1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 08:35:19 -05:00
linux/kernel/stackleak.c

63 lines
1.9 KiB
C
Raw Normal View History

x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-08-16 18:16:58 -04:00
// SPDX-License-Identifier: GPL-2.0
/*
* This code fills the used part of the kernel stack with a poison value
* before returning to userspace. It's part of the STACKLEAK feature
* ported from grsecurity/PaX.
*
* Author: Alexander Popov <alex.popov@linux.com>
*
* STACKLEAK reduces the information which kernel stack leak bugs can
* reveal and blocks some uninitialized stack variable attacks.
*/
#include <linux/stackleak.h>
asmlinkage void stackleak_erase(void)
{
/* It would be nice not to have 'kstack_ptr' and 'boundary' on stack */
unsigned long kstack_ptr = current->lowest_stack;
unsigned long boundary = (unsigned long)end_of_stack(current);
unsigned int poison_count = 0;
const unsigned int depth = STACKLEAK_SEARCH_DEPTH / sizeof(unsigned long);
/* Check that 'lowest_stack' value is sane */
if (unlikely(kstack_ptr - boundary >= THREAD_SIZE))
kstack_ptr = boundary;
/* Search for the poison value in the kernel stack */
while (kstack_ptr > boundary && poison_count <= depth) {
if (*(unsigned long *)kstack_ptr == STACKLEAK_POISON)
poison_count++;
else
poison_count = 0;
kstack_ptr -= sizeof(unsigned long);
}
/*
* One 'long int' at the bottom of the thread stack is reserved and
* should not be poisoned (see CONFIG_SCHED_STACK_END_CHECK=y).
*/
if (kstack_ptr == boundary)
kstack_ptr += sizeof(unsigned long);
/*
* Now write the poison value to the kernel stack. Start from
* 'kstack_ptr' and move up till the new 'boundary'. We assume that
* the stack pointer doesn't change when we write poison.
*/
if (on_thread_stack())
boundary = current_stack_pointer;
else
boundary = current_top_of_stack();
while (kstack_ptr < boundary) {
*(unsigned long *)kstack_ptr = STACKLEAK_POISON;
kstack_ptr += sizeof(unsigned long);
}
/* Reset the 'lowest_stack' value for the next syscall */
current->lowest_stack = current_top_of_stack() - THREAD_SIZE/64;
}