1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 18:43:33 -05:00

crypto: hisilicon - Add aead support on SEC2

authenc(hmac(sha1),cbc(aes)), authenc(hmac(sha256),cbc(aes)), and
authenc(hmac(sha512),cbc(aes)) support are added for SEC v2.

Signed-off-by: Zaibo Xu <xuzaibo@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Zaibo Xu 2020-01-11 10:41:56 +08:00 committed by Herbert Xu
parent 473a0f9662
commit 2f072d75d1
4 changed files with 620 additions and 24 deletions

View file

@ -20,12 +20,18 @@ config CRYPTO_DEV_HISI_SEC2
select CRYPTO_ALGAPI
select CRYPTO_LIB_DES
select CRYPTO_DEV_HISI_QM
select CRYPTO_AEAD
select CRYPTO_AUTHENC
select CRYPTO_HMAC
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA512
depends on PCI && PCI_MSI
depends on ARM64 || (COMPILE_TEST && 64BIT)
help
Support for HiSilicon SEC Engine of version 2 in crypto subsystem.
It provides AES, SM4, and 3DES algorithms with ECB
CBC, and XTS cipher mode.
CBC, and XTS cipher mode, and AEAD algorithms.
To compile this as a module, choose M here: the module
will be called hisi_sec2.

View file

@ -13,6 +13,8 @@
struct sec_alg_res {
u8 *c_ivin;
dma_addr_t c_ivin_dma;
u8 *out_mac;
dma_addr_t out_mac_dma;
};
/* Cipher request of SEC private */
@ -26,14 +28,21 @@ struct sec_cipher_req {
bool encrypt;
};
struct sec_aead_req {
u8 *out_mac;
dma_addr_t out_mac_dma;
struct aead_request *aead_req;
};
/* SEC request of Crypto */
struct sec_req {
struct sec_sqe sec_sqe;
struct sec_ctx *ctx;
struct sec_qp_ctx *qp_ctx;
/* Cipher supported only at present */
struct sec_cipher_req c_req;
struct sec_aead_req aead_req;
int err_type;
int req_id;
@ -60,6 +69,16 @@ struct sec_req_op {
int (*process)(struct sec_ctx *ctx, struct sec_req *req);
};
/* SEC auth context */
struct sec_auth_ctx {
dma_addr_t a_key_dma;
u8 *a_key;
u8 a_key_len;
u8 mac_len;
u8 a_alg;
struct crypto_shash *hash_tfm;
};
/* SEC cipher context which cipher's relatives */
struct sec_cipher_ctx {
u8 *c_key;
@ -85,6 +104,11 @@ struct sec_qp_ctx {
atomic_t pending_reqs;
};
enum sec_alg_type {
SEC_SKCIPHER,
SEC_AEAD
};
/* SEC Crypto TFM context which defines queue and cipher .etc relatives */
struct sec_ctx {
struct sec_qp_ctx *qp_ctx;
@ -102,7 +126,10 @@ struct sec_ctx {
/* Currrent cyclic index to select a queue for decipher */
atomic_t dec_qcyclic;
enum sec_alg_type alg_type;
struct sec_cipher_ctx c_ctx;
struct sec_auth_ctx a_ctx;
};
enum sec_endian {

View file

@ -3,7 +3,11 @@
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
@ -27,6 +31,10 @@
#define SEC_SRC_SGL_OFFSET 7
#define SEC_CKEY_OFFSET 9
#define SEC_CMODE_OFFSET 12
#define SEC_AKEY_OFFSET 5
#define SEC_AEAD_ALG_OFFSET 11
#define SEC_AUTH_OFFSET 6
#define SEC_FLAG_OFFSET 7
#define SEC_FLAG_MASK 0x0780
#define SEC_TYPE_MASK 0x0F
@ -35,11 +43,16 @@
#define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR 128
#define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev)
#define SEC_CIPHER_AUTH 0xfe
#define SEC_AUTH_CIPHER 0x1
#define SEC_MAX_MAC_LEN 64
#define SEC_TOTAL_MAC_SZ (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
#define SEC_SQE_LEN_RATE 4
#define SEC_SQE_CFLAG 2
#define SEC_SQE_AEAD_FLAG 3
#define SEC_SQE_DONE 0x1
static DEFINE_MUTEX(sec_algs_lock);
static unsigned int sec_active_devs;
static atomic_t sec_active_devs;
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
@ -97,6 +110,27 @@ static void sec_free_req_id(struct sec_req *req)
mutex_unlock(&qp_ctx->req_lock);
}
static int sec_aead_verify(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
u8 *mac_out = qp_ctx->res[req->req_id].out_mac;
size_t authsize = crypto_aead_authsize(tfm);
u8 *mac = mac_out + SEC_MAX_MAC_LEN;
struct scatterlist *sgl = aead_req->src;
size_t sz;
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
aead_req->cryptlen + aead_req->assoclen -
authsize);
if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
return -EBADMSG;
}
return 0;
}
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
@ -119,14 +153,18 @@ static void sec_req_cb(struct hisi_qp *qp, void *resp)
done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
flag = (le16_to_cpu(bd->type2.done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
if (req->err_type || done != SEC_SQE_DONE ||
flag != SEC_SQE_CFLAG) {
if (unlikely(req->err_type || done != SEC_SQE_DONE ||
(ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
(ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
dev_err(SEC_CTX_DEV(ctx),
"err_type[%d],done[%d],flag[%d]\n",
req->err_type, done, flag);
err = -EIO;
}
if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
err = sec_aead_verify(req, qp_ctx);
atomic64_inc(&ctx->sec->debug.dfx.recv_cnt);
ctx->req_op->buf_unmap(ctx, req);
@ -182,12 +220,53 @@ static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
res->c_ivin, res->c_ivin_dma);
}
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
int i;
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
&res->out_mac_dma, GFP_KERNEL);
if (!res->out_mac)
return -ENOMEM;
for (i = 1; i < QM_Q_DEPTH; i++) {
res[i].out_mac_dma = res->out_mac_dma +
i * (SEC_MAX_MAC_LEN << 1);
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
}
return 0;
}
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->out_mac)
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
res->out_mac, res->out_mac_dma);
}
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_alg_res *res = qp_ctx->res;
int ret;
return sec_alloc_civ_resource(dev, qp_ctx->res);
ret = sec_alloc_civ_resource(dev, res);
if (ret)
return ret;
if (ctx->alg_type == SEC_AEAD) {
ret = sec_alloc_mac_resource(dev, res);
if (ret)
goto get_fail;
}
return 0;
get_fail:
sec_free_civ_resource(dev, res);
return ret;
}
static void sec_alg_resource_free(struct sec_ctx *ctx,
@ -196,6 +275,9 @@ static void sec_alg_resource_free(struct sec_ctx *ctx,
struct device *dev = SEC_CTX_DEV(ctx);
sec_free_civ_resource(dev, qp_ctx->res);
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
}
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
@ -339,12 +421,34 @@ static void sec_cipher_uninit(struct sec_ctx *ctx)
c_ctx->c_key, c_ctx->c_key_dma);
}
static int sec_auth_init(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
&a_ctx->a_key_dma, GFP_KERNEL);
if (!a_ctx->a_key)
return -ENOMEM;
return 0;
}
static void sec_auth_uninit(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
a_ctx->a_key, a_ctx->a_key_dma);
}
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ctx = crypto_skcipher_ctx(tfm);
ctx->alg_type = SEC_SKCIPHER;
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
@ -547,6 +651,126 @@ static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst);
}
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
struct crypto_authenc_keys *keys)
{
switch (keys->enckeylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aead aes key error!\n");
return -EINVAL;
}
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
return 0;
}
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
struct crypto_authenc_keys *keys)
{
struct crypto_shash *hash_tfm = ctx->hash_tfm;
SHASH_DESC_ON_STACK(shash, hash_tfm);
int blocksize, ret;
if (!keys->authkeylen) {
pr_err("hisi_sec2: aead auth key error!\n");
return -EINVAL;
}
blocksize = crypto_shash_blocksize(hash_tfm);
if (keys->authkeylen > blocksize) {
ret = crypto_shash_digest(shash, keys->authkey,
keys->authkeylen, ctx->a_key);
if (ret) {
pr_err("hisi_sec2: aead auth disgest error!\n");
return -EINVAL;
}
ctx->a_key_len = blocksize;
} else {
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
ctx->a_key_len = keys->authkeylen;
}
return 0;
}
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
const u32 keylen, const enum sec_hash_alg a_alg,
const enum sec_calg c_alg,
const enum sec_mac_len mac_len,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct crypto_authenc_keys keys;
int ret;
ctx->a_ctx.a_alg = a_alg;
ctx->c_ctx.c_alg = c_alg;
ctx->a_ctx.mac_len = mac_len;
c_ctx->c_mode = c_mode;
if (crypto_authenc_extractkeys(&keys, key, keylen))
goto bad_key;
ret = sec_aead_aes_set_key(c_ctx, &keys);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
goto bad_key;
}
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
goto bad_key;
}
return 0;
bad_key:
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
return -EINVAL;
}
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
u32 keylen) \
{ \
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
return sec_cipher_map(SEC_CTX_DEV(ctx), req, aq->src, aq->dst);
}
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_cipher_req *cq = &req->c_req;
struct aead_request *aq = req->aead_req.aead_req;
sec_cipher_unmap(dev, cq, aq->src, aq->dst);
}
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
@ -629,20 +853,31 @@ static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
return 0;
}
static void sec_update_iv(struct sec_req *req)
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct skcipher_request *sk_req = req->c_req.sk_req;
u32 iv_size = req->ctx->c_ctx.ivsize;
struct scatterlist *sgl;
unsigned int cryptlen;
size_t sz;
u8 *iv;
if (req->c_req.encrypt)
sgl = sk_req->dst;
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
else
sgl = sk_req->src;
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv,
iv_size, sk_req->cryptlen - iv_size);
if (alg_type == SEC_SKCIPHER) {
iv = sk_req->iv;
cryptlen = sk_req->cryptlen;
} else {
iv = aead_req->iv;
cryptlen = aead_req->cryptlen;
}
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
cryptlen - iv_size);
if (unlikely(sz != iv_size))
dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}
@ -658,7 +893,7 @@ static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
/* IV output at encrypto of CBC mode */
if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
sec_update_iv(req);
sec_update_iv(req, SEC_SKCIPHER);
if (req->fake_busy)
sk_req->base.complete(&sk_req->base, -EINPROGRESS);
@ -666,6 +901,102 @@ static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
sk_req->base.complete(&sk_req->base, err);
}
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
memcpy(c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
}
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
sec_sqe->type2.mac_key_alg =
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)((ctx->a_key_len) /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
if (dir)
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
else
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr =
cpu_to_le64(req->qp_ctx->res[req->req_id].out_mac_dma);
}
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe *sec_sqe = &req->sec_sqe;
int ret;
ret = sec_skcipher_bd_fill(ctx, req);
if (unlikely(ret)) {
dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
return ret;
}
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
return 0;
}
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
struct aead_request *a_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_cipher_req *c_req = &req->c_req;
size_t authsize = crypto_aead_authsize(tfm);
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
size_t sz;
atomic_dec(&qp_ctx->pending_reqs);
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
sec_update_iv(req, SEC_AEAD);
/* Copy output mac */
if (!err && c_req->encrypt) {
struct scatterlist *sgl = a_req->dst;
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
qp_ctx->res[req->req_id].out_mac,
authsize, a_req->cryptlen +
a_req->assoclen);
if (unlikely(sz != authsize)) {
dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
err = -EINVAL;
}
}
sec_free_req_id(req);
if (req->fake_busy)
a_req->base.complete(&a_req->base, -EINPROGRESS);
a_req->base.complete(&a_req->base, err);
}
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
@ -712,7 +1043,7 @@ static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
/* Output IV as decrypto */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
sec_update_iv(req);
sec_update_iv(req, ctx->alg_type);
ret = ctx->req_op->bd_send(ctx, req);
if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
@ -724,10 +1055,16 @@ static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
err_send_req:
/* As failing, restore the IV from user */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
memcpy(req->c_req.sk_req->iv,
req->qp_ctx->res[req->req_id].c_ivin,
ctx->c_ctx.ivsize);
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
if (ctx->alg_type == SEC_SKCIPHER)
memcpy(req->c_req.sk_req->iv,
req->qp_ctx->res[req->req_id].c_ivin,
ctx->c_ctx.ivsize);
else
memcpy(req->aead_req.aead_req->iv,
req->qp_ctx->res[req->req_id].c_ivin,
ctx->c_ctx.ivsize);
}
sec_request_untransfer(ctx, req);
err_uninit_req:
@ -746,6 +1083,16 @@ static const struct sec_req_op sec_skcipher_req_ops = {
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_copy_iv,
.bd_fill = sec_aead_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
@ -760,6 +1107,96 @@ static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
sec_skcipher_uninit(tfm);
}
static int sec_aead_init(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
ctx->alg_type = SEC_AEAD;
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
return -EINVAL;
}
ctx->req_op = &sec_aead_req_ops;
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
ret = sec_auth_init(ctx);
if (ret)
goto err_auth_init;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
return ret;
err_cipher_init:
sec_auth_uninit(ctx);
err_auth_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_aead_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
sec_cipher_uninit(ctx);
sec_auth_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
pr_err("hisi_sec2: aead init error!\n");
return ret;
}
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
if (IS_ERR(auth_ctx->hash_tfm)) {
dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
sec_aead_exit(tfm);
return PTR_ERR(auth_ctx->hash_tfm);
}
return 0;
}
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_shash(ctx->a_ctx.hash_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha1");
}
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha256");
}
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha512");
}
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct skcipher_request *sk_req = sreq->c_req.sk_req;
@ -877,25 +1314,133 @@ static struct skcipher_alg sec_skciphers[] = {
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
u8 c_alg = ctx->c_ctx.c_alg;
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
if (unlikely(!req->src || !req->dst || !req->cryptlen)) {
dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
return -EINVAL;
}
/* Support AES only */
if (unlikely(c_alg != SEC_CALG_AES)) {
dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
return -EINVAL;
}
if (sreq->c_req.encrypt)
sreq->c_req.c_len = req->cryptlen;
else
sreq->c_req.c_len = req->cryptlen - authsize;
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
return -EINVAL;
}
return 0;
}
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_req *req = aead_request_ctx(a_req);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
req->aead_req.aead_req = a_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_aead_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
return ctx->req_op->process(ctx, req);
}
static int sec_aead_encrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, true);
}
static int sec_aead_decrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, false);
}
#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
ctx_exit, blk_size, iv_size, max_authsize)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_aead_decrypt,\
.encrypt = sec_aead_encrypt,\
.ivsize = iv_size,\
.maxauthsize = max_authsize,\
}
#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
sec_aead_ctx_exit, blksize, ivsize, authsize)
static struct aead_alg sec_aeads[] = {
SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
};
int sec_register_to_crypto(void)
{
int ret = 0;
/* To avoid repeat register */
mutex_lock(&sec_algs_lock);
if (++sec_active_devs == 1)
if (atomic_add_return(1, &sec_active_devs) == 1) {
ret = crypto_register_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
mutex_unlock(&sec_algs_lock);
if (ret)
return ret;
ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
if (ret)
goto reg_aead_fail;
}
return ret;
reg_aead_fail:
crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers));
return ret;
}
void sec_unregister_from_crypto(void)
{
mutex_lock(&sec_algs_lock);
if (--sec_active_devs == 0)
if (atomic_sub_return(1, &sec_active_devs) == 0) {
crypto_unregister_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
mutex_unlock(&sec_algs_lock);
crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
}
}

View file

@ -14,6 +14,18 @@ enum sec_calg {
SEC_CALG_SM4 = 0x3,
};
enum sec_hash_alg {
SEC_A_HMAC_SHA1 = 0x10,
SEC_A_HMAC_SHA256 = 0x11,
SEC_A_HMAC_SHA512 = 0x15,
};
enum sec_mac_len {
SEC_HMAC_SHA1_MAC = 20,
SEC_HMAC_SHA256_MAC = 32,
SEC_HMAC_SHA512_MAC = 64,
};
enum sec_cmode {
SEC_CMODE_ECB = 0x0,
SEC_CMODE_CBC = 0x1,
@ -34,6 +46,12 @@ enum sec_bd_type {
SEC_BD_TYPE2 = 0x2,
};
enum sec_auth {
SEC_NO_AUTH = 0x0,
SEC_AUTH_TYPE1 = 0x1,
SEC_AUTH_TYPE2 = 0x2,
};
enum sec_cipher_dir {
SEC_CIPHER_ENC = 0x1,
SEC_CIPHER_DEC = 0x2,