1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 16:53:58 -05:00
linux/fs/bcachefs/nocow_locking.h

51 lines
1.6 KiB
C
Raw Normal View History

bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_NOCOW_LOCKING_H
#define _BCACHEFS_NOCOW_LOCKING_H
#include "bcachefs.h"
#include "alloc_background.h"
#include "nocow_locking_types.h"
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
#include <linux/hash.h>
static inline struct nocow_lock_bucket *bucket_nocow_lock(struct bucket_nocow_lock_table *t,
u64 dev_bucket)
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
{
unsigned h = hash_64(dev_bucket, BUCKET_NOCOW_LOCKS_BITS);
return t->l + (h & (BUCKET_NOCOW_LOCKS - 1));
}
#define BUCKET_NOCOW_LOCK_UPDATE (1 << 0)
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
bool bch2_bucket_nocow_is_locked(struct bucket_nocow_lock_table *, struct bpos);
void bch2_bucket_nocow_unlock(struct bucket_nocow_lock_table *, struct bpos, int);
bool __bch2_bucket_nocow_trylock(struct nocow_lock_bucket *, u64, int);
void __bch2_bucket_nocow_lock(struct bucket_nocow_lock_table *,
struct nocow_lock_bucket *, u64, int);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
static inline void bch2_bucket_nocow_lock(struct bucket_nocow_lock_table *t,
struct bpos bucket, int flags)
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
{
u64 dev_bucket = bucket_to_u64(bucket);
struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
__bch2_bucket_nocow_lock(t, l, dev_bucket, flags);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
}
static inline bool bch2_bucket_nocow_trylock(struct bucket_nocow_lock_table *t,
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
struct bpos bucket, int flags)
{
u64 dev_bucket = bucket_to_u64(bucket);
struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
return __bch2_bucket_nocow_trylock(l, dev_bucket, flags);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
}
void bch2_nocow_locks_to_text(struct printbuf *, struct bucket_nocow_lock_table *);
void bch2_fs_nocow_locking_exit(struct bch_fs *);
int bch2_fs_nocow_locking_init(struct bch_fs *);
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-02 17:12:00 -04:00
#endif /* _BCACHEFS_NOCOW_LOCKING_H */