ladybird/Libraries/LibC/malloc.cpp
Sergey Bugaev e0ecfc0c92 LibC: Statically allocate allocators
These allocators take up 660 bytes, combined. Let's not waste
two physical pages for them in each process :^)
2020-02-18 11:23:27 +01:00

439 lines
14 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Bitmap.h>
#include <AK/InlineLinkedList.h>
#include <AK/ScopedValueRollback.h>
#include <AK/Vector.h>
#include <LibThread/Lock.h>
#include <assert.h>
#include <mallocdefs.h>
#include <serenity.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
// FIXME: Thread safety.
//#define MALLOC_DEBUG
#define RECYCLE_BIG_ALLOCATIONS
#define MAGIC_PAGE_HEADER 0x42657274
#define MAGIC_BIGALLOC_HEADER 0x42697267
#define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)))
static LibThread::Lock& malloc_lock()
{
static u32 lock_storage[sizeof(LibThread::Lock) / sizeof(u32)];
return *reinterpret_cast<LibThread::Lock*>(&lock_storage);
}
constexpr int number_of_chunked_blocks_to_keep_around_per_size_class = 4;
constexpr int number_of_big_blocks_to_keep_around_per_size_class = 8;
static bool s_log_malloc = false;
static bool s_scrub_malloc = true;
static bool s_scrub_free = true;
static bool s_profiling = false;
static unsigned short size_classes[] = { 8, 16, 32, 64, 128, 252, 508, 1016, 2036, 4090, 8188, 16376, 32756, 0 };
static constexpr size_t num_size_classes = sizeof(size_classes) / sizeof(unsigned short);
constexpr size_t block_size = 64 * KB;
constexpr size_t block_mask = ~(block_size - 1);
struct CommonHeader {
size_t m_magic;
size_t m_size;
};
struct BigAllocationBlock : public CommonHeader {
BigAllocationBlock(size_t size)
{
m_magic = MAGIC_BIGALLOC_HEADER;
m_size = size;
}
unsigned char* m_slot[0];
};
struct FreelistEntry {
FreelistEntry* next;
};
struct ChunkedBlock
: public CommonHeader
, public InlineLinkedListNode<ChunkedBlock> {
ChunkedBlock(size_t bytes_per_chunk)
{
m_magic = MAGIC_PAGE_HEADER;
m_size = bytes_per_chunk;
m_free_chunks = chunk_capacity();
m_freelist = (FreelistEntry*)chunk(0);
for (size_t i = 0; i < chunk_capacity(); ++i) {
auto* entry = (FreelistEntry*)chunk(i);
if (i != chunk_capacity() - 1)
entry->next = (FreelistEntry*)chunk(i + 1);
else
entry->next = nullptr;
}
}
ChunkedBlock* m_prev { nullptr };
ChunkedBlock* m_next { nullptr };
FreelistEntry* m_freelist { nullptr };
unsigned short m_free_chunks { 0 };
unsigned char m_slot[0];
void* chunk(int index)
{
return &m_slot[index * m_size];
}
bool is_full() const { return m_free_chunks == 0; }
size_t bytes_per_chunk() const { return m_size; }
size_t free_chunks() const { return m_free_chunks; }
size_t used_chunks() const { return chunk_capacity() - m_free_chunks; }
size_t chunk_capacity() const { return (block_size - sizeof(ChunkedBlock)) / m_size; }
};
struct Allocator {
size_t size { 0 };
size_t block_count { 0 };
size_t empty_block_count { 0 };
ChunkedBlock* empty_blocks[number_of_chunked_blocks_to_keep_around_per_size_class] { nullptr };
InlineLinkedList<ChunkedBlock> usable_blocks;
InlineLinkedList<ChunkedBlock> full_blocks;
};
struct BigAllocator {
Vector<BigAllocationBlock*, number_of_big_blocks_to_keep_around_per_size_class> blocks;
};
// Allocators will be initialized in __malloc_init.
// We can not rely on global constructors to initialize them,
// because they must be initialized before other global constructors
// are run. Similarly, we can not allow global destructors to destruct
// them. We could have used AK::NeverDestoyed to prevent the latter,
// but it would have not helped with the former.
static u8 g_allocators_storage[sizeof(Allocator) * num_size_classes];
static u8 g_big_allocators_storage[sizeof(BigAllocator)];
static inline Allocator (&allocators())[num_size_classes]
{
return reinterpret_cast<Allocator(&)[num_size_classes]>(g_allocators_storage);
}
static inline BigAllocator (&big_allocators())[1]
{
return reinterpret_cast<BigAllocator(&)[1]>(g_big_allocators_storage);
}
static Allocator* allocator_for_size(size_t size, size_t& good_size)
{
for (int i = 0; size_classes[i]; ++i) {
if (size <= size_classes[i]) {
good_size = size_classes[i];
return &allocators()[i];
}
}
good_size = PAGE_ROUND_UP(size);
return nullptr;
}
static BigAllocator* big_allocator_for_size(size_t size)
{
if (size == 65536)
return &big_allocators()[0];
return nullptr;
}
extern "C" {
size_t malloc_good_size(size_t size)
{
for (int i = 0; size_classes[i]; ++i) {
if (size < size_classes[i])
return size_classes[i];
}
return PAGE_ROUND_UP(size);
}
static void* os_alloc(size_t size, const char* name)
{
auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_PURGEABLE, 0, 0, block_size, name);
ASSERT(ptr != MAP_FAILED);
return ptr;
}
static void os_free(void* ptr, size_t size)
{
int rc = munmap(ptr, size);
assert(rc == 0);
}
static void* malloc_impl(size_t size)
{
LOCKER(malloc_lock());
if (s_log_malloc)
dbgprintf("LibC: malloc(%zu)\n", size);
if (!size)
return nullptr;
size_t good_size;
auto* allocator = allocator_for_size(size, good_size);
if (!allocator) {
size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, block_size);
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(real_size)) {
if (!allocator->blocks.is_empty()) {
auto* block = allocator->blocks.take_last();
int rc = madvise(block, real_size, MADV_SET_NONVOLATILE);
bool this_block_was_purged = rc == 1;
if (rc < 0) {
perror("madvise");
ASSERT_NOT_REACHED();
}
if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) {
perror("mprotect");
ASSERT_NOT_REACHED();
}
if (this_block_was_purged)
new (block) BigAllocationBlock(real_size);
return &block->m_slot[0];
}
}
#endif
auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock");
new (block) BigAllocationBlock(real_size);
return &block->m_slot[0];
}
ChunkedBlock* block = nullptr;
for (block = allocator->usable_blocks.head(); block; block = block->next()) {
if (block->free_chunks())
break;
}
if (!block && allocator->empty_block_count) {
block = allocator->empty_blocks[--allocator->empty_block_count];
int rc = madvise(block, block_size, MADV_SET_NONVOLATILE);
bool this_block_was_purged = rc == 1;
if (rc < 0) {
perror("madvise");
ASSERT_NOT_REACHED();
}
rc = mprotect(block, block_size, PROT_READ | PROT_WRITE);
if (rc < 0) {
perror("mprotect");
ASSERT_NOT_REACHED();
}
if (this_block_was_purged)
new (block) ChunkedBlock(good_size);
allocator->usable_blocks.append(block);
}
if (!block) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size);
block = (ChunkedBlock*)os_alloc(block_size, buffer);
new (block) ChunkedBlock(good_size);
allocator->usable_blocks.append(block);
++allocator->block_count;
}
--block->m_free_chunks;
void* ptr = block->m_freelist;
block->m_freelist = block->m_freelist->next;
if (block->is_full()) {
#ifdef MALLOC_DEBUG
dbgprintf("Block %p is now full in size class %zu\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
allocator->full_blocks.append(block);
}
#ifdef MALLOC_DEBUG
dbgprintf("LibC: allocated %p (chunk in block %p, size %zu)\n", ptr, block, block->bytes_per_chunk());
#endif
if (s_scrub_malloc)
memset(ptr, MALLOC_SCRUB_BYTE, block->m_size);
return ptr;
}
static void free_impl(void* ptr)
{
ScopedValueRollback rollback(errno);
if (!ptr)
return;
LOCKER(malloc_lock());
void* block_base = (void*)((uintptr_t)ptr & block_mask);
size_t magic = *(size_t*)block_base;
if (magic == MAGIC_BIGALLOC_HEADER) {
auto* block = (BigAllocationBlock*)block_base;
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(block->m_size)) {
if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) {
allocator->blocks.append(block);
if (mprotect(block, block->m_size, PROT_NONE) < 0) {
perror("mprotect");
ASSERT_NOT_REACHED();
}
if (madvise(block, block->m_size, MADV_SET_VOLATILE) != 0) {
perror("madvise");
ASSERT_NOT_REACHED();
}
return;
}
}
#endif
os_free(block, block->m_size);
return;
}
assert(magic == MAGIC_PAGE_HEADER);
auto* block = (ChunkedBlock*)block_base;
#ifdef MALLOC_DEBUG
dbgprintf("LibC: freeing %p in allocator %p (size=%u, used=%u)\n", ptr, block, block->bytes_per_chunk(), block->used_chunks());
#endif
if (s_scrub_free)
memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk());
auto* entry = (FreelistEntry*)ptr;
entry->next = block->m_freelist;
block->m_freelist = entry;
if (block->is_full()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
#ifdef MALLOC_DEBUG
dbgprintf("Block %p no longer full in size class %u\n", block, good_size);
#endif
allocator->full_blocks.remove(block);
allocator->usable_blocks.prepend(block);
}
++block->m_free_chunks;
if (!block->used_chunks()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) {
#ifdef MALLOC_DEBUG
dbgprintf("Keeping block %p around for size class %u\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
allocator->empty_blocks[allocator->empty_block_count++] = block;
mprotect(block, block_size, PROT_NONE);
madvise(block, block_size, MADV_SET_VOLATILE);
return;
}
#ifdef MALLOC_DEBUG
dbgprintf("Releasing block %p for size class %u\n", block, good_size);
#endif
allocator->usable_blocks.remove(block);
--allocator->block_count;
os_free(block, block_size);
}
}
void* malloc(size_t size)
{
void* ptr = malloc_impl(size);
if (s_profiling)
perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast<uintptr_t>(ptr));
return ptr;
}
void free(void* ptr)
{
if (s_profiling)
perf_event(PERF_EVENT_FREE, reinterpret_cast<uintptr_t>(ptr), 0);
free_impl(ptr);
}
void* calloc(size_t count, size_t size)
{
size_t new_size = count * size;
auto* ptr = malloc(new_size);
memset(ptr, 0, new_size);
return ptr;
}
size_t malloc_size(void* ptr)
{
if (!ptr)
return 0;
LOCKER(malloc_lock());
void* page_base = (void*)((uintptr_t)ptr & block_mask);
auto* header = (const CommonHeader*)page_base;
auto size = header->m_size;
if (header->m_magic == MAGIC_BIGALLOC_HEADER)
size -= sizeof(CommonHeader);
return size;
}
void* realloc(void* ptr, size_t size)
{
if (!ptr)
return malloc(size);
LOCKER(malloc_lock());
auto existing_allocation_size = malloc_size(ptr);
if (size <= existing_allocation_size)
return ptr;
auto* new_ptr = malloc(size);
memcpy(new_ptr, ptr, min(existing_allocation_size, size));
free(ptr);
return new_ptr;
}
void __malloc_init()
{
new (&malloc_lock()) LibThread::Lock();
if (getenv("LIBC_NOSCRUB_MALLOC"))
s_scrub_malloc = false;
if (getenv("LIBC_NOSCRUB_FREE"))
s_scrub_free = false;
if (getenv("LIBC_LOG_MALLOC"))
s_log_malloc = true;
if (getenv("LIBC_PROFILE_MALLOC"))
s_profiling = true;
for (size_t i = 0; i < num_size_classes; ++i) {
new (&allocators()[i]) Allocator();
allocators()[i].size = size_classes[i];
}
new (&big_allocators()[0])(BigAllocator);
}
}