifier const& identifier) {
if (parameter.is_rest) {
print_indent(indent + 2);
out("...");
identifier.dump(0);
} else {
identifier.dump(indent + 2);
}
},
[&](BindingPattern const& pattern) {
pattern.dump(indent + 2);
});
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
print_indent(indent + 1);
outln("(Body)");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
ThrowCompletionOr<void> FunctionDeclaration::for_each_bound_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
if (!m_name)
return {};
return callback(*m_name);
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void YieldExpression::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void AwaitExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_argument->dump(indent + 1);
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("If");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
outln("Else");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("While");
test().dump(indent + 1);
body().dump(indent + 1);
}
void WithStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("Object");
object().dump(indent + 2);
print_indent(indent + 1);
outln("Body");
body().dump(indent + 2);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("DoWhile");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("For");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
void ForInStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForIn");
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForOf");
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForAwaitOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("ForAwaitOf");
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
m_rhs->dump(indent + 1);
m_body->dump(indent + 1);
}
void Identifier::dump(int indent) const
{
print_indent(indent);
if (is_local()) {
outln("Identifier \"{}\" is_local=(true) index=({})", m_string, m_local_variable_index);
} else if (is_global()) {
outln("Identifier \"{}\" is_global=(true)", m_string);
} else {
outln("Identifier \"{}\"", m_string);
}
}
void PrivateIdentifier::dump(int indent) const
{
print_indent(indent);
outln("PrivateIdentifier \"{}\"", m_string);
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
void AssignmentExpression::dump(int indent) const
{
char const* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
case AssignmentOp::AndAssignment:
op_string = "&&=";
break;
case AssignmentOp::OrAssignment:
op_string = "||=";
break;
case AssignmentOp::NullishAssignment:
op_string = "\?\?=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
outln("{}", op_string);
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
char const* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
if (m_prefixed) {
print_indent(indent + 1);
outln("{}", op_string);
}
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
outln("{}", op_string);
}
}
ThrowCompletionOr<void> VariableDeclaration::for_each_bound_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
for (auto const& entry : declarations()) {
TRY(entry->target().visit(
[&](NonnullRefPtr<Identifier const> const& id) {
return callback(id);
},
[&](NonnullRefPtr<BindingPattern const> const& binding) {
return binding->for_each_bound_identifier([&](auto const& id) {
return callback(id);
});
}));
}
return {};
}
void VariableDeclaration::dump(int indent) const
{
char const* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
outln("{}", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator->dump(indent + 1);
}
ThrowCompletionOr<void> UsingDeclaration::for_each_bound_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
for (auto const& entry : m_declarations) {
VERIFY(entry->target().has<NonnullRefPtr<Identifier const>>());
TRY(callback(entry->target().get<NonnullRefPtr<Identifier const>>()));
}
return {};
}
void UsingDeclaration::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
for (auto& declarator : m_declarations)
declarator->dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_target.visit([indent](auto const& value) { value->dump(indent + 1); });
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
if (m_property_type == Type::Spread) {
print_indent(indent + 1);
outln("...Spreading");
m_key->dump(indent + 1);
} else {
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property->dump(indent + 1);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
outln("{}(computed={})", class_name(), is_computed());
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
ByteString MemberExpression::to_string_approximation() const
{
ByteString object_string = "<object>";
if (is<Identifier>(*m_object))
object_string = static_cast<Identifier const&>(*m_object).string();
if (is_computed())
return ByteString::formatted("{}[<computed>]", object_string);
if (is<PrivateIdentifier>(*m_property))
return ByteString::formatted("{}.{}", object_string, verify_cast<PrivateIdentifier>(*m_property).string());
return ByteString::formatted("{}.{}", object_string, verify_cast<Identifier>(*m_property).string());
}
bool MemberExpression::ends_in_private_name() const
{
if (is_computed())
return false;
if (is<PrivateIdentifier>(*m_property))
return true;
if (is<MemberExpression>(*m_property))
return static_cast<MemberExpression const&>(*m_property).ends_in_private_name();
return false;
}
void OptionalChain::dump(int indent) const
{
print_indent(indent);
outln("{}", class_name());
m_base->dump(indent + 1);
for (auto& reference : m_references) {
reference.visit(
[&](Call const& call) {
print_indent(indent + 1);
outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional");
for (auto& argument : call.arguments)
argument.value->dump(indent + 2);
},
[&](ComputedReference const& ref) {
print_indent(indent + 1);
outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.expression->dump(indent + 2);
},
[&](MemberReference const& ref) {
print_indent(indent + 1);
outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.identifier->dump(indent + 2);
},
[&](PrivateMemberReference const& ref) {
print_indent(indent + 1);
outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
ref.private_identifier->dump(indent + 2);
});
}
}
void MetaProperty::dump(int indent) const
{
ByteString name;
if (m_type == MetaProperty::Type::NewTarget)
name = "new.target";
else if (m_type == MetaProperty::Type::ImportMeta)
name = "import.meta";
else
VERIFY_NOT_REACHED();
print_indent(indent);
outln("{} {}", class_name(), name);
}
void ImportCall::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Specifier)");
m_specifier->dump(indent + 1);
if (m_options) {
outln("(Options)");
m_options->dump(indent + 1);
}
}
void RegExpLiteral::dump(int indent) const
{
print_indent(indent);
outln("{} (/{}/{})", class_name(), pattern(), flags());
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
outln("<empty>");
}
}
}
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression->dump(indent + 1);
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(Tag)");
m_tag->dump(indent + 2);
print_indent(indent + 1);
outln("(Template Literal)");
m_template_literal->dump(indent + 2);
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
outln("(Block)");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
outln("(Handler)");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
outln("(Finalizer)");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
m_parameter.visit(
[&](DeprecatedFlyString const& parameter) {
if (parameter.is_empty())
outln("CatchClause");
else
outln("CatchClause ({})", parameter);
},
[&](NonnullRefPtr<BindingPattern const> const& pattern) {
outln("CatchClause");
print_indent(indent);
outln("(Parameter)");
pattern->dump(indent + 2);
});
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case->dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
print_indent(indent + 1);
if (m_test) {
outln("(Test)");
m_test->dump(indent + 2);
} else {
outln("(Default)");
}
print_indent(indent + 1);
outln("(Consequent)");
ScopeNode::dump(indent + 2);
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(Test)");
m_test->dump(indent + 2);
print_indent(indent + 1);
outln("(Consequent)");
m_consequent->dump(indent + 2);
print_indent(indent + 1);
outln("(Alternate)");
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression->dump(indent + 1);
}
bool ScopeNode::has_non_local_lexical_declarations() const
{
bool result = false;
MUST(for_each_lexically_declared_identifier([&](Identifier const& identifier) {
if (!identifier.is_local())
result = true;
}));
return result;
}
ThrowCompletionOr<void> ScopeNode::for_each_lexically_scoped_declaration(ThrowCompletionOrVoidCallback<Declaration const&>&& callback) const
{
for (auto& declaration : m_lexical_declarations)
TRY(callback(declaration));
return {};
}
ThrowCompletionOr<void> ScopeNode::for_each_lexically_declared_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
for (auto const& declaration : m_lexical_declarations) {
TRY(declaration->for_each_bound_identifier([&](auto const& identifier) {
return callback(identifier);
}));
}
return {};
}
ThrowCompletionOr<void> ScopeNode::for_each_var_declared_identifier(ThrowCompletionOrVoidCallback<Identifier const&>&& callback) const
{
for (auto& declaration : m_var_declarations) {
TRY(declaration->for_each_bound_identifier([&](auto const& id) {
return callback(id);
}));
}
return {};
}
ThrowCompletionOr<void> ScopeNode::for_each_var_function_declaration_in_reverse_order(ThrowCompletionOrVoidCallback<FunctionDeclaration const&>&& callback) const
{
for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) {
auto& declaration = m_var_declarations[i];
if (is<FunctionDeclaration>(declaration))
TRY(callback(static_cast<FunctionDeclaration const&>(*declaration)));
}
return {};
}
ThrowCompletionOr<void> ScopeNode::for_each_var_scoped_variable_declaration(ThrowCompletionOrVoidCallback<VariableDeclaration const&>&& callback) const
{
for (auto& declaration : m_var_declarations) {
if (!is<FunctionDeclaration>(declaration)) {
VERIFY(is<VariableDeclaration>(declaration));
TRY(callback(static_cast<VariableDeclaration const&>(*declaration)));
}
}
return {};
}
ThrowCompletionOr<void> ScopeNode::for_each_function_hoistable_with_annexB_extension(ThrowCompletionOrVoidCallback<FunctionDeclaration&>&& callback) const
{
for (auto& function : m_functions_hoistable_with_annexB_extension) {
// We need const_cast here since it might have to set a property on function declaration.
TRY(callback(const_cast<FunctionDeclaration&>(*function)));
}
return {};
}
void ScopeNode::add_lexical_declaration(NonnullRefPtr<Declaration const> declaration)
{
m_lexical_declarations.append(move(declaration));
}
void ScopeNode::add_var_scoped_declaration(NonnullRefPtr<Declaration const> declaration)
{
m_var_declarations.append(move(declaration));
}
void ScopeNode::add_hoisted_function(NonnullRefPtr<FunctionDeclaration const> declaration)
{
m_functions_hoistable_with_annexB_extension.append(move(declaration));
}
DeprecatedFlyString ExportStatement::local_name_for_default = "*default*";
static void dump_assert_clauses(ModuleRequest const& request)
{
if (!request.attributes.is_empty()) {
out("[ ");
for (auto& assertion : request.attributes)
out("{}: {}, ", assertion.key, assertion.value);
out(" ]");
}
}
void ExportStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
outln("(ExportEntries)");
auto string_or_null = [](Optional<DeprecatedFlyString> const& string) -> ByteString {
if (!string.has_value()) {
return "null";
}
return ByteString::formatted("\"{}\"", string);
};
for (auto& entry : m_entries) {
print_indent(indent + 2);
out("ExportName: {}, ImportName: {}, LocalName: {}, ModuleRequest: ",
string_or_null(entry.export_name),
entry.is_module_request() ? string_or_null(entry.local_or_import_name) : "null",
entry.is_module_request() ? "null" : string_or_null(entry.local_or_import_name));
if (entry.is_module_request()) {
out("{}", entry.m_module_request->module_specifier);
dump_assert_clauses(*entry.m_module_request);
outln();
} else {
outln("null");
}
}
if (m_statement) {
print_indent(indent + 1);
outln("(Statement)");
m_statement->dump(indent + 2);
}
}
void ImportStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_entries.is_empty()) {
// direct from "module" import
outln("Entire module '{}'", m_module_request.module_specifier);
dump_assert_clauses(m_module_request);
} else {
outln("(ExportEntries) from {}", m_module_request.module_specifier);
dump_assert_clauses(m_module_request);
for (auto& entry : m_entries) {
print_indent(indent + 2);
outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name);
}
}
}
bool ExportStatement::has_export(DeprecatedFlyString const& export_name) const
{
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
// Make sure that empty exported names does not overlap with anything
if (entry.kind != ExportEntry::Kind::NamedExport)
return false;
return entry.export_name == export_name;
});
}
bool ImportStatement::has_bound_name(DeprecatedFlyString const& name) const
{
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
return entry.local_name == name;
});
}
// 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation
void ScopeNode::block_declaration_instantiation(VM& vm, Environment* environment) const
{
// See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation
auto& realm = *vm.current_realm();
VERIFY(environment);
// 1. Let declarations be the LexicallyScopedDeclarations of code.
// 2. Let privateEnv be the running execution context's PrivateEnvironment.
auto private_environment = vm.running_execution_context().private_environment;
// Note: All the calls here are ! and thus we do not need to TRY this callback.
// We use MUST to ensure it does not throw and to avoid discarding the returned ThrowCompletionOr<void>.
// 3. For each element d of declarations, do
MUST(for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
auto is_constant_declaration = declaration.is_constant_declaration();
// NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
// an exception should not result from `for_each_bound_name`.
// a. For each element dn of the BoundNames of d, do
MUST(declaration.for_each_bound_identifier([&](auto const& identifier) {
if (identifier.is_local()) {
// NOTE: No need to create bindings for local variables as their values are not stored in an environment.
return;
}
auto const& name = identifier.string();
// i. If IsConstantDeclaration of d is true, then
if (is_constant_declaration) {
// 1. Perform ! env.CreateImmutableBinding(dn, true).
MUST(environment->create_immutable_binding(vm, name, true));
}
// ii. Else,
else {
// 1. Perform ! env.CreateMutableBinding(dn, false). NOTE: This step is replaced in section B.3.2.6.
if (!MUST(environment->has_binding(name)))
MUST(environment->create_mutable_binding(vm, name, false));
}
}));
// b. If d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an AsyncGeneratorDeclaration, then
if (is<FunctionDeclaration>(declaration)) {
// i. Let fn be the sole element of the BoundNames of d.
auto& function_declaration = static_cast<FunctionDeclaration const&>(declaration);
// ii. Let fo be InstantiateFunctionObject of d with arguments env and privateEnv.
auto function = ECMAScriptFunctionObject::create(realm, function_declaration.name(), function_declaration.source_text(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), function_declaration.local_variables_names(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(),
function_declaration.parsing_insights());
// iii. Perform ! env.InitializeBinding(fn, fo). NOTE: This step is replaced in section B.3.2.6.
if (function_declaration.name_identifier()->is_local()) {
auto& running_execution_context = vm.running_execution_context();
auto number_of_registers = running_execution_context.executable->number_of_registers;
auto number_of_constants = running_execution_context.executable->constants.size();
running_execution_context.local(function_declaration.name_identifier()->local_variable_index() + number_of_registers + number_of_constants) = function;
} else {
VERIFY(is<DeclarativeEnvironment>(*environment));
static_cast<DeclarativeEnvironment&>(*environment).initialize_or_set_mutable_binding({}, vm, function_declaration.name(), function);
}
}
}));
}
// 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
ThrowCompletionOr<void> Program::global_declaration_instantiation(VM& vm, GlobalEnvironment& global_environment) const
{
auto& realm = *vm.current_realm();
// 1. Let lexNames be the LexicallyDeclaredNames of script.
// 2. Let varNames be the VarDeclaredNames of script.
// 3. For each element name of lexNames, do
TRY(for_each_lexically_declared_identifier([&](Identifier const& identifier) -> ThrowCompletionOr<void> {
auto const& name = identifier.string();
// a. If env.HasVarDeclaration(name) is true, throw a SyntaxError exception.
if (global_environment.has_var_declaration(name))
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
// b. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
if (global_environment.has_lexical_declaration(name))
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
// c. Let hasRestrictedGlobal be ? env.HasRestrictedGlobalProperty(name).
auto has_restricted_global = TRY(global_environment.has_restricted_global_property(name));
// d. If hasRestrictedGlobal is true, throw a SyntaxError exception.
if (has_restricted_global)
return vm.throw_completion<SyntaxError>(ErrorType::RestrictedGlobalProperty, name);
return {};
}));
// 4. For each element name of varNames, do
TRY(for_each_var_declared_identifier([&](auto const& identifier) -> ThrowCompletionOr<void> {
// a. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
if (global_environment.has_lexical_declaration(identifier.string()))
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, identifier.string());
return {};
}));
// 5. Let varDeclarations be the VarScopedDeclarations of script.
// 6. Let functionsToInitialize be a new empty List.
Vector<FunctionDeclaration const&> functions_to_initialize;
// 7. Let declaredFunctionNames be a new empty List.
HashTable<DeprecatedFlyString> declared_function_names;
// 8. For each element d of varDeclarations, in reverse List order, do
TRY(for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) -> ThrowCompletionOr<void> {
// a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
// i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an AsyncGeneratorDeclaration.
// Note: This is checked in for_each_var_function_declaration_in_reverse_order.
// ii. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
// iii. Let fn be the sole element of the BoundNames of d.
// iv. If fn is not an element of declaredFunctionNames, then
if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
return {};
// 1. Let fnDefinable be ? env.CanDeclareGlobalFunction(fn).
auto function_definable = TRY(global_environment.can_declare_global_function(function.name()));
// 2. If fnDefinable is false, throw a TypeError exception.
if (!function_definable)
return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalFunction, function.name());
// 3. Append fn to declaredFunctionNames.
// Note: Already done in step iv. above.
// 4. Insert d as the first element of functionsToInitialize.
// NOTE: Since prepending is much slower, we just append
// and iterate in reverse order in step 16 below.
functions_to_initialize.append(function);
return {};
}));
// 9. Let declaredVarNames be a new empty List.
HashTable<DeprecatedFlyString> declared_var_names;
// 10. For each element d of varDeclarations, do
TRY(for_each_var_scoped_variable_declaration([&](Declaration const& declaration) {
// a. If d is a VariableDeclaration, a ForBinding, or a BindingIdentifier, then
// Note: This is done in for_each_var_scoped_variable_declaration.
// i. For each String vn of the BoundNames of d, do
return declaration.for_each_bound_identifier([&](auto const& identifier) -> ThrowCompletionOr<void> {
auto const& name = identifier.string();
// 1. If vn is not an element of declaredFunctionNames, then
if (declared_function_names.contains(name))
return {};
// a. Let vnDefinable be ? env.CanDeclareGlobalVar(vn).
auto var_definable = TRY(global_environment.can_declare_global_var(name));
// b. If vnDefinable is false, throw a TypeError exception.
if (!var_definable)
return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalVariable, name);
// c. If vn is not an element of declaredVarNames, then
// i. Append vn to declaredVarNames.
declared_var_names.set(name);
return {};
});
}));
// 11. NOTE: No abnormal terminations occur after this algorithm step if the global object is an ordinary object. However, if the global object is a Proxy exotic object it may exhibit behaviours that cause abnormal terminations in some of the following steps.
// 12. NOTE: Annex B.3.2.2 adds additional steps at this point.
// 12. Let strict be IsStrict of script.
// 13. If strict is false, then
if (!m_is_strict_mode) {
// a. Let declaredFunctionOrVarNames be the list-concatenation of declaredFunctionNames and declaredVarNames.
// b. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or DefaultClause Contained within script, do
TRY(for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) -> ThrowCompletionOr<void> {
// i. Let F be StringValue of the BindingIdentifier of f.
auto function_name = function_declaration.name();
// ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would not produce any Early Errors for script, then
// Note: This step is already performed during parsing and for_each_function_hoistable_with_annexB_extension so this always passes here.
// 1. If env.HasLexicalDeclaration(F) is false, then
if (global_environment.has_lexical_declaration(function_name))
return {};
// a. Let fnDefinable be ? env.CanDeclareGlobalVar(F).
auto function_definable = TRY(global_environment.can_declare_global_function(function_name));
// b. If fnDefinable is true, then
if (!function_definable)
return {};
// i. NOTE: A var binding for F is only instantiated here if it is neither a VarDeclaredName nor the name of another FunctionDeclaration.
// ii. If declaredFunctionOrVarNames does not contain F, then
if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) {
// i. Perform ? env.CreateGlobalVarBinding(F, false).
TRY(global_environment.create_global_var_binding(function_name, false));
// ii. Append F to declaredFunctionOrVarNames.
declared_function_names.set(function_name);
}
// iii. When the FunctionDeclaration f is evaluated, perform the following steps in place of the FunctionDeclaration Evaluation algorithm provided in 15.2.6:
// i. Let genv be the running execution context's VariableEnvironment.
// ii. Let benv be the running execution context's LexicalEnvironment.
// iii. Let fobj be ! benv.GetBindingValue(F, false).
// iv. Perform ? genv.SetMutableBinding(F, fobj, false).
// v. Return unused.
function_declaration.set_should_do_additional_annexB_steps();
return {};
}));
// We should not use declared function names below here anymore since these functions are not in there in the spec.
declared_function_names.clear();
}
// 13. Let lexDeclarations be the LexicallyScopedDeclarations of script.
// 14. Let privateEnv be null.
PrivateEnvironment* private_environment = nullptr;
// 15. For each element d of lexDeclarations, do
TRY(for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
// a. NOTE: Lexically declared names are only instantiated here but not initialized.
// b. For each element dn of the BoundNames of d, do
return declaration.for_each_bound_identifier([&](auto const& identifier) -> ThrowCompletionOr<void> {
auto const& name = identifier.string();
// i. If IsConstantDeclaration of d is true, then
if (declaration.is_constant_declaration()) {
// 1. Perform ? env.CreateImmutableBinding(dn, true).
TRY(global_environment.create_immutable_binding(vm, name, true));
}
// ii. Else,
else {
// 1. Perform ? env.CreateMutableBinding(dn, false).
TRY(global_environment.create_mutable_binding(vm, name, false));
}
return {};
});
}));
// 16. For each Parse Node f of functionsToInitialize, do
// NOTE: We iterate in reverse order since we appended the functions
// instead of prepending. We append because prepending is much slower
// and we only use the created vector here.
for (auto& declaration : functions_to_initialize.in_reverse()) {
// a. Let fn be the sole element of the BoundNames of f.
// b. Let fo be InstantiateFunctionObject of f with arguments env and privateEnv.
auto function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), declaration.local_variables_names(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(),
declaration.parsing_insights());
// c. Perform ? env.CreateGlobalFunctionBinding(fn, fo, false).
TRY(global_environment.create_global_function_binding(declaration.name(), function, false));
}
// 17. For each String vn of declaredVarNames, do
for (auto& var_name : declared_var_names) {
// a. Perform ? env.CreateGlobalVarBinding(vn, false).
TRY(global_environment.create_global_var_binding(var_name, false));
}
// 18. Return unused.
return {};
}
ModuleRequest::ModuleRequest(DeprecatedFlyString module_specifier_, Vector<ImportAttribute> attributes)
: module_specifier(move(module_specifier_))
, attributes(move(attributes))
{
// Perform step 10.e. from EvaluateImportCall, https://tc39.es/proposal-import-attributes/#sec-evaluate-import-call
// or step 2. from WithClauseToAttributes, https://tc39.es/proposal-import-attributes/#sec-with-clause-to-attributes
// e. / 2. Sort assertions by the code point order of the [[Key]] of each element.
// NOTE: This sorting is observable only in that hosts are prohibited from distinguishing among assertions by the order they occur in.
quick_sort(this->attributes, [](ImportAttribute const& lhs, ImportAttribute const& rhs) {
return lhs.key < rhs.key;
});
}
ByteString SourceRange::filename() const
{
return code->filename().to_byte_string();
}
NonnullRefPtr<CallExpression> CallExpression::create(SourceRange source_range, NonnullRefPtr<Expression const> callee, ReadonlySpan<Argument> arguments, InvocationStyleEnum invocation_style, InsideParenthesesEnum inside_parens)
{
return ASTNodeWithTailArray::create<CallExpression>(arguments.size(), move(source_range), move(callee), arguments, invocation_style, inside_parens);
}
NonnullRefPtr<NewExpression> NewExpression::create(SourceRange source_range, NonnullRefPtr<Expression const> callee, ReadonlySpan<Argument> arguments, InvocationStyleEnum invocation_style, InsideParenthesesEnum inside_parens)
{
return ASTNodeWithTailArray::create<NewExpression>(arguments.size(), move(source_range), move(callee), arguments, invocation_style, inside_parens);
}
}