1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/drivers/mfd/pcf50633-core.c

716 lines
16 KiB
C
Raw Normal View History

/* NXP PCF50633 Power Management Unit (PMU) driver
*
* (C) 2006-2008 by Openmoko, Inc.
* Author: Harald Welte <laforge@openmoko.org>
* Balaji Rao <balajirrao@openmoko.org>
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/sysfs.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/irq.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/mfd/pcf50633/core.h>
/* Two MBCS registers used during cold start */
#define PCF50633_REG_MBCS1 0x4b
#define PCF50633_REG_MBCS2 0x4c
#define PCF50633_MBCS1_USBPRES 0x01
#define PCF50633_MBCS1_ADAPTPRES 0x01
static int __pcf50633_read(struct pcf50633 *pcf, u8 reg, int num, u8 *data)
{
int ret;
ret = i2c_smbus_read_i2c_block_data(pcf->i2c_client, reg,
num, data);
if (ret < 0)
dev_err(pcf->dev, "Error reading %d regs at %d\n", num, reg);
return ret;
}
static int __pcf50633_write(struct pcf50633 *pcf, u8 reg, int num, u8 *data)
{
int ret;
ret = i2c_smbus_write_i2c_block_data(pcf->i2c_client, reg,
num, data);
if (ret < 0)
dev_err(pcf->dev, "Error writing %d regs at %d\n", num, reg);
return ret;
}
/* Read a block of upto 32 regs */
int pcf50633_read_block(struct pcf50633 *pcf, u8 reg,
int nr_regs, u8 *data)
{
int ret;
mutex_lock(&pcf->lock);
ret = __pcf50633_read(pcf, reg, nr_regs, data);
mutex_unlock(&pcf->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pcf50633_read_block);
/* Write a block of upto 32 regs */
int pcf50633_write_block(struct pcf50633 *pcf , u8 reg,
int nr_regs, u8 *data)
{
int ret;
mutex_lock(&pcf->lock);
ret = __pcf50633_write(pcf, reg, nr_regs, data);
mutex_unlock(&pcf->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pcf50633_write_block);
u8 pcf50633_reg_read(struct pcf50633 *pcf, u8 reg)
{
u8 val;
mutex_lock(&pcf->lock);
__pcf50633_read(pcf, reg, 1, &val);
mutex_unlock(&pcf->lock);
return val;
}
EXPORT_SYMBOL_GPL(pcf50633_reg_read);
int pcf50633_reg_write(struct pcf50633 *pcf, u8 reg, u8 val)
{
int ret;
mutex_lock(&pcf->lock);
ret = __pcf50633_write(pcf, reg, 1, &val);
mutex_unlock(&pcf->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pcf50633_reg_write);
int pcf50633_reg_set_bit_mask(struct pcf50633 *pcf, u8 reg, u8 mask, u8 val)
{
int ret;
u8 tmp;
val &= mask;
mutex_lock(&pcf->lock);
ret = __pcf50633_read(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
tmp &= ~mask;
tmp |= val;
ret = __pcf50633_write(pcf, reg, 1, &tmp);
out:
mutex_unlock(&pcf->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pcf50633_reg_set_bit_mask);
int pcf50633_reg_clear_bits(struct pcf50633 *pcf, u8 reg, u8 val)
{
int ret;
u8 tmp;
mutex_lock(&pcf->lock);
ret = __pcf50633_read(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
tmp &= ~val;
ret = __pcf50633_write(pcf, reg, 1, &tmp);
out:
mutex_unlock(&pcf->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pcf50633_reg_clear_bits);
/* sysfs attributes */
static ssize_t show_dump_regs(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pcf50633 *pcf = dev_get_drvdata(dev);
u8 dump[16];
int n, n1, idx = 0;
char *buf1 = buf;
static u8 address_no_read[] = { /* must be ascending */
PCF50633_REG_INT1,
PCF50633_REG_INT2,
PCF50633_REG_INT3,
PCF50633_REG_INT4,
PCF50633_REG_INT5,
0 /* terminator */
};
for (n = 0; n < 256; n += sizeof(dump)) {
for (n1 = 0; n1 < sizeof(dump); n1++)
if (n == address_no_read[idx]) {
idx++;
dump[n1] = 0x00;
} else
dump[n1] = pcf50633_reg_read(pcf, n + n1);
hex_dump_to_buffer(dump, sizeof(dump), 16, 1, buf1, 128, 0);
buf1 += strlen(buf1);
*buf1++ = '\n';
*buf1 = '\0';
}
return buf1 - buf;
}
static DEVICE_ATTR(dump_regs, 0400, show_dump_regs, NULL);
static ssize_t show_resume_reason(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pcf50633 *pcf = dev_get_drvdata(dev);
int n;
n = sprintf(buf, "%02x%02x%02x%02x%02x\n",
pcf->resume_reason[0],
pcf->resume_reason[1],
pcf->resume_reason[2],
pcf->resume_reason[3],
pcf->resume_reason[4]);
return n;
}
static DEVICE_ATTR(resume_reason, 0400, show_resume_reason, NULL);
static struct attribute *pcf_sysfs_entries[] = {
&dev_attr_dump_regs.attr,
&dev_attr_resume_reason.attr,
NULL,
};
static struct attribute_group pcf_attr_group = {
.name = NULL, /* put in device directory */
.attrs = pcf_sysfs_entries,
};
int pcf50633_register_irq(struct pcf50633 *pcf, int irq,
void (*handler) (int, void *), void *data)
{
if (irq < 0 || irq > PCF50633_NUM_IRQ || !handler)
return -EINVAL;
if (WARN_ON(pcf->irq_handler[irq].handler))
return -EBUSY;
mutex_lock(&pcf->lock);
pcf->irq_handler[irq].handler = handler;
pcf->irq_handler[irq].data = data;
mutex_unlock(&pcf->lock);
return 0;
}
EXPORT_SYMBOL_GPL(pcf50633_register_irq);
int pcf50633_free_irq(struct pcf50633 *pcf, int irq)
{
if (irq < 0 || irq > PCF50633_NUM_IRQ)
return -EINVAL;
mutex_lock(&pcf->lock);
pcf->irq_handler[irq].handler = NULL;
mutex_unlock(&pcf->lock);
return 0;
}
EXPORT_SYMBOL_GPL(pcf50633_free_irq);
static int __pcf50633_irq_mask_set(struct pcf50633 *pcf, int irq, u8 mask)
{
u8 reg, bits, tmp;
int ret = 0, idx;
idx = irq >> 3;
reg = PCF50633_REG_INT1M + idx;
bits = 1 << (irq & 0x07);
mutex_lock(&pcf->lock);
if (mask) {
ret = __pcf50633_read(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
tmp |= bits;
ret = __pcf50633_write(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
pcf->mask_regs[idx] &= ~bits;
pcf->mask_regs[idx] |= bits;
} else {
ret = __pcf50633_read(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
tmp &= ~bits;
ret = __pcf50633_write(pcf, reg, 1, &tmp);
if (ret < 0)
goto out;
pcf->mask_regs[idx] &= ~bits;
}
out:
mutex_unlock(&pcf->lock);
return ret;
}
int pcf50633_irq_mask(struct pcf50633 *pcf, int irq)
{
dev_dbg(pcf->dev, "Masking IRQ %d\n", irq);
return __pcf50633_irq_mask_set(pcf, irq, 1);
}
EXPORT_SYMBOL_GPL(pcf50633_irq_mask);
int pcf50633_irq_unmask(struct pcf50633 *pcf, int irq)
{
dev_dbg(pcf->dev, "Unmasking IRQ %d\n", irq);
return __pcf50633_irq_mask_set(pcf, irq, 0);
}
EXPORT_SYMBOL_GPL(pcf50633_irq_unmask);
int pcf50633_irq_mask_get(struct pcf50633 *pcf, int irq)
{
u8 reg, bits;
reg = irq >> 3;
bits = 1 << (irq & 0x07);
return pcf->mask_regs[reg] & bits;
}
EXPORT_SYMBOL_GPL(pcf50633_irq_mask_get);
static void pcf50633_irq_call_handler(struct pcf50633 *pcf, int irq)
{
if (pcf->irq_handler[irq].handler)
pcf->irq_handler[irq].handler(irq, pcf->irq_handler[irq].data);
}
/* Maximum amount of time ONKEY is held before emergency action is taken */
#define PCF50633_ONKEY1S_TIMEOUT 8
static void pcf50633_irq_worker(struct work_struct *work)
{
struct pcf50633 *pcf;
int ret, i, j;
u8 pcf_int[5], chgstat;
pcf = container_of(work, struct pcf50633, irq_work);
/* Read the 5 INT regs in one transaction */
ret = pcf50633_read_block(pcf, PCF50633_REG_INT1,
ARRAY_SIZE(pcf_int), pcf_int);
if (ret != ARRAY_SIZE(pcf_int)) {
dev_err(pcf->dev, "Error reading INT registers\n");
/*
* If this doesn't ACK the interrupt to the chip, we'll be
* called once again as we're level triggered.
*/
goto out;
}
/* defeat 8s death from lowsys on A5 */
pcf50633_reg_write(pcf, PCF50633_REG_OOCSHDWN, 0x04);
/* We immediately read the usb and adapter status. We thus make sure
* only of USBINS/USBREM IRQ handlers are called */
if (pcf_int[0] & (PCF50633_INT1_USBINS | PCF50633_INT1_USBREM)) {
chgstat = pcf50633_reg_read(pcf, PCF50633_REG_MBCS2);
if (chgstat & (0x3 << 4))
pcf_int[0] &= ~(1 << PCF50633_INT1_USBREM);
else
pcf_int[0] &= ~(1 << PCF50633_INT1_USBINS);
}
/* Make sure only one of ADPINS or ADPREM is set */
if (pcf_int[0] & (PCF50633_INT1_ADPINS | PCF50633_INT1_ADPREM)) {
chgstat = pcf50633_reg_read(pcf, PCF50633_REG_MBCS2);
if (chgstat & (0x3 << 4))
pcf_int[0] &= ~(1 << PCF50633_INT1_ADPREM);
else
pcf_int[0] &= ~(1 << PCF50633_INT1_ADPINS);
}
dev_dbg(pcf->dev, "INT1=0x%02x INT2=0x%02x INT3=0x%02x "
"INT4=0x%02x INT5=0x%02x\n", pcf_int[0],
pcf_int[1], pcf_int[2], pcf_int[3], pcf_int[4]);
/* Some revisions of the chip don't have a 8s standby mode on
* ONKEY1S press. We try to manually do it in such cases. */
if ((pcf_int[0] & PCF50633_INT1_SECOND) && pcf->onkey1s_held) {
dev_info(pcf->dev, "ONKEY1S held for %d secs\n",
pcf->onkey1s_held);
if (pcf->onkey1s_held++ == PCF50633_ONKEY1S_TIMEOUT)
if (pcf->pdata->force_shutdown)
pcf->pdata->force_shutdown(pcf);
}
if (pcf_int[2] & PCF50633_INT3_ONKEY1S) {
dev_info(pcf->dev, "ONKEY1S held\n");
pcf->onkey1s_held = 1 ;
/* Unmask IRQ_SECOND */
pcf50633_reg_clear_bits(pcf, PCF50633_REG_INT1M,
PCF50633_INT1_SECOND);
/* Unmask IRQ_ONKEYR */
pcf50633_reg_clear_bits(pcf, PCF50633_REG_INT2M,
PCF50633_INT2_ONKEYR);
}
if ((pcf_int[1] & PCF50633_INT2_ONKEYR) && pcf->onkey1s_held) {
pcf->onkey1s_held = 0;
/* Mask SECOND and ONKEYR interrupts */
if (pcf->mask_regs[0] & PCF50633_INT1_SECOND)
pcf50633_reg_set_bit_mask(pcf,
PCF50633_REG_INT1M,
PCF50633_INT1_SECOND,
PCF50633_INT1_SECOND);
if (pcf->mask_regs[1] & PCF50633_INT2_ONKEYR)
pcf50633_reg_set_bit_mask(pcf,
PCF50633_REG_INT2M,
PCF50633_INT2_ONKEYR,
PCF50633_INT2_ONKEYR);
}
/* Have we just resumed ? */
if (pcf->is_suspended) {
pcf->is_suspended = 0;
/* Set the resume reason filtering out non resumers */
for (i = 0; i < ARRAY_SIZE(pcf_int); i++)
pcf->resume_reason[i] = pcf_int[i] &
pcf->pdata->resumers[i];
/* Make sure we don't pass on any ONKEY events to
* userspace now */
pcf_int[1] &= ~(PCF50633_INT2_ONKEYR | PCF50633_INT2_ONKEYF);
}
for (i = 0; i < ARRAY_SIZE(pcf_int); i++) {
/* Unset masked interrupts */
pcf_int[i] &= ~pcf->mask_regs[i];
for (j = 0; j < 8 ; j++)
if (pcf_int[i] & (1 << j))
pcf50633_irq_call_handler(pcf, (i * 8) + j);
}
out:
put_device(pcf->dev);
enable_irq(pcf->irq);
}
static irqreturn_t pcf50633_irq(int irq, void *data)
{
struct pcf50633 *pcf = data;
dev_dbg(pcf->dev, "pcf50633_irq\n");
get_device(pcf->dev);
disable_irq_nosync(pcf->irq);
queue_work(pcf->work_queue, &pcf->irq_work);
return IRQ_HANDLED;
}
static void
pcf50633_client_dev_register(struct pcf50633 *pcf, const char *name,
struct platform_device **pdev)
{
int ret;
*pdev = platform_device_alloc(name, -1);
if (!*pdev) {
dev_err(pcf->dev, "Falied to allocate %s\n", name);
return;
}
(*pdev)->dev.parent = pcf->dev;
ret = platform_device_add(*pdev);
if (ret) {
dev_err(pcf->dev, "Failed to register %s: %d\n", name, ret);
platform_device_put(*pdev);
*pdev = NULL;
}
}
#ifdef CONFIG_PM
static int pcf50633_suspend(struct i2c_client *client, pm_message_t state)
{
struct pcf50633 *pcf;
int ret = 0, i;
u8 res[5];
pcf = i2c_get_clientdata(client);
/* Make sure our interrupt handlers are not called
* henceforth */
disable_irq(pcf->irq);
/* Make sure that any running IRQ worker has quit */
cancel_work_sync(&pcf->irq_work);
/* Save the masks */
ret = pcf50633_read_block(pcf, PCF50633_REG_INT1M,
ARRAY_SIZE(pcf->suspend_irq_masks),
pcf->suspend_irq_masks);
if (ret < 0) {
dev_err(pcf->dev, "error saving irq masks\n");
goto out;
}
/* Write wakeup irq masks */
for (i = 0; i < ARRAY_SIZE(res); i++)
res[i] = ~pcf->pdata->resumers[i];
ret = pcf50633_write_block(pcf, PCF50633_REG_INT1M,
ARRAY_SIZE(res), &res[0]);
if (ret < 0) {
dev_err(pcf->dev, "error writing wakeup irq masks\n");
goto out;
}
pcf->is_suspended = 1;
out:
return ret;
}
static int pcf50633_resume(struct i2c_client *client)
{
struct pcf50633 *pcf;
int ret;
pcf = i2c_get_clientdata(client);
/* Write the saved mask registers */
ret = pcf50633_write_block(pcf, PCF50633_REG_INT1M,
ARRAY_SIZE(pcf->suspend_irq_masks),
pcf->suspend_irq_masks);
if (ret < 0)
dev_err(pcf->dev, "Error restoring saved suspend masks\n");
/* Restore regulators' state */
get_device(pcf->dev);
/*
* Clear any pending interrupts and set resume reason if any.
* This will leave with enable_irq()
*/
pcf50633_irq_worker(&pcf->irq_work);
return 0;
}
#else
#define pcf50633_suspend NULL
#define pcf50633_resume NULL
#endif
static int __devinit pcf50633_probe(struct i2c_client *client,
const struct i2c_device_id *ids)
{
struct pcf50633 *pcf;
struct pcf50633_platform_data *pdata = client->dev.platform_data;
int i, ret;
int version, variant;
if (!client->irq) {
dev_err(&client->dev, "Missing IRQ\n");
return -ENOENT;
}
pcf = kzalloc(sizeof(*pcf), GFP_KERNEL);
if (!pcf)
return -ENOMEM;
pcf->pdata = pdata;
mutex_init(&pcf->lock);
i2c_set_clientdata(client, pcf);
pcf->dev = &client->dev;
pcf->i2c_client = client;
pcf->irq = client->irq;
pcf->work_queue = create_singlethread_workqueue("pcf50633");
if (!pcf->work_queue) {
dev_err(&client->dev, "Failed to alloc workqueue\n");
ret = -ENOMEM;
goto err_free;
}
INIT_WORK(&pcf->irq_work, pcf50633_irq_worker);
version = pcf50633_reg_read(pcf, 0);
variant = pcf50633_reg_read(pcf, 1);
if (version < 0 || variant < 0) {
dev_err(pcf->dev, "Unable to probe pcf50633\n");
ret = -ENODEV;
goto err_destroy_workqueue;
}
dev_info(pcf->dev, "Probed device version %d variant %d\n",
version, variant);
/* Enable all interrupts except RTC SECOND */
pcf->mask_regs[0] = 0x80;
pcf50633_reg_write(pcf, PCF50633_REG_INT1M, pcf->mask_regs[0]);
pcf50633_reg_write(pcf, PCF50633_REG_INT2M, 0x00);
pcf50633_reg_write(pcf, PCF50633_REG_INT3M, 0x00);
pcf50633_reg_write(pcf, PCF50633_REG_INT4M, 0x00);
pcf50633_reg_write(pcf, PCF50633_REG_INT5M, 0x00);
ret = request_irq(client->irq, pcf50633_irq,
IRQF_TRIGGER_LOW, "pcf50633", pcf);
if (ret) {
dev_err(pcf->dev, "Failed to request IRQ %d\n", ret);
goto err_destroy_workqueue;
}
/* Create sub devices */
pcf50633_client_dev_register(pcf, "pcf50633-input",
&pcf->input_pdev);
pcf50633_client_dev_register(pcf, "pcf50633-rtc",
&pcf->rtc_pdev);
pcf50633_client_dev_register(pcf, "pcf50633-mbc",
&pcf->mbc_pdev);
pcf50633_client_dev_register(pcf, "pcf50633-adc",
&pcf->adc_pdev);
for (i = 0; i < PCF50633_NUM_REGULATORS; i++) {
struct platform_device *pdev;
pdev = platform_device_alloc("pcf50633-regltr", i);
if (!pdev) {
dev_err(pcf->dev, "Cannot create regulator %d\n", i);
continue;
}
pdev->dev.parent = pcf->dev;
platform_device_add_data(pdev, &pdata->reg_init_data[i],
sizeof(pdata->reg_init_data[i]));
pcf->regulator_pdev[i] = pdev;
platform_device_add(pdev);
}
if (enable_irq_wake(client->irq) < 0)
dev_err(pcf->dev, "IRQ %u cannot be enabled as wake-up source"
"in this hardware revision", client->irq);
ret = sysfs_create_group(&client->dev.kobj, &pcf_attr_group);
if (ret)
dev_err(pcf->dev, "error creating sysfs entries\n");
if (pdata->probe_done)
pdata->probe_done(pcf);
return 0;
err_destroy_workqueue:
destroy_workqueue(pcf->work_queue);
err_free:
i2c_set_clientdata(client, NULL);
kfree(pcf);
return ret;
}
static int __devexit pcf50633_remove(struct i2c_client *client)
{
struct pcf50633 *pcf = i2c_get_clientdata(client);
int i;
free_irq(pcf->irq, pcf);
destroy_workqueue(pcf->work_queue);
platform_device_unregister(pcf->input_pdev);
platform_device_unregister(pcf->rtc_pdev);
platform_device_unregister(pcf->mbc_pdev);
platform_device_unregister(pcf->adc_pdev);
for (i = 0; i < PCF50633_NUM_REGULATORS; i++)
platform_device_unregister(pcf->regulator_pdev[i]);
kfree(pcf);
return 0;
}
static struct i2c_device_id pcf50633_id_table[] = {
{"pcf50633", 0x73},
{/* end of list */}
};
static struct i2c_driver pcf50633_driver = {
.driver = {
.name = "pcf50633",
},
.id_table = pcf50633_id_table,
.probe = pcf50633_probe,
.remove = __devexit_p(pcf50633_remove),
.suspend = pcf50633_suspend,
.resume = pcf50633_resume,
};
static int __init pcf50633_init(void)
{
return i2c_add_driver(&pcf50633_driver);
}
static void __exit pcf50633_exit(void)
{
i2c_del_driver(&pcf50633_driver);
}
MODULE_DESCRIPTION("I2C chip driver for NXP PCF50633 PMU");
MODULE_AUTHOR("Harald Welte <laforge@openmoko.org>");
MODULE_LICENSE("GPL");
subsys_initcall(pcf50633_init);
module_exit(pcf50633_exit);