1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 09:13:20 -05:00

clk: meson: gxbb-aoclk: Add CEC 32k clock

The CEC 32K AO Clock is a dual divider with dual counter to provide a more
precise 32768Hz clock for the CEC subsystem from the external xtal.

Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
This commit is contained in:
Neil Armstrong 2017-08-01 13:56:59 +02:00
parent ffb13e3b84
commit 62ec0b9754
4 changed files with 231 additions and 2 deletions

View file

@ -4,4 +4,4 @@
obj-$(CONFIG_COMMON_CLK_AMLOGIC) += clk-pll.o clk-cpu.o clk-mpll.o clk-audio-divider.o
obj-$(CONFIG_COMMON_CLK_MESON8B) += meson8b.o
obj-$(CONFIG_COMMON_CLK_GXBB) += gxbb.o gxbb-aoclk.o gxbb-aoclk-regmap.o
obj-$(CONFIG_COMMON_CLK_GXBB) += gxbb.o gxbb-aoclk.o gxbb-aoclk-regmap.o gxbb-aoclk-32k.o

View file

@ -0,0 +1,194 @@
/*
* Copyright (c) 2017 BayLibre, SAS.
* Author: Neil Armstrong <narmstrong@baylibre.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <linux/clk-provider.h>
#include <linux/bitfield.h>
#include <linux/regmap.h>
#include "gxbb-aoclk.h"
/*
* The AO Domain embeds a dual/divider to generate a more precise
* 32,768KHz clock for low-power suspend mode and CEC.
* ______ ______
* | | | |
* ______ | Div1 |-| Cnt1 | ______
* | | /|______| |______|\ | |
* Xtal-->| Gate |---| ______ ______ X-X--| Gate |-->
* |______| | \| | | |/ | |______|
* | | Div2 |-| Cnt2 | |
* | |______| |______| |
* |_______________________|
*
* The dividing can be switched to single or dual, with a counter
* for each divider to set when the switching is done.
* The entire dividing mechanism can be also bypassed.
*/
#define CLK_CNTL0_N1_MASK GENMASK(11, 0)
#define CLK_CNTL0_N2_MASK GENMASK(23, 12)
#define CLK_CNTL0_DUALDIV_EN BIT(28)
#define CLK_CNTL0_OUT_GATE_EN BIT(30)
#define CLK_CNTL0_IN_GATE_EN BIT(31)
#define CLK_CNTL1_M1_MASK GENMASK(11, 0)
#define CLK_CNTL1_M2_MASK GENMASK(23, 12)
#define CLK_CNTL1_BYPASS_EN BIT(24)
#define CLK_CNTL1_SELECT_OSC BIT(27)
#define PWR_CNTL_ALT_32K_SEL GENMASK(13, 10)
struct cec_32k_freq_table {
unsigned long parent_rate;
unsigned long target_rate;
bool dualdiv;
unsigned int n1;
unsigned int n2;
unsigned int m1;
unsigned int m2;
};
static const struct cec_32k_freq_table aoclk_cec_32k_table[] = {
[0] = {
.parent_rate = 24000000,
.target_rate = 32768,
.dualdiv = true,
.n1 = 733,
.n2 = 732,
.m1 = 8,
.m2 = 11,
},
};
/*
* If CLK_CNTL0_DUALDIV_EN == 0
* - will use N1 divider only
* If CLK_CNTL0_DUALDIV_EN == 1
* - hold M1 cycles of N1 divider then changes to N2
* - hold M2 cycles of N2 divider then changes to N1
* Then we can get more accurate division.
*/
static unsigned long aoclk_cec_32k_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
unsigned long n1;
u32 reg0, reg1;
regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, &reg0);
regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, &reg1);
if (reg1 & CLK_CNTL1_BYPASS_EN)
return parent_rate;
if (reg0 & CLK_CNTL0_DUALDIV_EN) {
unsigned long n2, m1, m2, f1, f2, p1, p2;
n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
n2 = FIELD_GET(CLK_CNTL0_N2_MASK, reg0) + 1;
m1 = FIELD_GET(CLK_CNTL1_M1_MASK, reg1) + 1;
m2 = FIELD_GET(CLK_CNTL1_M2_MASK, reg1) + 1;
f1 = DIV_ROUND_CLOSEST(parent_rate, n1);
f2 = DIV_ROUND_CLOSEST(parent_rate, n2);
p1 = DIV_ROUND_CLOSEST(100000000 * m1, f1 * (m1 + m2));
p2 = DIV_ROUND_CLOSEST(100000000 * m2, f2 * (m1 + m2));
return DIV_ROUND_UP(100000000, p1 + p2);
}
n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
return DIV_ROUND_CLOSEST(parent_rate, n1);
}
static const struct cec_32k_freq_table *find_cec_32k_freq(unsigned long rate,
unsigned long prate)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(aoclk_cec_32k_table) ; ++i)
if (aoclk_cec_32k_table[i].parent_rate == prate &&
aoclk_cec_32k_table[i].target_rate == rate)
return &aoclk_cec_32k_table[i];
return NULL;
}
static long aoclk_cec_32k_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
*prate);
/* If invalid return first one */
if (!freq)
return aoclk_cec_32k_table[0].target_rate;
return freq->target_rate;
}
/*
* From the Amlogic init procedure, the IN and OUT gates needs to be handled
* in the init procedure to avoid any glitches.
*/
static int aoclk_cec_32k_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
parent_rate);
struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
u32 reg = 0;
if (!freq)
return -EINVAL;
/* Disable clock */
regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
CLK_CNTL0_IN_GATE_EN | CLK_CNTL0_OUT_GATE_EN, 0);
reg = FIELD_PREP(CLK_CNTL0_N1_MASK, freq->n1 - 1);
if (freq->dualdiv)
reg |= CLK_CNTL0_DUALDIV_EN |
FIELD_PREP(CLK_CNTL0_N2_MASK, freq->n2 - 1);
regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, reg);
reg = FIELD_PREP(CLK_CNTL1_M1_MASK, freq->m1 - 1);
if (freq->dualdiv)
reg |= FIELD_PREP(CLK_CNTL1_M2_MASK, freq->m2 - 1);
regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, reg);
/* Enable clock */
regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
CLK_CNTL0_IN_GATE_EN, CLK_CNTL0_IN_GATE_EN);
udelay(200);
regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
CLK_CNTL0_OUT_GATE_EN, CLK_CNTL0_OUT_GATE_EN);
regmap_update_bits(cec_32k->regmap, AO_CRT_CLK_CNTL1,
CLK_CNTL1_SELECT_OSC, CLK_CNTL1_SELECT_OSC);
/* Select 32k from XTAL */
regmap_update_bits(cec_32k->regmap,
AO_RTI_PWR_CNTL_REG0,
PWR_CNTL_ALT_32K_SEL,
FIELD_PREP(PWR_CNTL_ALT_32K_SEL, 4));
return 0;
}
const struct clk_ops meson_aoclk_cec_32k_ops = {
.recalc_rate = aoclk_cec_32k_recalc_rate,
.round_rate = aoclk_cec_32k_round_rate,
.set_rate = aoclk_cec_32k_set_rate,
};

View file

@ -59,6 +59,7 @@
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <dt-bindings/clock/gxbb-aoclkc.h>
#include <dt-bindings/reset/gxbb-aoclkc.h>
#include "gxbb-aoclk.h"
@ -105,6 +106,17 @@ GXBB_AO_GATE(uart1, 3);
GXBB_AO_GATE(uart2, 5);
GXBB_AO_GATE(ir_blaster, 6);
static struct aoclk_cec_32k cec_32k_ao = {
.lock = &gxbb_aoclk_lock,
.hw.init = &(struct clk_init_data) {
.name = "cec_32k_ao",
.ops = &meson_aoclk_cec_32k_ops,
.parent_names = (const char *[]){ "xtal" },
.num_parents = 1,
.flags = CLK_IGNORE_UNUSED,
},
};
static unsigned int gxbb_aoclk_reset[] = {
[RESET_AO_REMOTE] = 16,
[RESET_AO_I2C_MASTER] = 18,
@ -131,8 +143,9 @@ static struct clk_hw_onecell_data gxbb_aoclk_onecell_data = {
[CLKID_AO_UART1] = &uart1_ao.hw,
[CLKID_AO_UART2] = &uart2_ao.hw,
[CLKID_AO_IR_BLASTER] = &ir_blaster_ao.hw,
[CLKID_AO_CEC_32K] = &cec_32k_ao.hw,
},
.num = ARRAY_SIZE(gxbb_aoclk_gate),
.num = 7,
};
static int gxbb_aoclkc_probe(struct platform_device *pdev)
@ -172,6 +185,12 @@ static int gxbb_aoclkc_probe(struct platform_device *pdev)
return ret;
}
/* Specific clocks */
cec_32k_ao.regmap = regmap;
ret = devm_clk_hw_register(dev, &cec_32k_ao.hw);
if (ret)
return ret;
return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
&gxbb_aoclk_onecell_data);
}

View file

@ -9,7 +9,13 @@
#define __GXBB_AOCLKC_H
/* AO Configuration Clock registers offsets */
#define AO_RTI_PWR_CNTL_REG1 0x0c
#define AO_RTI_PWR_CNTL_REG0 0x10
#define AO_RTI_GEN_CNTL_REG0 0x40
#define AO_OSCIN_CNTL 0x58
#define AO_CRT_CLK_CNTL1 0x68
#define AO_RTC_ALT_CLK_CNTL0 0x94
#define AO_RTC_ALT_CLK_CNTL1 0x98
struct aoclk_gate_regmap {
struct clk_hw hw;
@ -23,4 +29,14 @@ struct aoclk_gate_regmap {
extern const struct clk_ops meson_aoclk_gate_regmap_ops;
struct aoclk_cec_32k {
struct clk_hw hw;
struct regmap *regmap;
spinlock_t *lock;
};
#define to_aoclk_cec_32k(_hw) container_of(_hw, struct aoclk_cec_32k, hw)
extern const struct clk_ops meson_aoclk_cec_32k_ops;
#endif /* __GXBB_AOCLKC_H */