1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 00:20:52 -05:00

crypto: allwinner - Add sun8i-ce Crypto Engine

The Crypto Engine is an hardware cryptographic offloader present
on all recent Allwinner SoCs H2+, H3, R40, A64, H5, H6

This driver supports AES cipher in CBC/ECB mode.

Acked-by: Maxime Ripard <mripard@kernel.org>
Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Corentin Labbe 2019-10-23 22:05:04 +02:00 committed by Herbert Xu
parent 3914b93115
commit 06f751b613
6 changed files with 1394 additions and 0 deletions

View file

@ -4,3 +4,30 @@ config CRYPTO_DEV_ALLWINNER
default y if ARCH_SUNXI
help
Say Y here to get to see options for Allwinner hardware crypto devices
config CRYPTO_DEV_SUN8I_CE
tristate "Support for Allwinner Crypto Engine cryptographic offloader"
select CRYPTO_BLKCIPHER
select CRYPTO_ENGINE
select CRYPTO_ECB
select CRYPTO_CBC
select CRYPTO_AES
select CRYPTO_DES
depends on CRYPTO_DEV_ALLWINNER
depends on PM
help
Select y here to have support for the crypto Engine availlable on
Allwinner SoC H2+, H3, H5, H6, R40 and A64.
The Crypto Engine handle AES/3DES ciphers in ECB/CBC mode.
To compile this driver as a module, choose M here: the module
will be called sun8i-ce.
config CRYPTO_DEV_SUN8I_CE_DEBUG
bool "Enable sun8i-ce stats"
depends on CRYPTO_DEV_SUN8I_CE
depends on DEBUG_FS
help
Say y to enable sun8i-ce debug stats.
This will create /sys/kernel/debug/sun8i-ce/stats for displaying
the number of requests per flow and per algorithm.

View file

@ -0,0 +1 @@
obj-$(CONFIG_CRYPTO_DEV_SUN8I_CE) += sun8i-ce/

View file

@ -0,0 +1,2 @@
obj-$(CONFIG_CRYPTO_DEV_SUN8I_CE) += sun8i-ce.o
sun8i-ce-y += sun8i-ce-core.o sun8i-ce-cipher.o

View file

@ -0,0 +1,434 @@
// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ce-cipher.c - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6/R40 SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"
static int sun8i_ce_cipher_need_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct scatterlist *sg;
if (sg_nents(areq->src) > MAX_SG || sg_nents(areq->dst) > MAX_SG)
return true;
if (areq->cryptlen < crypto_skcipher_ivsize(tfm))
return true;
if (areq->cryptlen == 0 || areq->cryptlen % 16)
return true;
sg = areq->src;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
sg = areq->dst;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
return false;
}
static int sun8i_ce_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
#endif
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir & CE_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int sun8i_ce_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
struct sun8i_ce_flow *chan;
struct ce_task *cet;
struct scatterlist *sg;
unsigned int todo, len, offset, ivsize;
void *backup_iv = NULL;
int flow, i;
int nr_sgs = 0;
int nr_sgd = 0;
int err = 0;
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
op->keylen);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt->stat_req++;
#endif
flow = rctx->flow;
chan = &ce->chanlist[flow];
cet = chan->tl;
memset(cet, 0, sizeof(struct ce_task));
cet->t_id = flow;
cet->t_common_ctl = ce->variant->alg_cipher[algt->ce_algo_id];
cet->t_common_ctl |= rctx->op_dir | CE_COMM_INT;
cet->t_dlen = areq->cryptlen / 4;
/* CTS and recent CE (H6) need length in bytes, in word otherwise */
if (ce->variant->has_t_dlen_in_bytes)
cet->t_dlen = areq->cryptlen;
cet->t_sym_ctl = ce->variant->op_mode[algt->ce_blockmode];
len = op->keylen;
switch (len) {
case 128 / 8:
cet->t_sym_ctl |= CE_AES_128BITS;
break;
case 192 / 8:
cet->t_sym_ctl |= CE_AES_192BITS;
break;
case 256 / 8:
cet->t_sym_ctl |= CE_AES_256BITS;
break;
}
cet->t_asym_ctl = 0;
chan->op_mode = ce->variant->op_mode[algt->ce_blockmode];
chan->op_dir = rctx->op_dir;
chan->method = ce->variant->alg_cipher[algt->ce_algo_id];
chan->keylen = op->keylen;
cet->t_key = dma_map_single(ce->dev, op->key, op->keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(ce->dev, cet->t_key)) {
dev_err(ce->dev, "Cannot DMA MAP KEY\n");
err = -EFAULT;
goto theend;
}
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
chan->ivlen = ivsize;
chan->bounce_iv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
if (!chan->bounce_iv) {
err = -ENOMEM;
goto theend_key;
}
if (rctx->op_dir & CE_DECRYPTION) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend_key;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
memcpy(chan->bounce_iv, areq->iv, ivsize);
cet->t_iv = dma_map_single(ce->dev, chan->bounce_iv,
chan->ivlen, DMA_TO_DEVICE);
if (dma_mapping_error(ce->dev, cet->t_iv)) {
dev_err(ce->dev, "Cannot DMA MAP IV\n");
err = -ENOMEM;
goto theend_iv;
}
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = dma_map_sg(ce->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd <= 0 || nr_sgd > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd);
err = -EINVAL;
goto theend_sgs;
}
}
len = areq->cryptlen;
for_each_sg(areq->src, sg, nr_sgs, i) {
cet->t_src[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
cet->t_src[i].len = todo / 4;
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_src[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
len = areq->cryptlen;
for_each_sg(areq->dst, sg, nr_sgd, i) {
cet->t_dst[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
cet->t_dst[i].len = todo / 4;
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_dst[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
chan->timeout = areq->cryptlen;
err = sun8i_ce_run_task(ce, flow, crypto_tfm_alg_name(areq->base.tfm));
theend_sgs:
if (areq->src == areq->dst) {
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
if (nr_sgs > 0)
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(ce->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
theend_iv:
if (areq->iv && ivsize > 0) {
if (cet->t_iv)
dma_unmap_single(ce->dev, cet->t_iv, chan->ivlen,
DMA_TO_DEVICE);
offset = areq->cryptlen - ivsize;
if (rctx->op_dir & CE_DECRYPTION) {
memcpy(areq->iv, backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
kfree(chan->bounce_iv);
}
theend_key:
dma_unmap_single(ce->dev, cet->t_key, op->keylen, DMA_TO_DEVICE);
theend:
return err;
}
static int sun8i_ce_handle_cipher_request(struct crypto_engine *engine, void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = sun8i_ce_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int sun8i_ce_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_DECRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_ENCRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_cipher_init(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun8i_ce_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
int err;
memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
op->ce = algt->ce;
sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
dev_info(op->ce->dev, "Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&sktfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(&op->fallback_tfm->base)));
op->enginectx.op.do_one_request = sun8i_ce_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
err = pm_runtime_get_sync(op->ce->dev);
if (err < 0)
goto error_pm;
return 0;
error_pm:
crypto_free_sync_skcipher(op->fallback_tfm);
return err;
}
void sun8i_ce_cipher_exit(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
pm_runtime_put_sync_suspend(op->ce->dev);
}
int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
switch (keylen) {
case 128 / 8:
break;
case 192 / 8:
break;
case 256 / 8:
break;
default:
dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmalloc(keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
int err;
err = verify_skcipher_des3_key(tfm, key);
if (err)
return err;
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmalloc(keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}

View file

@ -0,0 +1,676 @@
// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ce-core.c - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6/R40 SoC
*
* Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
*
* Core file which registers crypto algorithms supported by the CryptoEngine.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"
/*
* mod clock is lower on H3 than other SoC due to some DMA timeout occurring
* with high value.
* If you want to tune mod clock, loading driver and passing selftest is
* insufficient, you need to test with some LUKS test (mount and write to it)
*/
static const struct ce_variant ce_h3_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 50000000, 0 },
}
};
static const struct ce_variant ce_h5_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
}
};
static const struct ce_variant ce_h6_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.has_t_dlen_in_bytes = true,
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
{ "ram", 0, 400000000 },
}
};
static const struct ce_variant ce_a64_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
}
};
static const struct ce_variant ce_r40_variant = {
.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
},
.op_mode = { CE_OP_ECB, CE_OP_CBC
},
.ce_clks = {
{ "bus", 0, 200000000 },
{ "mod", 300000000, 0 },
}
};
/*
* sun8i_ce_get_engine_number() get the next channel slot
* This is a simple round-robin way of getting the next channel
*/
int sun8i_ce_get_engine_number(struct sun8i_ce_dev *ce)
{
return atomic_inc_return(&ce->flow) % MAXFLOW;
}
int sun8i_ce_run_task(struct sun8i_ce_dev *ce, int flow, const char *name)
{
u32 v;
int err = 0;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
ce->chanlist[flow].stat_req++;
#endif
mutex_lock(&ce->mlock);
v = readl(ce->base + CE_ICR);
v |= 1 << flow;
writel(v, ce->base + CE_ICR);
reinit_completion(&ce->chanlist[flow].complete);
writel(ce->chanlist[flow].t_phy, ce->base + CE_TDQ);
ce->chanlist[flow].status = 0;
/* Be sure all data is written before enabling the task */
wmb();
v = 1 | (ce->chanlist[flow].tl->t_common_ctl & 0x7F) << 8;
writel(v, ce->base + CE_TLR);
mutex_unlock(&ce->mlock);
wait_for_completion_interruptible_timeout(&ce->chanlist[flow].complete,
msecs_to_jiffies(ce->chanlist[flow].timeout));
if (ce->chanlist[flow].status == 0) {
dev_err(ce->dev, "DMA timeout for %s\n", name);
err = -EFAULT;
}
/* No need to lock for this read, the channel is locked so
* nothing could modify the error value for this channel
*/
v = readl(ce->base + CE_ESR);
if (v) {
v >>= (flow * 4);
v &= 0xFF;
if (v) {
dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
err = -EFAULT;
}
if (v & CE_ERR_ALGO_NOTSUP)
dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
if (v & CE_ERR_DATALEN)
dev_err(ce->dev, "CE ERROR: data length error\n");
if (v & CE_ERR_KEYSRAM)
dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
if (v & CE_ERR_ADDR_INVALID)
dev_err(ce->dev, "CE ERROR: address invalid\n");
}
return err;
}
static irqreturn_t ce_irq_handler(int irq, void *data)
{
struct sun8i_ce_dev *ce = (struct sun8i_ce_dev *)data;
int flow = 0;
u32 p;
p = readl(ce->base + CE_ISR);
for (flow = 0; flow < MAXFLOW; flow++) {
if (p & (BIT(flow))) {
writel(BIT(flow), ce->base + CE_ISR);
ce->chanlist[flow].status = 1;
complete(&ce->chanlist[flow].complete);
}
}
return IRQ_HANDLED;
}
static struct sun8i_ce_alg_template ce_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_AES,
.ce_blockmode = CE_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun8i_ce_aes_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_AES,
.ce_blockmode = CE_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sun8i_ce_aes_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_DES3,
.ce_blockmode = CE_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun8i_ce_des3_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ce_algo_id = CE_ID_CIPHER_DES3,
.ce_blockmode = CE_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-sun8i-ce",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ce_cipher_init,
.cra_exit = sun8i_ce_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = sun8i_ce_des3_setkey,
.encrypt = sun8i_ce_skencrypt,
.decrypt = sun8i_ce_skdecrypt,
}
},
};
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
static int sun8i_ce_dbgfs_read(struct seq_file *seq, void *v)
{
struct sun8i_ce_dev *ce = seq->private;
int i;
for (i = 0; i < MAXFLOW; i++)
seq_printf(seq, "Channel %d: nreq %lu\n", i, ce->chanlist[i].stat_req);
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
if (!ce_algs[i].ce)
continue;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
seq_printf(seq, "%s %s %lu %lu\n",
ce_algs[i].alg.skcipher.base.cra_driver_name,
ce_algs[i].alg.skcipher.base.cra_name,
ce_algs[i].stat_req, ce_algs[i].stat_fb);
break;
}
}
return 0;
}
static int sun8i_ce_dbgfs_open(struct inode *inode, struct file *file)
{
return single_open(file, sun8i_ce_dbgfs_read, inode->i_private);
}
static const struct file_operations sun8i_ce_debugfs_fops = {
.owner = THIS_MODULE,
.open = sun8i_ce_dbgfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static void sun8i_ce_free_chanlist(struct sun8i_ce_dev *ce, int i)
{
while (i >= 0) {
crypto_engine_exit(ce->chanlist[i].engine);
if (ce->chanlist[i].tl)
dma_free_coherent(ce->dev, sizeof(struct ce_task),
ce->chanlist[i].tl,
ce->chanlist[i].t_phy);
i--;
}
}
/*
* Allocate the channel list structure
*/
static int sun8i_ce_allocate_chanlist(struct sun8i_ce_dev *ce)
{
int i, err;
ce->chanlist = devm_kcalloc(ce->dev, MAXFLOW,
sizeof(struct sun8i_ce_flow), GFP_KERNEL);
if (!ce->chanlist)
return -ENOMEM;
for (i = 0; i < MAXFLOW; i++) {
init_completion(&ce->chanlist[i].complete);
ce->chanlist[i].engine = crypto_engine_alloc_init(ce->dev, true);
if (!ce->chanlist[i].engine) {
dev_err(ce->dev, "Cannot allocate engine\n");
i--;
err = -ENOMEM;
goto error_engine;
}
err = crypto_engine_start(ce->chanlist[i].engine);
if (err) {
dev_err(ce->dev, "Cannot start engine\n");
goto error_engine;
}
ce->chanlist[i].tl = dma_alloc_coherent(ce->dev,
sizeof(struct ce_task),
&ce->chanlist[i].t_phy,
GFP_KERNEL);
if (!ce->chanlist[i].tl) {
dev_err(ce->dev, "Cannot get DMA memory for task %d\n",
i);
err = -ENOMEM;
goto error_engine;
}
}
return 0;
error_engine:
sun8i_ce_free_chanlist(ce, i);
return err;
}
/*
* Power management strategy: The device is suspended unless a TFM exists for
* one of the algorithms proposed by this driver.
*/
static int sun8i_ce_pm_suspend(struct device *dev)
{
struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
int i;
reset_control_assert(ce->reset);
for (i = 0; i < CE_MAX_CLOCKS; i++)
clk_disable_unprepare(ce->ceclks[i]);
return 0;
}
static int sun8i_ce_pm_resume(struct device *dev)
{
struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
int err, i;
for (i = 0; i < CE_MAX_CLOCKS; i++) {
if (!ce->variant->ce_clks[i].name)
continue;
err = clk_prepare_enable(ce->ceclks[i]);
if (err) {
dev_err(ce->dev, "Cannot prepare_enable %s\n",
ce->variant->ce_clks[i].name);
goto error;
}
}
err = reset_control_deassert(ce->reset);
if (err) {
dev_err(ce->dev, "Cannot deassert reset control\n");
goto error;
}
return 0;
error:
sun8i_ce_pm_suspend(dev);
return err;
}
static const struct dev_pm_ops sun8i_ce_pm_ops = {
SET_RUNTIME_PM_OPS(sun8i_ce_pm_suspend, sun8i_ce_pm_resume, NULL)
};
static int sun8i_ce_pm_init(struct sun8i_ce_dev *ce)
{
int err;
pm_runtime_use_autosuspend(ce->dev);
pm_runtime_set_autosuspend_delay(ce->dev, 2000);
err = pm_runtime_set_suspended(ce->dev);
if (err)
return err;
pm_runtime_enable(ce->dev);
return err;
}
static void sun8i_ce_pm_exit(struct sun8i_ce_dev *ce)
{
pm_runtime_disable(ce->dev);
}
static int sun8i_ce_get_clks(struct sun8i_ce_dev *ce)
{
unsigned long cr;
int err, i;
for (i = 0; i < CE_MAX_CLOCKS; i++) {
if (!ce->variant->ce_clks[i].name)
continue;
ce->ceclks[i] = devm_clk_get(ce->dev, ce->variant->ce_clks[i].name);
if (IS_ERR(ce->ceclks[i])) {
err = PTR_ERR(ce->ceclks[i]);
dev_err(ce->dev, "Cannot get %s CE clock err=%d\n",
ce->variant->ce_clks[i].name, err);
return err;
}
cr = clk_get_rate(ce->ceclks[i]);
if (!cr)
return -EINVAL;
if (ce->variant->ce_clks[i].freq > 0 &&
cr != ce->variant->ce_clks[i].freq) {
dev_info(ce->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
ce->variant->ce_clks[i].name,
ce->variant->ce_clks[i].freq,
ce->variant->ce_clks[i].freq / 1000000,
cr, cr / 1000000);
err = clk_set_rate(ce->ceclks[i], ce->variant->ce_clks[i].freq);
if (err)
dev_err(ce->dev, "Fail to set %s clk speed to %lu hz\n",
ce->variant->ce_clks[i].name,
ce->variant->ce_clks[i].freq);
}
if (ce->variant->ce_clks[i].max_freq > 0 &&
cr > ce->variant->ce_clks[i].max_freq)
dev_warn(ce->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommandation (%lu hz)",
ce->variant->ce_clks[i].name, cr,
ce->variant->ce_clks[i].max_freq);
}
return 0;
}
static int sun8i_ce_register_algs(struct sun8i_ce_dev *ce)
{
int ce_method, err, id, i;
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
ce_algs[i].ce = ce;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
id = ce_algs[i].ce_algo_id;
ce_method = ce->variant->alg_cipher[id];
if (ce_method == CE_ID_NOTSUPP) {
dev_dbg(ce->dev,
"DEBUG: Algo of %s not supported\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
id = ce_algs[i].ce_blockmode;
ce_method = ce->variant->op_mode[id];
if (ce_method == CE_ID_NOTSUPP) {
dev_dbg(ce->dev, "DEBUG: Blockmode of %s not supported\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
break;
}
dev_info(ce->dev, "Register %s\n",
ce_algs[i].alg.skcipher.base.cra_name);
err = crypto_register_skcipher(&ce_algs[i].alg.skcipher);
if (err) {
dev_err(ce->dev, "ERROR: Fail to register %s\n",
ce_algs[i].alg.skcipher.base.cra_name);
ce_algs[i].ce = NULL;
return err;
}
break;
default:
ce_algs[i].ce = NULL;
dev_err(ce->dev, "ERROR: tryed to register an unknown algo\n");
}
}
return 0;
}
static void sun8i_ce_unregister_algs(struct sun8i_ce_dev *ce)
{
int i;
for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
if (!ce_algs[i].ce)
continue;
switch (ce_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
dev_info(ce->dev, "Unregister %d %s\n", i,
ce_algs[i].alg.skcipher.base.cra_name);
crypto_unregister_skcipher(&ce_algs[i].alg.skcipher);
break;
}
}
}
static int sun8i_ce_probe(struct platform_device *pdev)
{
struct sun8i_ce_dev *ce;
int err, irq;
u32 v;
ce = devm_kzalloc(&pdev->dev, sizeof(*ce), GFP_KERNEL);
if (!ce)
return -ENOMEM;
ce->dev = &pdev->dev;
platform_set_drvdata(pdev, ce);
ce->variant = of_device_get_match_data(&pdev->dev);
if (!ce->variant) {
dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
return -EINVAL;
}
ce->base = devm_platform_ioremap_resource(pdev, 0);;
if (IS_ERR(ce->base))
return PTR_ERR(ce->base);
err = sun8i_ce_get_clks(ce);
if (err)
return err;
/* Get Non Secure IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(ce->dev, "Cannot get CryptoEngine Non-secure IRQ\n");
return irq;
}
ce->reset = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(ce->reset)) {
if (PTR_ERR(ce->reset) == -EPROBE_DEFER)
return PTR_ERR(ce->reset);
dev_err(&pdev->dev, "No reset control found\n");
return PTR_ERR(ce->reset);
}
mutex_init(&ce->mlock);
err = sun8i_ce_allocate_chanlist(ce);
if (err)
return err;
err = sun8i_ce_pm_init(ce);
if (err)
goto error_pm;
err = devm_request_irq(&pdev->dev, irq, ce_irq_handler, 0,
"sun8i-ce-ns", ce);
if (err) {
dev_err(ce->dev, "Cannot request CryptoEngine Non-secure IRQ (err=%d)\n", err);
goto error_irq;
}
err = sun8i_ce_register_algs(ce);
if (err)
goto error_alg;
err = pm_runtime_get_sync(ce->dev);
if (err < 0)
goto error_alg;
v = readl(ce->base + CE_CTR);
v >>= CE_DIE_ID_SHIFT;
v &= CE_DIE_ID_MASK;
dev_info(&pdev->dev, "CryptoEngine Die ID %x\n", v);
pm_runtime_put_sync(ce->dev);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
/* Ignore error of debugfs */
ce->dbgfs_dir = debugfs_create_dir("sun8i-ce", NULL);
ce->dbgfs_stats = debugfs_create_file("stats", 0444,
ce->dbgfs_dir, ce,
&sun8i_ce_debugfs_fops);
#endif
return 0;
error_alg:
sun8i_ce_unregister_algs(ce);
error_irq:
sun8i_ce_pm_exit(ce);
error_pm:
sun8i_ce_free_chanlist(ce, MAXFLOW);
return err;
}
static int sun8i_ce_remove(struct platform_device *pdev)
{
struct sun8i_ce_dev *ce = platform_get_drvdata(pdev);
sun8i_ce_unregister_algs(ce);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
debugfs_remove_recursive(ce->dbgfs_dir);
#endif
sun8i_ce_free_chanlist(ce, MAXFLOW);
sun8i_ce_pm_exit(ce);
return 0;
}
static const struct of_device_id sun8i_ce_crypto_of_match_table[] = {
{ .compatible = "allwinner,sun8i-h3-crypto",
.data = &ce_h3_variant },
{ .compatible = "allwinner,sun8i-r40-crypto",
.data = &ce_r40_variant },
{ .compatible = "allwinner,sun50i-a64-crypto",
.data = &ce_a64_variant },
{ .compatible = "allwinner,sun50i-h5-crypto",
.data = &ce_h5_variant },
{ .compatible = "allwinner,sun50i-h6-crypto",
.data = &ce_h6_variant },
{}
};
MODULE_DEVICE_TABLE(of, sun8i_ce_crypto_of_match_table);
static struct platform_driver sun8i_ce_driver = {
.probe = sun8i_ce_probe,
.remove = sun8i_ce_remove,
.driver = {
.name = "sun8i-ce",
.pm = &sun8i_ce_pm_ops,
.of_match_table = sun8i_ce_crypto_of_match_table,
},
};
module_platform_driver(sun8i_ce_driver);
MODULE_DESCRIPTION("Allwinner Crypto Engine cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");

View file

@ -0,0 +1,254 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* sun8i-ce.h - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6 SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*/
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/engine.h>
#include <crypto/skcipher.h>
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/crypto.h>
/* CE Registers */
#define CE_TDQ 0x00
#define CE_CTR 0x04
#define CE_ICR 0x08
#define CE_ISR 0x0C
#define CE_TLR 0x10
#define CE_TSR 0x14
#define CE_ESR 0x18
#define CE_CSSGR 0x1C
#define CE_CDSGR 0x20
#define CE_CSAR 0x24
#define CE_CDAR 0x28
#define CE_TPR 0x2C
/* Used in struct ce_task */
/* ce_task common */
#define CE_ENCRYPTION 0
#define CE_DECRYPTION BIT(8)
#define CE_COMM_INT BIT(31)
/* ce_task symmetric */
#define CE_AES_128BITS 0
#define CE_AES_192BITS 1
#define CE_AES_256BITS 2
#define CE_OP_ECB 0
#define CE_OP_CBC (1 << 8)
#define CE_ALG_AES 0
#define CE_ALG_DES 1
#define CE_ALG_3DES 2
/* Used in ce_variant */
#define CE_ID_NOTSUPP 0xFF
#define CE_ID_CIPHER_AES 0
#define CE_ID_CIPHER_DES 1
#define CE_ID_CIPHER_DES3 2
#define CE_ID_CIPHER_MAX 3
#define CE_ID_OP_ECB 0
#define CE_ID_OP_CBC 1
#define CE_ID_OP_MAX 2
/* Used in CE registers */
#define CE_ERR_ALGO_NOTSUP BIT(0)
#define CE_ERR_DATALEN BIT(1)
#define CE_ERR_KEYSRAM BIT(2)
#define CE_ERR_ADDR_INVALID BIT(5)
#define CE_ERR_KEYLADDER BIT(6)
#define CE_DIE_ID_SHIFT 16
#define CE_DIE_ID_MASK 0x07
#define MAX_SG 8
#define CE_MAX_CLOCKS 3
#define MAXFLOW 4
/*
* struct ce_clock - Describe clocks used by sun8i-ce
* @name: Name of clock needed by this variant
* @freq: Frequency to set for each clock
* @max_freq: Maximum frequency for each clock (generally given by datasheet)
*/
struct ce_clock {
const char *name;
unsigned long freq;
unsigned long max_freq;
};
/*
* struct ce_variant - Describe CE capability for each variant hardware
* @alg_cipher: list of supported ciphers. for each CE_ID_ this will give the
* coresponding CE_ALG_XXX value
* @op_mode: list of supported block modes
* @has_t_dlen_in_bytes: Does the request size for cipher is in
* bytes or words
* @ce_clks: list of clocks needed by this variant
*/
struct ce_variant {
char alg_cipher[CE_ID_CIPHER_MAX];
u32 op_mode[CE_ID_OP_MAX];
bool has_t_dlen_in_bytes;
struct ce_clock ce_clks[CE_MAX_CLOCKS];
};
struct sginfo {
u32 addr;
u32 len;
} __packed;
/*
* struct ce_task - CE Task descriptor
* The structure of this descriptor could be found in the datasheet
*/
struct ce_task {
u32 t_id;
u32 t_common_ctl;
u32 t_sym_ctl;
u32 t_asym_ctl;
u32 t_key;
u32 t_iv;
u32 t_ctr;
u32 t_dlen;
struct sginfo t_src[MAX_SG];
struct sginfo t_dst[MAX_SG];
u32 next;
u32 reserved[3];
} __packed __aligned(8);
/*
* struct sun8i_ce_flow - Information used by each flow
* @engine: ptr to the crypto_engine for this flow
* @bounce_iv: buffer which contain the IV
* @ivlen: size of bounce_iv
* @keylen: keylen for this flow operation
* @complete: completion for the current task on this flow
* @status: set to 1 by interrupt if task is done
* @method: current method for flow
* @op_dir: direction (encrypt vs decrypt) of this flow
* @op_mode: op_mode for this flow
* @t_phy: Physical address of task
* @tl: pointer to the current ce_task for this flow
* @stat_req: number of request done by this flow
*/
struct sun8i_ce_flow {
struct crypto_engine *engine;
void *bounce_iv;
unsigned int ivlen;
unsigned int keylen;
struct completion complete;
int status;
u32 method;
u32 op_dir;
u32 op_mode;
dma_addr_t t_phy;
int timeout;
struct ce_task *tl;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
unsigned long stat_req;
#endif
};
/*
* struct sun8i_ce_dev - main container for all this driver information
* @base: base address of CE
* @ceclks: clocks used by CE
* @reset: pointer to reset controller
* @dev: the platform device
* @mlock: Control access to device registers
* @chanlist: array of all flow
* @flow: flow to use in next request
* @variant: pointer to variant specific data
* @dbgfs_dir: Debugfs dentry for statistic directory
* @dbgfs_stats: Debugfs dentry for statistic counters
*/
struct sun8i_ce_dev {
void __iomem *base;
struct clk *ceclks[CE_MAX_CLOCKS];
struct reset_control *reset;
struct device *dev;
struct mutex mlock;
struct sun8i_ce_flow *chanlist;
atomic_t flow;
const struct ce_variant *variant;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
struct dentry *dbgfs_dir;
struct dentry *dbgfs_stats;
#endif
};
/*
* struct sun8i_cipher_req_ctx - context for a skcipher request
* @op_dir: direction (encrypt vs decrypt) for this request
* @flow: the flow to use for this request
*/
struct sun8i_cipher_req_ctx {
u32 op_dir;
int flow;
};
/*
* struct sun8i_cipher_tfm_ctx - context for a skcipher TFM
* @enginectx: crypto_engine used by this TFM
* @key: pointer to key data
* @keylen: len of the key
* @ce: pointer to the private data of driver handling this TFM
* @fallback_tfm: pointer to the fallback TFM
*/
struct sun8i_cipher_tfm_ctx {
struct crypto_engine_ctx enginectx;
u32 *key;
u32 keylen;
struct sun8i_ce_dev *ce;
struct crypto_sync_skcipher *fallback_tfm;
};
/*
* struct sun8i_ce_alg_template - crypto_alg template
* @type: the CRYPTO_ALG_TYPE for this template
* @ce_algo_id: the CE_ID for this template
* @ce_blockmode: the type of block operation CE_ID
* @ce: pointer to the sun8i_ce_dev structure associated with
* this template
* @alg: one of sub struct must be used
* @stat_req: number of request done on this template
* @stat_fb: total of all data len done on this template
*/
struct sun8i_ce_alg_template {
u32 type;
u32 ce_algo_id;
u32 ce_blockmode;
struct sun8i_ce_dev *ce;
union {
struct skcipher_alg skcipher;
} alg;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
unsigned long stat_req;
unsigned long stat_fb;
#endif
};
int sun8i_ce_enqueue(struct crypto_async_request *areq, u32 type);
int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int sun8i_ce_cipher_init(struct crypto_tfm *tfm);
void sun8i_ce_cipher_exit(struct crypto_tfm *tfm);
int sun8i_ce_skdecrypt(struct skcipher_request *areq);
int sun8i_ce_skencrypt(struct skcipher_request *areq);
int sun8i_ce_get_engine_number(struct sun8i_ce_dev *ce);
int sun8i_ce_run_task(struct sun8i_ce_dev *ce, int flow, const char *name);