ladybird/Kernel/Process.h
Andreas Kling e6fc7b3ff7 Kernel: Switch LockRefPtr<Inode> to RefPtr<Inode>
The main place where this is a little iffy is in RAMFS where inodes
have a LockWeakPtr to their parent inode. I've left that as a
LockWeakPtr for now.
2023-03-09 21:54:59 +01:00

1013 lines
42 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/IntrusiveListRelaxedConst.h>
#include <AK/OwnPtr.h>
#include <AK/RefPtr.h>
#include <AK/Userspace.h>
#include <AK/Variant.h>
#include <Kernel/API/POSIX/select.h>
#include <Kernel/API/POSIX/sys/resource.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/Assertions.h>
#include <Kernel/AtomicEdgeAction.h>
#include <Kernel/Credentials.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/UnveilNode.h>
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
#include <Kernel/Jail.h>
#include <Kernel/Library/LockWeakPtr.h>
#include <Kernel/Library/LockWeakable.h>
#include <Kernel/Locking/Mutex.h>
#include <Kernel/Locking/MutexProtected.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessGroup.h>
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/UnixTypes.h>
#include <LibC/elf.h>
namespace Kernel {
MutexProtected<OwnPtr<KString>>& hostname();
Time kgettimeofday();
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap) \
__ENUMERATE_PLEDGE_PROMISE(jail) \
__ENUMERATE_PLEDGE_PROMISE(no_error)
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
LockedInherited,
};
static constexpr FlatPtr futex_key_private_flag = 0b1;
union GlobalFutexKey {
struct {
Memory::VMObject const* vmobject;
FlatPtr offset;
} shared;
struct {
Memory::AddressSpace const* address_space;
FlatPtr user_address;
} private_;
struct {
FlatPtr parent;
FlatPtr offset;
} raw;
};
static_assert(sizeof(GlobalFutexKey) == (sizeof(FlatPtr) * 2));
struct LoadResult;
class Process final
: public ListedRefCounted<Process, LockType::Spinlock>
, public LockWeakable<Process> {
class ProtectedValues {
public:
ProcessID pid { 0 };
ProcessID ppid { 0 };
SessionID sid { 0 };
// FIXME: This should be a NonnullRefPtr
RefPtr<Credentials> credentials;
bool dumpable { false };
bool executable_is_setid { false };
Atomic<bool> has_promises { false };
Atomic<u32> promises { 0 };
Atomic<bool> has_execpromises { false };
Atomic<u32> execpromises { 0 };
mode_t umask { 022 };
VirtualAddress signal_trampoline;
Atomic<u32> thread_count { 0 };
u8 termination_status { 0 };
u8 termination_signal { 0 };
};
public:
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class Thread;
friend class Coredump;
auto with_protected_data(auto&& callback) const
{
SpinlockLocker locker(m_protected_data_lock);
return callback(m_protected_values_do_not_access_directly);
}
auto with_mutable_protected_data(auto&& callback)
{
SpinlockLocker locker(m_protected_data_lock);
unprotect_data();
auto guard = ScopeGuard([&] { protect_data(); });
return callback(m_protected_values_do_not_access_directly);
}
enum class State : u8 {
Running = 0,
Dying,
Dead
};
public:
static Process& current()
{
auto* current_thread = Processor::current_thread();
VERIFY(current_thread);
return current_thread->process();
}
static bool has_current()
{
return Processor::current_thread() != nullptr;
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
enum class RegisterProcess {
No,
Yes
};
template<typename EntryFunction>
static LockRefPtr<Process> create_kernel_process(LockRefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
}
static LockRefPtr<Process> create_kernel_process(LockRefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
static ErrorOr<NonnullLockRefPtr<Process>> try_create_user_process(LockRefPtr<Thread>& first_thread, StringView path, UserID, GroupID, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, TTY*);
static void register_new(Process&);
~Process();
LockRefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
bool should_generate_coredump() const { return m_should_generate_coredump; }
void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; }
bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static LockRefPtr<Process> from_pid_in_same_jail(ProcessID);
static LockRefPtr<Process> from_pid_ignoring_jails(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
SpinlockProtected<NonnullOwnPtr<KString>, LockRank::None> const& name() const;
void set_name(NonnullOwnPtr<KString>);
ProcessID pid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.pid; });
}
SessionID sid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.sid; });
}
bool is_session_leader() const { return sid().value() == pid().value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == pid().value(); }
ProcessID ppid() const
{
return with_protected_data([](auto& protected_data) { return protected_data.ppid; });
}
SpinlockProtected<RefPtr<Jail>, LockRank::Process> const& jail() { return m_attached_jail; }
bool is_currently_in_jail() const
{
return m_attached_jail.with([&](auto& jail) -> bool { return !jail.is_null(); });
}
NonnullRefPtr<Credentials> credentials() const;
bool is_dumpable() const
{
return with_protected_data([](auto& protected_data) { return protected_data.dumpable; });
}
mode_t umask() const
{
return with_protected_data([](auto& protected_data) { return protected_data.umask; });
}
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each_ignoring_jails(Callback);
static ErrorOr<void> for_each_in_same_jail(Function<ErrorOr<void>(Process&)>);
ErrorOr<void> for_each_in_pgrp_in_same_jail(ProcessGroupID, Function<ErrorOr<void>(Process&)>);
ErrorOr<void> for_each_child_in_same_jail(Function<ErrorOr<void>(Process&)>);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
ErrorOr<void> try_for_each_thread(Function<ErrorOr<void>(Thread const&)>) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each_ignoring_jails(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
ErrorOr<void> start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, RegisterState const&);
ErrorOr<FlatPtr> sys$emuctl();
ErrorOr<FlatPtr> sys$yield();
ErrorOr<FlatPtr> sys$sync();
ErrorOr<FlatPtr> sys$beep(int tone);
ErrorOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$set_process_name(Userspace<char const*> user_name, size_t user_name_length);
ErrorOr<FlatPtr> sys$create_inode_watcher(u32 flags);
ErrorOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<Syscall::SC_inode_watcher_add_watch_params const*> user_params);
ErrorOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
ErrorOr<FlatPtr> sys$dbgputstr(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$dump_backtrace();
ErrorOr<FlatPtr> sys$gettid();
ErrorOr<FlatPtr> sys$setsid();
ErrorOr<FlatPtr> sys$getsid(pid_t);
ErrorOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
ErrorOr<FlatPtr> sys$getpgrp();
ErrorOr<FlatPtr> sys$getpgid(pid_t);
ErrorOr<FlatPtr> sys$getuid();
ErrorOr<FlatPtr> sys$getgid();
ErrorOr<FlatPtr> sys$geteuid();
ErrorOr<FlatPtr> sys$getegid();
ErrorOr<FlatPtr> sys$getpid();
ErrorOr<FlatPtr> sys$getppid();
ErrorOr<FlatPtr> sys$getresuid(Userspace<UserID*>, Userspace<UserID*>, Userspace<UserID*>);
ErrorOr<FlatPtr> sys$getresgid(Userspace<GroupID*>, Userspace<GroupID*>, Userspace<GroupID*>);
ErrorOr<FlatPtr> sys$getrusage(int, Userspace<rusage*>);
ErrorOr<FlatPtr> sys$umask(mode_t);
ErrorOr<FlatPtr> sys$open(Userspace<Syscall::SC_open_params const*>);
ErrorOr<FlatPtr> sys$close(int fd);
ErrorOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
ErrorOr<FlatPtr> sys$pread(int fd, Userspace<u8*>, size_t, Userspace<off_t const*>);
ErrorOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
ErrorOr<FlatPtr> sys$write(int fd, Userspace<u8 const*>, size_t);
ErrorOr<FlatPtr> sys$pwritev(int fd, Userspace<const struct iovec*> iov, int iov_count, Userspace<off_t const*>);
ErrorOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
ErrorOr<FlatPtr> sys$stat(Userspace<Syscall::SC_stat_params const*>);
ErrorOr<FlatPtr> sys$annotate_mapping(Userspace<void*>, int flags);
ErrorOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
ErrorOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t const*>);
ErrorOr<FlatPtr> sys$posix_fallocate(int fd, Userspace<off_t const*>, Userspace<off_t const*>);
ErrorOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
ErrorOr<FlatPtr> sys$sigreturn(RegisterState& registers);
ErrorOr<FlatPtr> sys$waitid(Userspace<Syscall::SC_waitid_params const*>);
ErrorOr<FlatPtr> sys$mmap(Userspace<Syscall::SC_mmap_params const*>);
ErrorOr<FlatPtr> sys$mremap(Userspace<Syscall::SC_mremap_params const*>);
ErrorOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$set_mmap_name(Userspace<Syscall::SC_set_mmap_name_params const*>);
ErrorOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
ErrorOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
ErrorOr<FlatPtr> sys$msync(Userspace<void*>, size_t, int flags);
ErrorOr<FlatPtr> sys$purge(int mode);
ErrorOr<FlatPtr> sys$poll(Userspace<Syscall::SC_poll_params const*>);
ErrorOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$chdir(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$fchdir(int fd);
ErrorOr<FlatPtr> sys$adjtime(Userspace<timeval const*>, Userspace<timeval*>);
ErrorOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
ErrorOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<timespec const*>);
ErrorOr<FlatPtr> sys$clock_nanosleep(Userspace<Syscall::SC_clock_nanosleep_params const*>);
ErrorOr<FlatPtr> sys$clock_getres(Userspace<Syscall::SC_clock_getres_params const*>);
ErrorOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
ErrorOr<FlatPtr> sys$sethostname(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$uname(Userspace<utsname*>);
ErrorOr<FlatPtr> sys$readlink(Userspace<Syscall::SC_readlink_params const*>);
ErrorOr<FlatPtr> sys$fork(RegisterState&);
ErrorOr<FlatPtr> sys$execve(Userspace<Syscall::SC_execve_params const*>);
ErrorOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
ErrorOr<FlatPtr> sys$sigaction(int signum, Userspace<sigaction const*> act, Userspace<sigaction*> old_act);
ErrorOr<FlatPtr> sys$sigaltstack(Userspace<stack_t const*> ss, Userspace<stack_t*> old_ss);
ErrorOr<FlatPtr> sys$sigprocmask(int how, Userspace<sigset_t const*> set, Userspace<sigset_t*> old_set);
ErrorOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
ErrorOr<FlatPtr> sys$sigsuspend(Userspace<sigset_t const*>);
ErrorOr<FlatPtr> sys$sigtimedwait(Userspace<sigset_t const*>, Userspace<siginfo_t*>, Userspace<timespec const*>);
ErrorOr<FlatPtr> sys$getgroups(size_t, Userspace<GroupID*>);
ErrorOr<FlatPtr> sys$setgroups(size_t, Userspace<GroupID const*>);
ErrorOr<FlatPtr> sys$pipe(Userspace<int*>, int flags);
ErrorOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
ErrorOr<FlatPtr> sys$seteuid(UserID);
ErrorOr<FlatPtr> sys$setegid(GroupID);
ErrorOr<FlatPtr> sys$setuid(UserID);
ErrorOr<FlatPtr> sys$setgid(GroupID);
ErrorOr<FlatPtr> sys$setreuid(UserID, UserID);
ErrorOr<FlatPtr> sys$setresuid(UserID, UserID, UserID);
ErrorOr<FlatPtr> sys$setregid(GroupID, GroupID);
ErrorOr<FlatPtr> sys$setresgid(GroupID, GroupID, GroupID);
ErrorOr<FlatPtr> sys$alarm(unsigned seconds);
ErrorOr<FlatPtr> sys$faccessat(Userspace<Syscall::SC_faccessat_params const*>);
ErrorOr<FlatPtr> sys$fcntl(int fd, int cmd, uintptr_t extra_arg);
ErrorOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
ErrorOr<FlatPtr> sys$mkdir(int dirfd, Userspace<char const*> pathname, size_t path_length, mode_t mode);
ErrorOr<FlatPtr> sys$times(Userspace<tms*>);
ErrorOr<FlatPtr> sys$utime(Userspace<char const*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
ErrorOr<FlatPtr> sys$utimensat(Userspace<Syscall::SC_utimensat_params const*>);
ErrorOr<FlatPtr> sys$link(Userspace<Syscall::SC_link_params const*>);
ErrorOr<FlatPtr> sys$unlink(int dirfd, Userspace<char const*> pathname, size_t path_length, int flags);
ErrorOr<FlatPtr> sys$symlink(Userspace<Syscall::SC_symlink_params const*>);
ErrorOr<FlatPtr> sys$rmdir(Userspace<char const*> pathname, size_t path_length);
ErrorOr<FlatPtr> sys$mount(Userspace<Syscall::SC_mount_params const*>);
ErrorOr<FlatPtr> sys$umount(Userspace<char const*> mountpoint, size_t mountpoint_length);
ErrorOr<FlatPtr> sys$chmod(Userspace<Syscall::SC_chmod_params const*>);
ErrorOr<FlatPtr> sys$fchmod(int fd, mode_t);
ErrorOr<FlatPtr> sys$chown(Userspace<Syscall::SC_chown_params const*>);
ErrorOr<FlatPtr> sys$fchown(int fd, UserID, GroupID);
ErrorOr<FlatPtr> sys$fsync(int fd);
ErrorOr<FlatPtr> sys$socket(int domain, int type, int protocol);
ErrorOr<FlatPtr> sys$bind(int sockfd, Userspace<sockaddr const*> addr, socklen_t);
ErrorOr<FlatPtr> sys$listen(int sockfd, int backlog);
ErrorOr<FlatPtr> sys$accept4(Userspace<Syscall::SC_accept4_params const*>);
ErrorOr<FlatPtr> sys$connect(int sockfd, Userspace<sockaddr const*>, socklen_t);
ErrorOr<FlatPtr> sys$shutdown(int sockfd, int how);
ErrorOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
ErrorOr<FlatPtr> sys$getsockopt(Userspace<Syscall::SC_getsockopt_params const*>);
ErrorOr<FlatPtr> sys$setsockopt(Userspace<Syscall::SC_setsockopt_params const*>);
ErrorOr<FlatPtr> sys$getsockname(Userspace<Syscall::SC_getsockname_params const*>);
ErrorOr<FlatPtr> sys$getpeername(Userspace<Syscall::SC_getpeername_params const*>);
ErrorOr<FlatPtr> sys$socketpair(Userspace<Syscall::SC_socketpair_params const*>);
ErrorOr<FlatPtr> sys$scheduler_set_parameters(Userspace<Syscall::SC_scheduler_parameters_params const*>);
ErrorOr<FlatPtr> sys$scheduler_get_parameters(Userspace<Syscall::SC_scheduler_parameters_params*>);
ErrorOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<Syscall::SC_create_thread_params const*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
ErrorOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
ErrorOr<FlatPtr> sys$detach_thread(pid_t tid);
ErrorOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<char const*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
ErrorOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
ErrorOr<FlatPtr> sys$rename(Userspace<Syscall::SC_rename_params const*>);
ErrorOr<FlatPtr> sys$mknod(Userspace<Syscall::SC_mknod_params const*>);
ErrorOr<FlatPtr> sys$realpath(Userspace<Syscall::SC_realpath_params const*>);
ErrorOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
ErrorOr<FlatPtr> sys$getkeymap(Userspace<Syscall::SC_getkeymap_params const*>);
ErrorOr<FlatPtr> sys$setkeymap(Userspace<Syscall::SC_setkeymap_params const*>);
ErrorOr<FlatPtr> sys$profiling_enable(pid_t, Userspace<u64 const*>);
ErrorOr<FlatPtr> profiling_enable(pid_t, u64 event_mask);
ErrorOr<FlatPtr> sys$profiling_disable(pid_t);
ErrorOr<FlatPtr> sys$profiling_free_buffer(pid_t);
ErrorOr<FlatPtr> sys$futex(Userspace<Syscall::SC_futex_params const*>);
ErrorOr<FlatPtr> sys$pledge(Userspace<Syscall::SC_pledge_params const*>);
ErrorOr<FlatPtr> sys$unveil(Userspace<Syscall::SC_unveil_params const*>);
ErrorOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
ErrorOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
ErrorOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
ErrorOr<FlatPtr> sys$ptrace(Userspace<Syscall::SC_ptrace_params const*>);
ErrorOr<FlatPtr> sys$sendfd(int sockfd, int fd);
ErrorOr<FlatPtr> sys$recvfd(int sockfd, int options);
ErrorOr<FlatPtr> sys$sysconf(int name);
ErrorOr<FlatPtr> sys$disown(ProcessID);
ErrorOr<FlatPtr> sys$allocate_tls(Userspace<char const*> initial_data, size_t);
ErrorOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
ErrorOr<FlatPtr> sys$anon_create(size_t, int options);
ErrorOr<FlatPtr> sys$statvfs(Userspace<Syscall::SC_statvfs_params const*> user_params);
ErrorOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
ErrorOr<FlatPtr> sys$map_time_page();
ErrorOr<FlatPtr> sys$jail_create(Userspace<Syscall::SC_jail_create_params*> user_params);
ErrorOr<FlatPtr> sys$jail_attach(Userspace<Syscall::SC_jail_attach_params const*> user_params);
ErrorOr<FlatPtr> sys$get_root_session_id(pid_t force_sid);
template<bool sockname, typename Params>
ErrorOr<void> get_sock_or_peer_name(Params const&);
static void initialize();
[[noreturn]] void crash(int signal, Optional<RegisterState const&> regs, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info() const;
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
NonnullRefPtr<Custody> current_directory();
RefPtr<Custody> executable();
RefPtr<Custody const> executable() const;
static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
static constexpr size_t max_auxiliary_size = Thread::default_userspace_stack_size / 8;
Vector<NonnullOwnPtr<KString>> const& arguments() const { return m_arguments; };
Vector<NonnullOwnPtr<KString>> const& environment() const { return m_environment; };
ErrorOr<void> exec(NonnullOwnPtr<KString> path, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, Thread*& new_main_thread, InterruptsState& previous_interrupts_state, int recursion_depth = 0);
ErrorOr<LoadResult> load(NonnullRefPtr<OpenFileDescription> main_program_description, RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
void terminate_due_to_signal(u8 signal);
ErrorOr<void> send_signal(u8 signal, Process* sender);
u8 termination_signal() const
{
return with_protected_data([](auto& protected_data) -> u8 {
return protected_data.termination_signal;
});
}
u8 termination_status() const
{
return with_protected_data([](auto& protected_data) { return protected_data.termination_status; });
}
u16 thread_count() const
{
return with_protected_data([](auto& protected_data) {
return protected_data.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
});
}
Mutex& big_lock() { return m_big_lock; }
Mutex& ptrace_lock() { return m_ptrace_lock; }
bool has_promises() const
{
return with_protected_data([](auto& protected_data) { return protected_data.has_promises.load(); });
}
bool has_promised(Pledge pledge) const
{
return with_protected_data([&](auto& protected_data) {
return (protected_data.promises & (1U << (u32)pledge)) != 0;
});
}
VeilState veil_state() const
{
return m_unveil_data.with([&](auto const& unveil_data) { return unveil_data.state; });
}
struct UnveilData {
explicit UnveilData(UnveilNode&& p)
: paths(move(p))
{
}
VeilState state { VeilState::None };
UnveilNode paths;
};
auto& unveil_data() { return m_unveil_data; }
auto const& unveil_data() const { return m_unveil_data; }
auto& exec_unveil_data() { return m_exec_unveil_data; }
auto const& exec_unveil_data() const { return m_exec_unveil_data; }
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
ErrorOr<void> peek_user_data(Span<u8> destination, Userspace<u8 const*> address);
ErrorOr<FlatPtr> peek_user_data(Userspace<FlatPtr const*> address);
ErrorOr<void> poke_user_data(Userspace<FlatPtr*> address, FlatPtr data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_blocker_set; }
template<typename Callback>
ErrorOr<void> for_each_coredump_property(Callback callback) const
{
return m_coredump_properties.with([&](auto const& coredump_properties) -> ErrorOr<void> {
for (auto const& property : coredump_properties) {
if (property.key && property.value)
TRY(callback(*property.key, *property.value));
}
return {};
});
}
ErrorOr<void> set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
ErrorOr<void> try_set_coredump_property(StringView key, StringView value);
Vector<NonnullLockRefPtr<Thread>> const& threads_for_coredump(Badge<Coredump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
PerformanceEventBuffer const* perf_events() const { return m_perf_event_buffer; }
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None>& address_space() { return m_space; }
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None> const& address_space() const { return m_space; }
VirtualAddress signal_trampoline() const
{
return with_protected_data([](auto& protected_data) { return protected_data.signal_trampoline; });
}
ErrorOr<void> require_promise(Pledge);
ErrorOr<void> require_no_promises() const;
ErrorOr<void> validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, Memory::Region const* region = nullptr) const;
ErrorOr<void> validate_inode_mmap_prot(int prot, bool description_readable, bool description_writable, bool map_shared) const;
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(NonnullOwnPtr<KString> name, NonnullRefPtr<Credentials>, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, TTY* tty, UnveilNode unveil_tree, UnveilNode exec_unveil_tree);
static ErrorOr<NonnullLockRefPtr<Process>> try_create(LockRefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
ErrorOr<void> attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, LockRefPtr<Thread>& first_thread, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
ErrorOr<void> dump_core();
ErrorOr<void> dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
ErrorOr<void> do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, Vector<NonnullOwnPtr<KString>> arguments, Vector<NonnullOwnPtr<KString>> environment, RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, InterruptsState& previous_interrupts_state, const ElfW(Ehdr) & main_program_header);
ErrorOr<FlatPtr> do_write(OpenFileDescription&, UserOrKernelBuffer const&, size_t, Optional<off_t> = {});
ErrorOr<FlatPtr> do_statvfs(FileSystem const& path, Custody const*, statvfs* buf);
ErrorOr<RefPtr<OpenFileDescription>> find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size);
ErrorOr<void> do_kill(Process&, int signal);
ErrorOr<void> do_killpg(ProcessGroupID pgrp, int signal);
ErrorOr<void> do_killall(int signal);
ErrorOr<void> do_killself(int signal);
ErrorOr<siginfo_t> do_waitid(Variant<Empty, NonnullLockRefPtr<Process>, NonnullLockRefPtr<ProcessGroup>> waitee, int options);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length);
static ErrorOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Syscall::StringArgument const&);
bool has_tracee_thread(ProcessID tracer_pid);
void clear_signal_handlers_for_exec();
void clear_futex_queues_on_exec();
ErrorOr<GlobalFutexKey> get_futex_key(FlatPtr user_address, bool shared);
ErrorOr<void> remap_range_as_stack(FlatPtr address, size_t size);
ErrorOr<FlatPtr> read_impl(int fd, Userspace<u8*> buffer, size_t size);
public:
ErrorOr<void> traverse_as_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_as_directory(ProcFS&, StringView name) const;
ErrorOr<void> procfs_get_fds_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_perf_events(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_unveil_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_pledge_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_virtual_memory_stats(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_binary_link(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_current_work_directory_link(KBufferBuilder& builder) const;
ErrorOr<void> procfs_get_command_line(KBufferBuilder& builder) const;
mode_t binary_link_required_mode() const;
ErrorOr<void> procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const;
ErrorOr<void> traverse_stacks_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_stacks_directory(ProcFS&, StringView name) const;
ErrorOr<size_t> procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const;
ErrorOr<void> traverse_file_descriptions_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_file_descriptions_directory(ProcFS&, StringView name) const;
ErrorOr<NonnullRefPtr<Inode>> lookup_children_directory(ProcFS&, StringView name) const;
ErrorOr<void> traverse_children_directory(FileSystemID, Function<ErrorOr<void>(FileSystem::DirectoryEntryView const&)> callback) const;
ErrorOr<size_t> procfs_get_child_process_link(ProcessID child_pid, KBufferBuilder& builder) const;
private:
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
if (m_profiling)
return m_perf_event_buffer.ptr();
return nullptr;
}
IntrusiveListNode<Process> m_list_node;
SpinlockProtected<NonnullOwnPtr<KString>, LockRank::None> m_name;
SpinlockProtected<OwnPtr<Memory::AddressSpace>, LockRank::None> m_space;
LockRefPtr<ProcessGroup> m_pg;
RecursiveSpinlock<LockRank::None> mutable m_protected_data_lock;
AtomicEdgeAction<u32> m_protected_data_refs;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
public:
class OpenFileDescriptionAndFlags {
public:
bool is_valid() const { return !m_description.is_null(); }
bool is_allocated() const { return m_is_allocated; }
void allocate()
{
VERIFY(!m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = true;
}
void deallocate()
{
VERIFY(m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = false;
}
OpenFileDescription* description() { return m_description; }
OpenFileDescription const* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
void clear();
void set(NonnullRefPtr<OpenFileDescription>, u32 flags = 0);
private:
RefPtr<OpenFileDescription> m_description;
bool m_is_allocated { false };
u32 m_flags { 0 };
};
class ScopedDescriptionAllocation;
class OpenFileDescriptions {
AK_MAKE_NONCOPYABLE(OpenFileDescriptions);
AK_MAKE_NONMOVABLE(OpenFileDescriptions);
friend class Process;
public:
OpenFileDescriptions() { }
ALWAYS_INLINE OpenFileDescriptionAndFlags const& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE OpenFileDescriptionAndFlags& operator[](size_t i) { return at(i); }
ErrorOr<void> try_clone(Kernel::Process::OpenFileDescriptions const& other)
{
TRY(try_resize(other.m_fds_metadatas.size()));
for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) {
m_fds_metadatas[i] = other.m_fds_metadatas[i];
}
return {};
}
OpenFileDescriptionAndFlags const& at(size_t i) const;
OpenFileDescriptionAndFlags& at(size_t i);
OpenFileDescriptionAndFlags const* get_if_valid(size_t i) const;
OpenFileDescriptionAndFlags* get_if_valid(size_t i);
void enumerate(Function<void(OpenFileDescriptionAndFlags const&)>) const;
ErrorOr<void> try_enumerate(Function<ErrorOr<void>(OpenFileDescriptionAndFlags const&)>) const;
void change_each(Function<void(OpenFileDescriptionAndFlags&)>);
ErrorOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
size_t open_count() const;
ErrorOr<void> try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
static constexpr size_t max_open()
{
return s_max_open_file_descriptors;
}
void clear()
{
m_fds_metadatas.clear();
}
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd) const;
private:
static constexpr size_t s_max_open_file_descriptors { FD_SETSIZE };
Vector<OpenFileDescriptionAndFlags> m_fds_metadatas;
};
class ScopedDescriptionAllocation {
AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
public:
ScopedDescriptionAllocation() = default;
ScopedDescriptionAllocation(int tracked_fd, OpenFileDescriptionAndFlags* description)
: fd(tracked_fd)
, m_description(description)
{
}
ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
: fd(other.fd)
{
// Take over the responsibility of tracking to deallocation.
swap(m_description, other.m_description);
}
ScopedDescriptionAllocation& operator=(ScopedDescriptionAllocation&& other)
{
if (this != &other) {
m_description = exchange(other.m_description, nullptr);
fd = exchange(other.fd, -1);
}
return *this;
}
~ScopedDescriptionAllocation()
{
if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
m_description->deallocate();
}
}
int fd { -1 };
private:
OpenFileDescriptionAndFlags* m_description { nullptr };
};
MutexProtected<OpenFileDescriptions>& fds() { return m_fds; }
MutexProtected<OpenFileDescriptions> const& fds() const { return m_fds; }
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd)
{
return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); });
}
ErrorOr<NonnullRefPtr<OpenFileDescription>> open_file_description(int fd) const
{
return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); });
}
ErrorOr<ScopedDescriptionAllocation> allocate_fd()
{
return m_fds.with_exclusive([](auto& fds) { return fds.allocate(); });
}
private:
ErrorOr<NonnullRefPtr<Custody>> custody_for_dirfd(int dirfd);
SpinlockProtected<Thread::ListInProcess, LockRank::None>& thread_list() { return m_thread_list; }
SpinlockProtected<Thread::ListInProcess, LockRank::None> const& thread_list() const { return m_thread_list; }
ErrorOr<NonnullRefPtr<Thread>> get_thread_from_pid_or_tid(pid_t pid_or_tid, Syscall::SchedulerParametersMode mode);
SpinlockProtected<Thread::ListInProcess, LockRank::None> m_thread_list {};
MutexProtected<OpenFileDescriptions> m_fds;
bool const m_is_kernel_process;
Atomic<State> m_state { State::Running };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_generate_coredump { false };
SpinlockProtected<RefPtr<Custody>, LockRank::None> m_executable;
SpinlockProtected<RefPtr<Custody>, LockRank::None> m_current_directory;
Vector<NonnullOwnPtr<KString>> m_arguments;
Vector<NonnullOwnPtr<KString>> m_environment;
LockRefPtr<TTY> m_tty;
LockWeakPtr<Memory::Region> m_master_tls_region;
IntrusiveListNode<Process> m_jail_list_node;
SpinlockProtected<RefPtr<Jail>, LockRank::Process> m_attached_jail {};
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Mutex m_big_lock { "Process"sv, Mutex::MutexBehavior::BigLock };
Mutex m_ptrace_lock { "ptrace"sv };
LockRefPtr<Timer> m_alarm_timer;
SpinlockProtected<UnveilData, LockRank::None> m_unveil_data;
SpinlockProtected<UnveilData, LockRank::None> m_exec_unveil_data;
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockerSet m_wait_blocker_set;
struct CoredumpProperty {
OwnPtr<KString> key;
OwnPtr<KString> value;
};
SpinlockProtected<Array<CoredumpProperty, 4>, LockRank::None> m_coredump_properties {};
Vector<NonnullLockRefPtr<Thread>> m_threads_for_coredump;
struct SignalActionData {
VirtualAddress handler_or_sigaction;
int flags { 0 };
u32 mask { 0 };
};
Array<SignalActionData, NSIG> m_signal_action_data;
static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
alignas(4096) ProtectedValues m_protected_values_do_not_access_directly;
u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];
public:
using List = IntrusiveListRelaxedConst<&Process::m_list_node>;
static SpinlockProtected<Process::List, LockRank::None>& all_instances();
};
// Note: Process object should be 2 pages of 4096 bytes each.
// It's not expected that the Process object will expand further because the first
// page is used for all unprotected values (which should be plenty of space for them).
// The second page is being used exclusively for write-protected values.
static_assert(AssertSize<Process, (PAGE_SIZE * 2)>());
extern RecursiveSpinlock<LockRank::None> g_profiling_lock;
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_ignoring_jails(Callback callback)
{
Process::all_instances().with([&](auto const& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (callback(process) == IterationDecision::Break)
break;
}
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
inline ErrorOr<void> Process::try_for_each_thread(Function<ErrorOr<void>(Thread const&)> callback) const
{
return thread_list().with([&](auto& thread_list) -> ErrorOr<void> {
for (auto& thread : thread_list)
TRY(callback(thread));
return {};
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
}
#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
VERIFY(process->big_lock().is_exclusively_locked_by_current_thread())
#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
VERIFY(!process->big_lock().is_exclusively_locked_by_current_thread())
inline ErrorOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(Kernel::Syscall::StringArgument const& string)
{
Userspace<char const*> characters((FlatPtr)string.characters);
return try_copy_kstring_from_user(characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::Process const& value)
{
return value.name().with([&](auto& process_name) {
return AK::Formatter<FormatString>::format(builder, "{}({})"sv, process_name->view(), value.pid().value());
});
}
};
namespace AK {
template<>
struct Traits<Kernel::GlobalFutexKey> : public GenericTraits<Kernel::GlobalFutexKey> {
static unsigned hash(Kernel::GlobalFutexKey const& futex_key) { return pair_int_hash(ptr_hash(futex_key.raw.parent), ptr_hash(futex_key.raw.offset)); }
static bool equals(Kernel::GlobalFutexKey const& a, Kernel::GlobalFutexKey const& b) { return a.raw.parent == b.raw.parent && a.raw.offset == b.raw.offset; }
};
};