1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00

net: microchip: sparx5: Adding KUNIT test for the VCAP API

This provides a KUNIT test suite for the VCAP APIs encoding functionality.

The test can be run by adding these settings in a .kunitconfig file

CONFIG_KUNIT=y
CONFIG_NET=y
CONFIG_VCAP_KUNIT_TEST=y

Signed-off-by: Steen Hegelund <steen.hegelund@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Steen Hegelund 2022-10-20 15:09:04 +02:00 committed by David S. Miller
parent 5d7e5b0401
commit 67d637516f
5 changed files with 1596 additions and 0 deletions

View file

@ -36,4 +36,17 @@ config VCAP
characteristics. Look in the datasheet for the VCAP specifications for the
specific switchcore.
config VCAP_KUNIT_TEST
bool "KUnit test for VCAP library" if !KUNIT_ALL_TESTS
depends on KUNIT
depends on KUNIT=y && VCAP=y && y
default KUNIT_ALL_TESTS
help
This builds unit tests for the VCAP library.
For more information on KUnit and unit tests in general, please refer
to the KUnit documentation in Documentation/dev-tools/kunit/.
If unsure, say N.
endif # NET_VENDOR_MICROCHIP

View file

@ -0,0 +1,643 @@
/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (C) 2022 Microchip Technology Inc. and its subsidiaries.
* Microchip VCAP API interface for kunit testing
* This is a different interface, to be able to include different VCAPs
*/
/* Use same include guard as the official API to be able to override it */
#ifndef __VCAP_AG_API__
#define __VCAP_AG_API__
enum vcap_type {
VCAP_TYPE_ES2,
VCAP_TYPE_IS0,
VCAP_TYPE_IS2,
VCAP_TYPE_MAX
};
/* Keyfieldset names with origin information */
enum vcap_keyfield_set {
VCAP_KFS_NO_VALUE, /* initial value */
VCAP_KFS_ARP, /* sparx5 is2 X6, sparx5 es2 X6 */
VCAP_KFS_ETAG, /* sparx5 is0 X2 */
VCAP_KFS_IP4_OTHER, /* sparx5 is2 X6, sparx5 es2 X6 */
VCAP_KFS_IP4_TCP_UDP, /* sparx5 is2 X6, sparx5 es2 X6 */
VCAP_KFS_IP4_VID, /* sparx5 es2 X3 */
VCAP_KFS_IP6_STD, /* sparx5 is2 X6 */
VCAP_KFS_IP6_VID, /* sparx5 is2 X6, sparx5 es2 X6 */
VCAP_KFS_IP_7TUPLE, /* sparx5 is2 X12, sparx5 es2 X12 */
VCAP_KFS_LL_FULL, /* sparx5 is0 X6 */
VCAP_KFS_MAC_ETYPE, /* sparx5 is2 X6, sparx5 es2 X6 */
VCAP_KFS_MLL, /* sparx5 is0 X3 */
VCAP_KFS_NORMAL, /* sparx5 is0 X6 */
VCAP_KFS_NORMAL_5TUPLE_IP4, /* sparx5 is0 X6 */
VCAP_KFS_NORMAL_7TUPLE, /* sparx5 is0 X12 */
VCAP_KFS_PURE_5TUPLE_IP4, /* sparx5 is0 X3 */
VCAP_KFS_TRI_VID, /* sparx5 is0 X2 */
};
/* List of keyfields with description
*
* Keys ending in _IS are booleans derived from frame data
* Keys ending in _CLS are classified frame data
*
* VCAP_KF_8021BR_ECID_BASE: W12, sparx5: is0
* Used by 802.1BR Bridge Port Extension in an E-Tag
* VCAP_KF_8021BR_ECID_EXT: W8, sparx5: is0
* Used by 802.1BR Bridge Port Extension in an E-Tag
* VCAP_KF_8021BR_E_TAGGED: W1, sparx5: is0
* Set for frames containing an E-TAG (802.1BR Ethertype 893f)
* VCAP_KF_8021BR_GRP: W2, sparx5: is0
* E-Tag group bits in 802.1BR Bridge Port Extension
* VCAP_KF_8021BR_IGR_ECID_BASE: W12, sparx5: is0
* Used by 802.1BR Bridge Port Extension in an E-Tag
* VCAP_KF_8021BR_IGR_ECID_EXT: W8, sparx5: is0
* Used by 802.1BR Bridge Port Extension in an E-Tag
* VCAP_KF_8021Q_DEI0: W1, sparx5: is0
* First DEI in multiple vlan tags (outer tag or default port tag)
* VCAP_KF_8021Q_DEI1: W1, sparx5: is0
* Second DEI in multiple vlan tags (inner tag)
* VCAP_KF_8021Q_DEI2: W1, sparx5: is0
* Third DEI in multiple vlan tags (not always available)
* VCAP_KF_8021Q_DEI_CLS: W1, sparx5: is2/es2
* Classified DEI
* VCAP_KF_8021Q_PCP0: W3, sparx5: is0
* First PCP in multiple vlan tags (outer tag or default port tag)
* VCAP_KF_8021Q_PCP1: W3, sparx5: is0
* Second PCP in multiple vlan tags (inner tag)
* VCAP_KF_8021Q_PCP2: W3, sparx5: is0
* Third PCP in multiple vlan tags (not always available)
* VCAP_KF_8021Q_PCP_CLS: W3, sparx5: is2/es2
* Classified PCP
* VCAP_KF_8021Q_TPID0: W3, sparx5: is0
* First TPIC in multiple vlan tags (outer tag or default port tag)
* VCAP_KF_8021Q_TPID1: W3, sparx5: is0
* Second TPID in multiple vlan tags (inner tag)
* VCAP_KF_8021Q_TPID2: W3, sparx5: is0
* Third TPID in multiple vlan tags (not always available)
* VCAP_KF_8021Q_VID0: W12, sparx5: is0
* First VID in multiple vlan tags (outer tag or default port tag)
* VCAP_KF_8021Q_VID1: W12, sparx5: is0
* Second VID in multiple vlan tags (inner tag)
* VCAP_KF_8021Q_VID2: W12, sparx5: is0
* Third VID in multiple vlan tags (not always available)
* VCAP_KF_8021Q_VID_CLS: W13, sparx5: is2/es2
* Classified VID
* VCAP_KF_8021Q_VLAN_TAGGED_IS: W1, sparx5: is2/es2
* Sparx5: Set if frame was received with a VLAN tag, LAN966x: Set if frame has
* one or more Q-tags. Independent of port VLAN awareness
* VCAP_KF_8021Q_VLAN_TAGS: W3, sparx5: is0
* Number of VLAN tags in frame: 0: Untagged, 1: Single tagged, 3: Double
* tagged, 7: Triple tagged
* VCAP_KF_ACL_GRP_ID: W8, sparx5: es2
* Used in interface map table
* VCAP_KF_ARP_ADDR_SPACE_OK_IS: W1, sparx5: is2/es2
* Set if hardware address is Ethernet
* VCAP_KF_ARP_LEN_OK_IS: W1, sparx5: is2/es2
* Set if hardware address length = 6 (Ethernet) and IP address length = 4 (IP).
* VCAP_KF_ARP_OPCODE: W2, sparx5: is2/es2
* ARP opcode
* VCAP_KF_ARP_OPCODE_UNKNOWN_IS: W1, sparx5: is2/es2
* Set if not one of the codes defined in VCAP_KF_ARP_OPCODE
* VCAP_KF_ARP_PROTO_SPACE_OK_IS: W1, sparx5: is2/es2
* Set if protocol address space is 0x0800
* VCAP_KF_ARP_SENDER_MATCH_IS: W1, sparx5: is2/es2
* Sender Hardware Address = SMAC (ARP)
* VCAP_KF_ARP_TGT_MATCH_IS: W1, sparx5: is2/es2
* Target Hardware Address = SMAC (RARP)
* VCAP_KF_COSID_CLS: W3, sparx5: es2
* Class of service
* VCAP_KF_DST_ENTRY: W1, sparx5: is0
* Selects whether the frames destination or source information is used for
* fields L2_SMAC and L3_IP4_SIP
* VCAP_KF_ES0_ISDX_KEY_ENA: W1, sparx5: es2
* The value taken from the IFH .FWD.ES0_ISDX_KEY_ENA
* VCAP_KF_ETYPE: W16, sparx5: is0/is2/es2
* Ethernet type
* VCAP_KF_ETYPE_LEN_IS: W1, sparx5: is0/is2/es2
* Set if frame has EtherType >= 0x600
* VCAP_KF_ETYPE_MPLS: W2, sparx5: is0
* Type of MPLS Ethertype (or not)
* VCAP_KF_IF_EGR_PORT_MASK: W32, sparx5: es2
* Egress port mask, one bit per port
* VCAP_KF_IF_EGR_PORT_MASK_RNG: W3, sparx5: es2
* Select which 32 port group is available in IF_EGR_PORT (or virtual ports or
* CPU queue)
* VCAP_KF_IF_IGR_PORT: sparx5 is0 W7, sparx5 es2 W9
* Sparx5: Logical ingress port number retrieved from
* ANA_CL::PORT_ID_CFG.LPORT_NUM or ERLEG, LAN966x: ingress port nunmber
* VCAP_KF_IF_IGR_PORT_MASK: sparx5 is0 W65, sparx5 is2 W32, sparx5 is2 W65
* Ingress port mask, one bit per port/erleg
* VCAP_KF_IF_IGR_PORT_MASK_L3: W1, sparx5: is2
* If set, IF_IGR_PORT_MASK, IF_IGR_PORT_MASK_RNG, and IF_IGR_PORT_MASK_SEL are
* used to specify L3 interfaces
* VCAP_KF_IF_IGR_PORT_MASK_RNG: W4, sparx5: is2
* Range selector for IF_IGR_PORT_MASK. Specifies which group of 32 ports are
* available in IF_IGR_PORT_MASK
* VCAP_KF_IF_IGR_PORT_MASK_SEL: W2, sparx5: is0/is2
* Mode selector for IF_IGR_PORT_MASK, applicable when IF_IGR_PORT_MASK_L3 == 0.
* Mapping: 0: DEFAULT 1: LOOPBACK 2: MASQUERADE 3: CPU_VD
* VCAP_KF_IF_IGR_PORT_SEL: W1, sparx5: es2
* Selector for IF_IGR_PORT: physical port number or ERLEG
* VCAP_KF_IP4_IS: W1, sparx5: is0/is2/es2
* Set if frame has EtherType = 0x800 and IP version = 4
* VCAP_KF_IP_MC_IS: W1, sparx5: is0
* Set if frame is IPv4 frame and frames destination MAC address is an IPv4
* multicast address (0x01005E0 /25). Set if frame is IPv6 frame and frames
* destination MAC address is an IPv6 multicast address (0x3333/16).
* VCAP_KF_IP_PAYLOAD_5TUPLE: W32, sparx5: is0
* Payload bytes after IP header
* VCAP_KF_IP_SNAP_IS: W1, sparx5: is0
* Set if frame is IPv4, IPv6, or SNAP frame
* VCAP_KF_ISDX_CLS: W12, sparx5: is2/es2
* Classified ISDX
* VCAP_KF_ISDX_GT0_IS: W1, sparx5: is2/es2
* Set if classified ISDX > 0
* VCAP_KF_L2_BC_IS: W1, sparx5: is0/is2/es2
* Set if frames destination MAC address is the broadcast address
* (FF-FF-FF-FF-FF-FF).
* VCAP_KF_L2_DMAC: W48, sparx5: is0/is2/es2
* Destination MAC address
* VCAP_KF_L2_FWD_IS: W1, sparx5: is2
* Set if the frame is allowed to be forwarded to front ports
* VCAP_KF_L2_MC_IS: W1, sparx5: is0/is2/es2
* Set if frames destination MAC address is a multicast address (bit 40 = 1).
* VCAP_KF_L2_PAYLOAD_ETYPE: W64, sparx5: is2/es2
* Byte 0-7 of L2 payload after Type/Len field and overloading for OAM
* VCAP_KF_L2_SMAC: W48, sparx5: is0/is2/es2
* Source MAC address
* VCAP_KF_L3_DIP_EQ_SIP_IS: W1, sparx5: is2/es2
* Set if Src IP matches Dst IP address
* VCAP_KF_L3_DMAC_DIP_MATCH: W1, sparx5: is2
* Match found in DIP security lookup in ANA_L3
* VCAP_KF_L3_DPL_CLS: W1, sparx5: es2
* The frames drop precedence level
* VCAP_KF_L3_DSCP: W6, sparx5: is0
* Frames DSCP value
* VCAP_KF_L3_DST_IS: W1, sparx5: is2
* Set if lookup is done for egress router leg
* VCAP_KF_L3_FRAGMENT_TYPE: W2, sparx5: is0/is2/es2
* L3 Fragmentation type (none, initial, suspicious, valid follow up)
* VCAP_KF_L3_FRAG_INVLD_L4_LEN: W1, sparx5: is0/is2
* Set if frame's L4 length is less than ANA_CL:COMMON:CLM_FRAGMENT_CFG.L4_MIN_L
* EN
* VCAP_KF_L3_IP4_DIP: W32, sparx5: is0/is2/es2
* Destination IPv4 Address
* VCAP_KF_L3_IP4_SIP: W32, sparx5: is0/is2/es2
* Source IPv4 Address
* VCAP_KF_L3_IP6_DIP: W128, sparx5: is0/is2/es2
* Sparx5: Full IPv6 DIP, LAN966x: Either Full IPv6 DIP or a subset depending on
* frame type
* VCAP_KF_L3_IP6_SIP: W128, sparx5: is0/is2/es2
* Sparx5: Full IPv6 SIP, LAN966x: Either Full IPv6 SIP or a subset depending on
* frame type
* VCAP_KF_L3_IP_PROTO: W8, sparx5: is0/is2/es2
* IPv4 frames: IP protocol. IPv6 frames: Next header, same as for IPV4
* VCAP_KF_L3_OPTIONS_IS: W1, sparx5: is0/is2/es2
* Set if IPv4 frame contains options (IP len > 5)
* VCAP_KF_L3_PAYLOAD: sparx5 is2 W96, sparx5 is2 W40, sparx5 es2 W96
* Sparx5: Payload bytes after IP header. IPv4: IPv4 options are not parsed so
* payload is always taken 20 bytes after the start of the IPv4 header, LAN966x:
* Bytes 0-6 after IP header
* VCAP_KF_L3_RT_IS: W1, sparx5: is2/es2
* Set if frame has hit a router leg
* VCAP_KF_L3_SMAC_SIP_MATCH: W1, sparx5: is2
* Match found in SIP security lookup in ANA_L3
* VCAP_KF_L3_TOS: W8, sparx5: is2/es2
* Sparx5: Frame's IPv4/IPv6 DSCP and ECN fields, LAN966x: IP TOS field
* VCAP_KF_L3_TTL_GT0: W1, sparx5: is2/es2
* Set if IPv4 TTL / IPv6 hop limit is greater than 0
* VCAP_KF_L4_ACK: W1, sparx5: is2/es2
* Sparx5 and LAN966x: TCP flag ACK, LAN966x only: PTP over UDP: flagField bit 2
* (unicastFlag)
* VCAP_KF_L4_DPORT: W16, sparx5: is2/es2
* Sparx5: TCP/UDP destination port. Overloading for IP_7TUPLE: Non-TCP/UDP IP
* frames: L4_DPORT = L3_IP_PROTO, LAN966x: TCP/UDP destination port
* VCAP_KF_L4_FIN: W1, sparx5: is2/es2
* TCP flag FIN, LAN966x: TCP flag FIN, and for PTP over UDP: messageType bit 1
* VCAP_KF_L4_PAYLOAD: W64, sparx5: is2/es2
* Payload bytes after TCP/UDP header Overloading for IP_7TUPLE: Non TCP/UDP
* frames: Payload bytes 07 after IP header. IPv4 options are not parsed so
* payload is always taken 20 bytes after the start of the IPv4 header for non
* TCP/UDP IPv4 frames
* VCAP_KF_L4_PSH: W1, sparx5: is2/es2
* Sparx5: TCP flag PSH, LAN966x: TCP: TCP flag PSH. PTP over UDP: flagField bit
* 1 (twoStepFlag)
* VCAP_KF_L4_RNG: sparx5 is0 W8, sparx5 is2 W16, sparx5 es2 W16
* Range checker bitmask (one for each range checker). Input into range checkers
* is taken from classified results (VID, DSCP) and frame (SPORT, DPORT, ETYPE,
* outer VID, inner VID)
* VCAP_KF_L4_RST: W1, sparx5: is2/es2
* Sparx5: TCP flag RST , LAN966x: TCP: TCP flag RST. PTP over UDP: messageType
* bit 3
* VCAP_KF_L4_SEQUENCE_EQ0_IS: W1, sparx5: is2/es2
* Set if TCP sequence number is 0, LAN966x: Overlayed with PTP over UDP:
* messageType bit 0
* VCAP_KF_L4_SPORT: W16, sparx5: is0/is2/es2
* TCP/UDP source port
* VCAP_KF_L4_SPORT_EQ_DPORT_IS: W1, sparx5: is2/es2
* Set if UDP or TCP source port equals UDP or TCP destination port
* VCAP_KF_L4_SYN: W1, sparx5: is2/es2
* Sparx5: TCP flag SYN, LAN966x: TCP: TCP flag SYN. PTP over UDP: messageType
* bit 2
* VCAP_KF_L4_URG: W1, sparx5: is2/es2
* Sparx5: TCP flag URG, LAN966x: TCP: TCP flag URG. PTP over UDP: flagField bit
* 7 (reserved)
* VCAP_KF_LOOKUP_FIRST_IS: W1, sparx5: is0/is2/es2
* Selects between entries relevant for first and second lookup. Set for first
* lookup, cleared for second lookup.
* VCAP_KF_LOOKUP_GEN_IDX: W12, sparx5: is0
* Generic index - for chaining CLM instances
* VCAP_KF_LOOKUP_GEN_IDX_SEL: W2, sparx5: is0
* Select the mode of the Generic Index
* VCAP_KF_LOOKUP_PAG: W8, sparx5: is2
* Classified Policy Association Group: chains rules from IS1/CLM to IS2
* VCAP_KF_OAM_CCM_CNTS_EQ0: W1, sparx5: is2/es2
* Dual-ended loss measurement counters in CCM frames are all zero
* VCAP_KF_OAM_MEL_FLAGS: W7, sparx5: is0
* Encoding of MD level/MEG level (MEL)
* VCAP_KF_OAM_Y1731_IS: W1, sparx5: is0/is2/es2
* Set if frames EtherType = 0x8902
* VCAP_KF_PROT_ACTIVE: W1, sparx5: es2
* Protection is active
* VCAP_KF_TCP_IS: W1, sparx5: is0/is2/es2
* Set if frame is IPv4 TCP frame (IP protocol = 6) or IPv6 TCP frames (Next
* header = 6)
* VCAP_KF_TCP_UDP_IS: W1, sparx5: is0/is2/es2
* Set if frame is IPv4/IPv6 TCP or UDP frame (IP protocol/next header equals 6
* or 17)
* VCAP_KF_TYPE: sparx5 is0 W2, sparx5 is0 W1, sparx5 is2 W4, sparx5 is2 W2,
* sparx5 es2 W3
* Keyset type id - set by the API
*/
/* Keyfield names */
enum vcap_key_field {
VCAP_KF_NO_VALUE, /* initial value */
VCAP_KF_8021BR_ECID_BASE,
VCAP_KF_8021BR_ECID_EXT,
VCAP_KF_8021BR_E_TAGGED,
VCAP_KF_8021BR_GRP,
VCAP_KF_8021BR_IGR_ECID_BASE,
VCAP_KF_8021BR_IGR_ECID_EXT,
VCAP_KF_8021Q_DEI0,
VCAP_KF_8021Q_DEI1,
VCAP_KF_8021Q_DEI2,
VCAP_KF_8021Q_DEI_CLS,
VCAP_KF_8021Q_PCP0,
VCAP_KF_8021Q_PCP1,
VCAP_KF_8021Q_PCP2,
VCAP_KF_8021Q_PCP_CLS,
VCAP_KF_8021Q_TPID0,
VCAP_KF_8021Q_TPID1,
VCAP_KF_8021Q_TPID2,
VCAP_KF_8021Q_VID0,
VCAP_KF_8021Q_VID1,
VCAP_KF_8021Q_VID2,
VCAP_KF_8021Q_VID_CLS,
VCAP_KF_8021Q_VLAN_TAGGED_IS,
VCAP_KF_8021Q_VLAN_TAGS,
VCAP_KF_ACL_GRP_ID,
VCAP_KF_ARP_ADDR_SPACE_OK_IS,
VCAP_KF_ARP_LEN_OK_IS,
VCAP_KF_ARP_OPCODE,
VCAP_KF_ARP_OPCODE_UNKNOWN_IS,
VCAP_KF_ARP_PROTO_SPACE_OK_IS,
VCAP_KF_ARP_SENDER_MATCH_IS,
VCAP_KF_ARP_TGT_MATCH_IS,
VCAP_KF_COSID_CLS,
VCAP_KF_DST_ENTRY,
VCAP_KF_ES0_ISDX_KEY_ENA,
VCAP_KF_ETYPE,
VCAP_KF_ETYPE_LEN_IS,
VCAP_KF_ETYPE_MPLS,
VCAP_KF_IF_EGR_PORT_MASK,
VCAP_KF_IF_EGR_PORT_MASK_RNG,
VCAP_KF_IF_IGR_PORT,
VCAP_KF_IF_IGR_PORT_MASK,
VCAP_KF_IF_IGR_PORT_MASK_L3,
VCAP_KF_IF_IGR_PORT_MASK_RNG,
VCAP_KF_IF_IGR_PORT_MASK_SEL,
VCAP_KF_IF_IGR_PORT_SEL,
VCAP_KF_IP4_IS,
VCAP_KF_IP_MC_IS,
VCAP_KF_IP_PAYLOAD_5TUPLE,
VCAP_KF_IP_SNAP_IS,
VCAP_KF_ISDX_CLS,
VCAP_KF_ISDX_GT0_IS,
VCAP_KF_L2_BC_IS,
VCAP_KF_L2_DMAC,
VCAP_KF_L2_FWD_IS,
VCAP_KF_L2_MC_IS,
VCAP_KF_L2_PAYLOAD_ETYPE,
VCAP_KF_L2_SMAC,
VCAP_KF_L3_DIP_EQ_SIP_IS,
VCAP_KF_L3_DMAC_DIP_MATCH,
VCAP_KF_L3_DPL_CLS,
VCAP_KF_L3_DSCP,
VCAP_KF_L3_DST_IS,
VCAP_KF_L3_FRAGMENT_TYPE,
VCAP_KF_L3_FRAG_INVLD_L4_LEN,
VCAP_KF_L3_IP4_DIP,
VCAP_KF_L3_IP4_SIP,
VCAP_KF_L3_IP6_DIP,
VCAP_KF_L3_IP6_SIP,
VCAP_KF_L3_IP_PROTO,
VCAP_KF_L3_OPTIONS_IS,
VCAP_KF_L3_PAYLOAD,
VCAP_KF_L3_RT_IS,
VCAP_KF_L3_SMAC_SIP_MATCH,
VCAP_KF_L3_TOS,
VCAP_KF_L3_TTL_GT0,
VCAP_KF_L4_ACK,
VCAP_KF_L4_DPORT,
VCAP_KF_L4_FIN,
VCAP_KF_L4_PAYLOAD,
VCAP_KF_L4_PSH,
VCAP_KF_L4_RNG,
VCAP_KF_L4_RST,
VCAP_KF_L4_SEQUENCE_EQ0_IS,
VCAP_KF_L4_SPORT,
VCAP_KF_L4_SPORT_EQ_DPORT_IS,
VCAP_KF_L4_SYN,
VCAP_KF_L4_URG,
VCAP_KF_LOOKUP_FIRST_IS,
VCAP_KF_LOOKUP_GEN_IDX,
VCAP_KF_LOOKUP_GEN_IDX_SEL,
VCAP_KF_LOOKUP_PAG,
VCAP_KF_MIRROR_ENA,
VCAP_KF_OAM_CCM_CNTS_EQ0,
VCAP_KF_OAM_MEL_FLAGS,
VCAP_KF_OAM_Y1731_IS,
VCAP_KF_PROT_ACTIVE,
VCAP_KF_TCP_IS,
VCAP_KF_TCP_UDP_IS,
VCAP_KF_TYPE,
};
/* Actionset names with origin information */
enum vcap_actionfield_set {
VCAP_AFS_NO_VALUE, /* initial value */
VCAP_AFS_BASE_TYPE, /* sparx5 is2 X3, sparx5 es2 X3 */
VCAP_AFS_CLASSIFICATION, /* sparx5 is0 X2 */
VCAP_AFS_CLASS_REDUCED, /* sparx5 is0 X1 */
VCAP_AFS_FULL, /* sparx5 is0 X3 */
VCAP_AFS_MLBS, /* sparx5 is0 X2 */
VCAP_AFS_MLBS_REDUCED, /* sparx5 is0 X1 */
};
/* List of actionfields with description
*
* VCAP_AF_CLS_VID_SEL: W3, sparx5: is0
* Controls the classified VID: 0: VID_NONE: No action. 1: VID_ADD: New VID =
* old VID + VID_VAL. 2: VID_REPLACE: New VID = VID_VAL. 3: VID_FIRST_TAG: New
* VID = VID from frame's first tag (outer tag) if available, otherwise VID_VAL.
* 4: VID_SECOND_TAG: New VID = VID from frame's second tag (middle tag) if
* available, otherwise VID_VAL. 5: VID_THIRD_TAG: New VID = VID from frame's
* third tag (inner tag) if available, otherwise VID_VAL.
* VCAP_AF_CNT_ID: sparx5 is2 W12, sparx5 es2 W11
* Counter ID, used per lookup to index the 4K frame counters (ANA_ACL:CNT_TBL).
* Multiple VCAP IS2 entries can use the same counter.
* VCAP_AF_COPY_PORT_NUM: W7, sparx5: es2
* QSYS port number when FWD_MODE is redirect or copy
* VCAP_AF_COPY_QUEUE_NUM: W16, sparx5: es2
* QSYS queue number when FWD_MODE is redirect or copy
* VCAP_AF_CPU_COPY_ENA: W1, sparx5: is2/es2
* Setting this bit to 1 causes all frames that hit this action to be copied to
* the CPU extraction queue specified in CPU_QUEUE_NUM.
* VCAP_AF_CPU_QUEUE_NUM: W3, sparx5: is2/es2
* CPU queue number. Used when CPU_COPY_ENA is set.
* VCAP_AF_DEI_ENA: W1, sparx5: is0
* If set, use DEI_VAL as classified DEI value. Otherwise, DEI from basic
* classification is used
* VCAP_AF_DEI_VAL: W1, sparx5: is0
* See DEI_ENA
* VCAP_AF_DP_ENA: W1, sparx5: is0
* If set, use DP_VAL as classified drop precedence level. Otherwise, drop
* precedence level from basic classification is used.
* VCAP_AF_DP_VAL: W2, sparx5: is0
* See DP_ENA.
* VCAP_AF_DSCP_ENA: W1, sparx5: is0
* If set, use DSCP_VAL as classified DSCP value. Otherwise, DSCP value from
* basic classification is used.
* VCAP_AF_DSCP_VAL: W6, sparx5: is0
* See DSCP_ENA.
* VCAP_AF_ES2_REW_CMD: W3, sparx5: es2
* Command forwarded to REW: 0: No action. 1: SWAP MAC addresses. 2: Do L2CP
* DMAC translation when entering or leaving a tunnel.
* VCAP_AF_FWD_MODE: W2, sparx5: es2
* Forward selector: 0: Forward. 1: Discard. 2: Redirect. 3: Copy.
* VCAP_AF_HIT_ME_ONCE: W1, sparx5: is2/es2
* Setting this bit to 1 causes the first frame that hits this action where the
* HIT_CNT counter is zero to be copied to the CPU extraction queue specified in
* CPU_QUEUE_NUM. The HIT_CNT counter is then incremented and any frames that
* hit this action later are not copied to the CPU. To re-enable the HIT_ME_ONCE
* functionality, the HIT_CNT counter must be cleared.
* VCAP_AF_IGNORE_PIPELINE_CTRL: W1, sparx5: is2/es2
* Ignore ingress pipeline control. This enforces the use of the VCAP IS2 action
* even when the pipeline control has terminated the frame before VCAP IS2.
* VCAP_AF_INTR_ENA: W1, sparx5: is2/es2
* If set, an interrupt is triggered when this rule is hit
* VCAP_AF_ISDX_ADD_REPLACE_SEL: W1, sparx5: is0
* Controls the classified ISDX. 0: New ISDX = old ISDX + ISDX_VAL. 1: New ISDX
* = ISDX_VAL.
* VCAP_AF_ISDX_VAL: W12, sparx5: is0
* See isdx_add_replace_sel
* VCAP_AF_LRN_DIS: W1, sparx5: is2
* Setting this bit to 1 disables learning of frames hitting this action.
* VCAP_AF_MAP_IDX: W9, sparx5: is0
* Index for QoS mapping table lookup
* VCAP_AF_MAP_KEY: W3, sparx5: is0
* Key type for QoS mapping table lookup. 0: DEI0, PCP0 (outer tag). 1: DEI1,
* PCP1 (middle tag). 2: DEI2, PCP2 (inner tag). 3: MPLS TC. 4: PCP0 (outer
* tag). 5: E-DEI, E-PCP (E-TAG). 6: DSCP if available, otherwise none. 7: DSCP
* if available, otherwise DEI0, PCP0 (outer tag) if available using MAP_IDX+8,
* otherwise none
* VCAP_AF_MAP_LOOKUP_SEL: W2, sparx5: is0
* Selects which of the two QoS Mapping Table lookups that MAP_KEY and MAP_IDX
* are applied to. 0: No changes to the QoS Mapping Table lookup. 1: Update key
* type and index for QoS Mapping Table lookup #0. 2: Update key type and index
* for QoS Mapping Table lookup #1. 3: Reserved.
* VCAP_AF_MASK_MODE: W3, sparx5: is0/is2
* Controls the PORT_MASK use. Sparx5: 0: OR_DSTMASK, 1: AND_VLANMASK, 2:
* REPLACE_PGID, 3: REPLACE_ALL, 4: REDIR_PGID, 5: OR_PGID_MASK, 6: VSTAX, 7:
* Not applicable. LAN966X: 0: No action, 1: Permit/deny (AND), 2: Policy
* forwarding (DMAC lookup), 3: Redirect. The CPU port is untouched by
* MASK_MODE.
* VCAP_AF_MATCH_ID: W16, sparx5: is0/is2
* Logical ID for the entry. The MATCH_ID is extracted together with the frame
* if the frame is forwarded to the CPU (CPU_COPY_ENA). The result is placed in
* IFH.CL_RSLT.
* VCAP_AF_MATCH_ID_MASK: W16, sparx5: is0/is2
* Mask used by MATCH_ID.
* VCAP_AF_MIRROR_PROBE: W2, sparx5: is2
* Mirroring performed according to configuration of a mirror probe. 0: No
* mirroring. 1: Mirror probe 0. 2: Mirror probe 1. 3: Mirror probe 2
* VCAP_AF_MIRROR_PROBE_ID: W2, sparx5: es2
* Signals a mirror probe to be placed in the IFH. Only possible when FWD_MODE
* is copy. 0: No mirroring. 13: Use mirror probe 0-2.
* VCAP_AF_NXT_IDX: W12, sparx5: is0
* Index used as part of key (field G_IDX) in the next lookup.
* VCAP_AF_NXT_IDX_CTRL: W3, sparx5: is0
* Controls the generation of the G_IDX used in the VCAP CLM next lookup
* VCAP_AF_PAG_OVERRIDE_MASK: W8, sparx5: is0
* Bits set in this mask will override PAG_VAL from port profile. New PAG =
* (PAG (input) AND ~PAG_OVERRIDE_MASK) OR (PAG_VAL AND PAG_OVERRIDE_MASK)
* VCAP_AF_PAG_VAL: W8, sparx5: is0
* See PAG_OVERRIDE_MASK.
* VCAP_AF_PCP_ENA: W1, sparx5: is0
* If set, use PCP_VAL as classified PCP value. Otherwise, PCP from basic
* classification is used.
* VCAP_AF_PCP_VAL: W3, sparx5: is0
* See PCP_ENA.
* VCAP_AF_PIPELINE_FORCE_ENA: sparx5 is0 W2, sparx5 is2 W1
* If set, use PIPELINE_PT unconditionally and set PIPELINE_ACT = NONE if
* PIPELINE_PT == NONE. Overrules previous settings of pipeline point.
* VCAP_AF_PIPELINE_PT: W5, sparx5: is0/is2
* Pipeline point used if PIPELINE_FORCE_ENA is set
* VCAP_AF_POLICE_ENA: W1, sparx5: is2/es2
* Setting this bit to 1 causes frames that hit this action to be policed by the
* ACL policer specified in POLICE_IDX. Only applies to the first lookup.
* VCAP_AF_POLICE_IDX: W6, sparx5: is2/es2
* Selects VCAP policer used when policing frames (POLICE_ENA)
* VCAP_AF_POLICE_REMARK: W1, sparx5: es2
* If set, frames exceeding policer rates are marked as yellow but not
* discarded.
* VCAP_AF_PORT_MASK: sparx5 is0 W65, sparx5 is2 W68
* Port mask applied to the forwarding decision based on MASK_MODE.
* VCAP_AF_QOS_ENA: W1, sparx5: is0
* If set, use QOS_VAL as classified QoS class. Otherwise, QoS class from basic
* classification is used.
* VCAP_AF_QOS_VAL: W3, sparx5: is0
* See QOS_ENA.
* VCAP_AF_RT_DIS: W1, sparx5: is2
* If set, routing is disallowed. Only applies when IS_INNER_ACL is 0. See also
* IGR_ACL_ENA, EGR_ACL_ENA, and RLEG_STAT_IDX.
* VCAP_AF_TYPE: W1, sparx5: is0
* Actionset type id - Set by the API
* VCAP_AF_VID_VAL: W13, sparx5: is0
* New VID Value
*/
/* Actionfield names */
enum vcap_action_field {
VCAP_AF_NO_VALUE, /* initial value */
VCAP_AF_ACL_MAC,
VCAP_AF_ACL_RT_MODE,
VCAP_AF_CLS_VID_SEL,
VCAP_AF_CNT_ID,
VCAP_AF_COPY_PORT_NUM,
VCAP_AF_COPY_QUEUE_NUM,
VCAP_AF_COSID_ENA,
VCAP_AF_COSID_VAL,
VCAP_AF_CPU_COPY_ENA,
VCAP_AF_CPU_DIS,
VCAP_AF_CPU_ENA,
VCAP_AF_CPU_Q,
VCAP_AF_CPU_QUEUE_NUM,
VCAP_AF_CUSTOM_ACE_ENA,
VCAP_AF_CUSTOM_ACE_OFFSET,
VCAP_AF_DEI_ENA,
VCAP_AF_DEI_VAL,
VCAP_AF_DLB_OFFSET,
VCAP_AF_DMAC_OFFSET_ENA,
VCAP_AF_DP_ENA,
VCAP_AF_DP_VAL,
VCAP_AF_DSCP_ENA,
VCAP_AF_DSCP_VAL,
VCAP_AF_EGR_ACL_ENA,
VCAP_AF_ES2_REW_CMD,
VCAP_AF_FWD_DIS,
VCAP_AF_FWD_MODE,
VCAP_AF_FWD_TYPE,
VCAP_AF_GVID_ADD_REPLACE_SEL,
VCAP_AF_HIT_ME_ONCE,
VCAP_AF_IGNORE_PIPELINE_CTRL,
VCAP_AF_IGR_ACL_ENA,
VCAP_AF_INJ_MASQ_ENA,
VCAP_AF_INJ_MASQ_LPORT,
VCAP_AF_INJ_MASQ_PORT,
VCAP_AF_INTR_ENA,
VCAP_AF_ISDX_ADD_REPLACE_SEL,
VCAP_AF_ISDX_VAL,
VCAP_AF_IS_INNER_ACL,
VCAP_AF_L3_MAC_UPDATE_DIS,
VCAP_AF_LOG_MSG_INTERVAL,
VCAP_AF_LPM_AFFIX_ENA,
VCAP_AF_LPM_AFFIX_VAL,
VCAP_AF_LPORT_ENA,
VCAP_AF_LRN_DIS,
VCAP_AF_MAP_IDX,
VCAP_AF_MAP_KEY,
VCAP_AF_MAP_LOOKUP_SEL,
VCAP_AF_MASK_MODE,
VCAP_AF_MATCH_ID,
VCAP_AF_MATCH_ID_MASK,
VCAP_AF_MIP_SEL,
VCAP_AF_MIRROR_PROBE,
VCAP_AF_MIRROR_PROBE_ID,
VCAP_AF_MPLS_IP_CTRL_ENA,
VCAP_AF_MPLS_MEP_ENA,
VCAP_AF_MPLS_MIP_ENA,
VCAP_AF_MPLS_OAM_FLAVOR,
VCAP_AF_MPLS_OAM_TYPE,
VCAP_AF_NUM_VLD_LABELS,
VCAP_AF_NXT_IDX,
VCAP_AF_NXT_IDX_CTRL,
VCAP_AF_NXT_KEY_TYPE,
VCAP_AF_NXT_NORMALIZE,
VCAP_AF_NXT_NORM_W16_OFFSET,
VCAP_AF_NXT_NORM_W32_OFFSET,
VCAP_AF_NXT_OFFSET_FROM_TYPE,
VCAP_AF_NXT_TYPE_AFTER_OFFSET,
VCAP_AF_OAM_IP_BFD_ENA,
VCAP_AF_OAM_TWAMP_ENA,
VCAP_AF_OAM_Y1731_SEL,
VCAP_AF_PAG_OVERRIDE_MASK,
VCAP_AF_PAG_VAL,
VCAP_AF_PCP_ENA,
VCAP_AF_PCP_VAL,
VCAP_AF_PIPELINE_ACT_SEL,
VCAP_AF_PIPELINE_FORCE_ENA,
VCAP_AF_PIPELINE_PT,
VCAP_AF_PIPELINE_PT_REDUCED,
VCAP_AF_POLICE_ENA,
VCAP_AF_POLICE_IDX,
VCAP_AF_POLICE_REMARK,
VCAP_AF_PORT_MASK,
VCAP_AF_PTP_MASTER_SEL,
VCAP_AF_QOS_ENA,
VCAP_AF_QOS_VAL,
VCAP_AF_REW_CMD,
VCAP_AF_RLEG_DMAC_CHK_DIS,
VCAP_AF_RLEG_STAT_IDX,
VCAP_AF_RSDX_ENA,
VCAP_AF_RSDX_VAL,
VCAP_AF_RSVD_LBL_VAL,
VCAP_AF_RT_DIS,
VCAP_AF_RT_SEL,
VCAP_AF_S2_KEY_SEL_ENA,
VCAP_AF_S2_KEY_SEL_IDX,
VCAP_AF_SAM_SEQ_ENA,
VCAP_AF_SIP_IDX,
VCAP_AF_SWAP_MAC_ENA,
VCAP_AF_TCP_UDP_DPORT,
VCAP_AF_TCP_UDP_ENA,
VCAP_AF_TCP_UDP_SPORT,
VCAP_AF_TC_ENA,
VCAP_AF_TC_LABEL,
VCAP_AF_TPID_SEL,
VCAP_AF_TTL_DECR_DIS,
VCAP_AF_TTL_ENA,
VCAP_AF_TTL_LABEL,
VCAP_AF_TTL_UPDATE_ENA,
VCAP_AF_TYPE,
VCAP_AF_VID_VAL,
VCAP_AF_VLAN_POP_CNT,
VCAP_AF_VLAN_POP_CNT_ENA,
VCAP_AF_VLAN_PUSH_CNT,
VCAP_AF_VLAN_PUSH_CNT_ENA,
VCAP_AF_VLAN_WAS_TAGGED,
};
#endif /* __VCAP_AG_API__ */

View file

@ -1178,3 +1178,7 @@ void vcap_set_tc_exterr(struct flow_cls_offload *fco, struct vcap_rule *vrule)
}
}
EXPORT_SYMBOL_GPL(vcap_set_tc_exterr);
#ifdef CONFIG_VCAP_KUNIT_TEST
#include "vcap_api_kunit.c"
#endif

View file

@ -11,6 +11,9 @@
#include <linux/netdevice.h>
/* Use the generated API model */
#ifdef CONFIG_VCAP_KUNIT_TEST
#include "vcap_ag_api_kunit.h"
#endif
#include "vcap_ag_api.h"
#define VCAP_CID_LOOKUP_SIZE 100000 /* Chains in a lookup */

View file

@ -0,0 +1,933 @@
// SPDX-License-Identifier: BSD-3-Clause
/* Copyright (C) 2022 Microchip Technology Inc. and its subsidiaries.
* Microchip VCAP API kunit test suite
*/
#include <kunit/test.h>
#include "vcap_api.h"
#include "vcap_api_client.h"
#include "vcap_model_kunit.h"
/* First we have the test infrastructure that emulates the platform
* implementation
*/
#define TEST_BUF_CNT 100
#define TEST_BUF_SZ 350
#define STREAMWSIZE 64
static u32 test_updateaddr[STREAMWSIZE] = {};
static int test_updateaddridx;
static int test_cache_erase_count;
static u32 test_init_start;
static u32 test_init_count;
static u32 test_hw_counter_id;
static struct vcap_cache_data test_hw_cache;
/* Callback used by the VCAP API */
static enum vcap_keyfield_set test_val_keyset(struct net_device *ndev,
struct vcap_admin *admin,
struct vcap_rule *rule,
struct vcap_keyset_list *kslist,
u16 l3_proto)
{
int idx;
if (kslist->cnt > 0) {
switch (admin->vtype) {
case VCAP_TYPE_IS0:
for (idx = 0; idx < kslist->cnt; idx++) {
if (kslist->keysets[idx] == VCAP_KFS_ETAG)
return kslist->keysets[idx];
if (kslist->keysets[idx] == VCAP_KFS_PURE_5TUPLE_IP4)
return kslist->keysets[idx];
if (kslist->keysets[idx] == VCAP_KFS_NORMAL_5TUPLE_IP4)
return kslist->keysets[idx];
if (kslist->keysets[idx] == VCAP_KFS_NORMAL_7TUPLE)
return kslist->keysets[idx];
}
break;
case VCAP_TYPE_IS2:
for (idx = 0; idx < kslist->cnt; idx++) {
if (kslist->keysets[idx] == VCAP_KFS_MAC_ETYPE)
return kslist->keysets[idx];
if (kslist->keysets[idx] == VCAP_KFS_ARP)
return kslist->keysets[idx];
if (kslist->keysets[idx] == VCAP_KFS_IP_7TUPLE)
return kslist->keysets[idx];
}
break;
default:
pr_info("%s:%d: no validation for VCAP %d\n",
__func__, __LINE__, admin->vtype);
break;
}
}
return -EINVAL;
}
/* Callback used by the VCAP API */
static void test_add_def_fields(struct net_device *ndev,
struct vcap_admin *admin,
struct vcap_rule *rule)
{
if (admin->vinst == 0 || admin->vinst == 2)
vcap_rule_add_key_bit(rule, VCAP_KF_LOOKUP_FIRST_IS, VCAP_BIT_1);
else
vcap_rule_add_key_bit(rule, VCAP_KF_LOOKUP_FIRST_IS, VCAP_BIT_0);
}
/* Callback used by the VCAP API */
static void test_cache_erase(struct vcap_admin *admin)
{
if (test_cache_erase_count) {
memset(admin->cache.keystream, 0, test_cache_erase_count);
memset(admin->cache.maskstream, 0, test_cache_erase_count);
memset(admin->cache.actionstream, 0, test_cache_erase_count);
test_cache_erase_count = 0;
}
}
/* Callback used by the VCAP API */
static void test_cache_init(struct net_device *ndev, struct vcap_admin *admin,
u32 start, u32 count)
{
test_init_start = start;
test_init_count = count;
}
/* Callback used by the VCAP API */
static void test_cache_read(struct net_device *ndev, struct vcap_admin *admin,
enum vcap_selection sel, u32 start, u32 count)
{
u32 *keystr, *mskstr, *actstr;
int idx;
pr_debug("%s:%d: %d %d\n", __func__, __LINE__, start, count);
switch (sel) {
case VCAP_SEL_ENTRY:
keystr = &admin->cache.keystream[start];
mskstr = &admin->cache.maskstream[start];
for (idx = 0; idx < count; ++idx) {
pr_debug("%s:%d: keydata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, keystr[idx]);
}
for (idx = 0; idx < count; ++idx) {
/* Invert the mask before decoding starts */
mskstr[idx] = ~mskstr[idx];
pr_debug("%s:%d: mskdata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, mskstr[idx]);
}
break;
case VCAP_SEL_ACTION:
actstr = &admin->cache.actionstream[start];
for (idx = 0; idx < count; ++idx) {
pr_debug("%s:%d: actdata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, actstr[idx]);
}
break;
case VCAP_SEL_COUNTER:
pr_debug("%s:%d\n", __func__, __LINE__);
test_hw_counter_id = start;
admin->cache.counter = test_hw_cache.counter;
admin->cache.sticky = test_hw_cache.sticky;
break;
case VCAP_SEL_ALL:
pr_debug("%s:%d\n", __func__, __LINE__);
break;
}
}
/* Callback used by the VCAP API */
static void test_cache_write(struct net_device *ndev, struct vcap_admin *admin,
enum vcap_selection sel, u32 start, u32 count)
{
u32 *keystr, *mskstr, *actstr;
int idx;
switch (sel) {
case VCAP_SEL_ENTRY:
keystr = &admin->cache.keystream[start];
mskstr = &admin->cache.maskstream[start];
for (idx = 0; idx < count; ++idx) {
pr_debug("%s:%d: keydata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, keystr[idx]);
}
for (idx = 0; idx < count; ++idx) {
/* Invert the mask before encoding starts */
mskstr[idx] = ~mskstr[idx];
pr_debug("%s:%d: mskdata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, mskstr[idx]);
}
break;
case VCAP_SEL_ACTION:
actstr = &admin->cache.actionstream[start];
for (idx = 0; idx < count; ++idx) {
pr_debug("%s:%d: actdata[%02d]: 0x%08x\n", __func__,
__LINE__, start + idx, actstr[idx]);
}
break;
case VCAP_SEL_COUNTER:
pr_debug("%s:%d\n", __func__, __LINE__);
test_hw_counter_id = start;
test_hw_cache.counter = admin->cache.counter;
test_hw_cache.sticky = admin->cache.sticky;
break;
case VCAP_SEL_ALL:
pr_err("%s:%d: cannot write all streams at once\n",
__func__, __LINE__);
break;
}
}
/* Callback used by the VCAP API */
static void test_cache_update(struct net_device *ndev, struct vcap_admin *admin,
enum vcap_command cmd,
enum vcap_selection sel, u32 addr)
{
if (test_updateaddridx < ARRAY_SIZE(test_updateaddr))
test_updateaddr[test_updateaddridx] = addr;
else
pr_err("%s:%d: overflow: %d\n", __func__, __LINE__, test_updateaddridx);
test_updateaddridx++;
}
static void test_cache_move(struct net_device *ndev, struct vcap_admin *admin,
u32 addr, int offset, int count)
{
}
/* Provide port information via a callback interface */
static int vcap_test_port_info(struct net_device *ndev, enum vcap_type vtype,
int (*pf)(void *out, int arg, const char *fmt, ...),
void *out, int arg)
{
return 0;
}
struct vcap_operations test_callbacks = {
.validate_keyset = test_val_keyset,
.add_default_fields = test_add_def_fields,
.cache_erase = test_cache_erase,
.cache_write = test_cache_write,
.cache_read = test_cache_read,
.init = test_cache_init,
.update = test_cache_update,
.move = test_cache_move,
.port_info = vcap_test_port_info,
};
struct vcap_control test_vctrl = {
.vcaps = kunit_test_vcaps,
.stats = &kunit_test_vcap_stats,
.ops = &test_callbacks,
};
static void vcap_test_api_init(struct vcap_admin *admin)
{
/* Initialize the shared objects */
INIT_LIST_HEAD(&test_vctrl.list);
INIT_LIST_HEAD(&admin->list);
INIT_LIST_HEAD(&admin->rules);
list_add_tail(&admin->list, &test_vctrl.list);
memset(test_updateaddr, 0, sizeof(test_updateaddr));
test_updateaddridx = 0;
}
/* Define the test cases. */
static void vcap_api_set_bit_1_test(struct kunit *test)
{
struct vcap_stream_iter iter = {
.offset = 35,
.sw_width = 52,
.reg_idx = 1,
.reg_bitpos = 20,
.tg = 0
};
u32 stream[2] = {0};
vcap_set_bit(stream, &iter, 1);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)BIT(20), stream[1]);
}
static void vcap_api_set_bit_0_test(struct kunit *test)
{
struct vcap_stream_iter iter = {
.offset = 35,
.sw_width = 52,
.reg_idx = 2,
.reg_bitpos = 11,
.tg = 0
};
u32 stream[3] = {~0, ~0, ~0};
vcap_set_bit(stream, &iter, 0);
KUNIT_EXPECT_EQ(test, (u32)~0, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)~0, stream[1]);
KUNIT_EXPECT_EQ(test, (u32)~BIT(11), stream[2]);
}
static void vcap_api_iterator_init_test(struct kunit *test)
{
struct vcap_stream_iter iter;
struct vcap_typegroup typegroups[] = {
{ .offset = 0, .width = 2, .value = 2, },
{ .offset = 156, .width = 1, .value = 0, },
{ .offset = 0, .width = 0, .value = 0, },
};
struct vcap_typegroup typegroups2[] = {
{ .offset = 0, .width = 3, .value = 4, },
{ .offset = 49, .width = 2, .value = 0, },
{ .offset = 98, .width = 2, .value = 0, },
};
vcap_iter_init(&iter, 52, typegroups, 86);
KUNIT_EXPECT_EQ(test, 52, iter.sw_width);
KUNIT_EXPECT_EQ(test, 86 + 2, iter.offset);
KUNIT_EXPECT_EQ(test, 3, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 4, iter.reg_bitpos);
vcap_iter_init(&iter, 49, typegroups2, 134);
KUNIT_EXPECT_EQ(test, 49, iter.sw_width);
KUNIT_EXPECT_EQ(test, 134 + 7, iter.offset);
KUNIT_EXPECT_EQ(test, 5, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 11, iter.reg_bitpos);
}
static void vcap_api_iterator_next_test(struct kunit *test)
{
struct vcap_stream_iter iter;
struct vcap_typegroup typegroups[] = {
{ .offset = 0, .width = 4, .value = 8, },
{ .offset = 49, .width = 1, .value = 0, },
{ .offset = 98, .width = 2, .value = 0, },
{ .offset = 147, .width = 3, .value = 0, },
{ .offset = 196, .width = 2, .value = 0, },
{ .offset = 245, .width = 1, .value = 0, },
};
int idx;
vcap_iter_init(&iter, 49, typegroups, 86);
KUNIT_EXPECT_EQ(test, 49, iter.sw_width);
KUNIT_EXPECT_EQ(test, 86 + 5, iter.offset);
KUNIT_EXPECT_EQ(test, 3, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 10, iter.reg_bitpos);
vcap_iter_next(&iter);
KUNIT_EXPECT_EQ(test, 91 + 1, iter.offset);
KUNIT_EXPECT_EQ(test, 3, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 11, iter.reg_bitpos);
for (idx = 0; idx < 6; idx++)
vcap_iter_next(&iter);
KUNIT_EXPECT_EQ(test, 92 + 6 + 2, iter.offset);
KUNIT_EXPECT_EQ(test, 4, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 2, iter.reg_bitpos);
}
static void vcap_api_encode_typegroups_test(struct kunit *test)
{
u32 stream[12] = {0};
struct vcap_typegroup typegroups[] = {
{ .offset = 0, .width = 4, .value = 8, },
{ .offset = 49, .width = 1, .value = 1, },
{ .offset = 98, .width = 2, .value = 3, },
{ .offset = 147, .width = 3, .value = 5, },
{ .offset = 196, .width = 2, .value = 2, },
{ .offset = 245, .width = 5, .value = 27, },
{ .offset = 0, .width = 0, .value = 0, },
};
vcap_encode_typegroups(stream, 49, typegroups, false);
KUNIT_EXPECT_EQ(test, (u32)0x8, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[1]);
KUNIT_EXPECT_EQ(test, (u32)0x1, stream[2]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[3]);
KUNIT_EXPECT_EQ(test, (u32)0x3, stream[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[5]);
KUNIT_EXPECT_EQ(test, (u32)0x5, stream[6]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[7]);
KUNIT_EXPECT_EQ(test, (u32)0x2, stream[8]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[9]);
KUNIT_EXPECT_EQ(test, (u32)27, stream[10]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[11]);
}
static void vcap_api_encode_bit_test(struct kunit *test)
{
struct vcap_stream_iter iter;
u32 stream[4] = {0};
struct vcap_typegroup typegroups[] = {
{ .offset = 0, .width = 4, .value = 8, },
{ .offset = 49, .width = 1, .value = 1, },
{ .offset = 98, .width = 2, .value = 3, },
{ .offset = 147, .width = 3, .value = 5, },
{ .offset = 196, .width = 2, .value = 2, },
{ .offset = 245, .width = 1, .value = 0, },
};
vcap_iter_init(&iter, 49, typegroups, 44);
KUNIT_EXPECT_EQ(test, 48, iter.offset);
KUNIT_EXPECT_EQ(test, 1, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 16, iter.reg_bitpos);
vcap_encode_bit(stream, &iter, 1);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)BIT(16), stream[1]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[2]);
}
static void vcap_api_encode_field_test(struct kunit *test)
{
struct vcap_stream_iter iter;
u32 stream[16] = {0};
struct vcap_typegroup typegroups[] = {
{ .offset = 0, .width = 4, .value = 8, },
{ .offset = 49, .width = 1, .value = 1, },
{ .offset = 98, .width = 2, .value = 3, },
{ .offset = 147, .width = 3, .value = 5, },
{ .offset = 196, .width = 2, .value = 2, },
{ .offset = 245, .width = 5, .value = 27, },
{ .offset = 0, .width = 0, .value = 0, },
};
struct vcap_field rf = {
.type = VCAP_FIELD_U32,
.offset = 86,
.width = 4,
};
u8 value[] = {0x5};
vcap_iter_init(&iter, 49, typegroups, rf.offset);
KUNIT_EXPECT_EQ(test, 91, iter.offset);
KUNIT_EXPECT_EQ(test, 3, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 10, iter.reg_bitpos);
vcap_encode_field(stream, &iter, rf.width, value);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[1]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[2]);
KUNIT_EXPECT_EQ(test, (u32)(0x5 << 10), stream[3]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[4]);
vcap_encode_typegroups(stream, 49, typegroups, false);
KUNIT_EXPECT_EQ(test, (u32)0x8, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[1]);
KUNIT_EXPECT_EQ(test, (u32)0x1, stream[2]);
KUNIT_EXPECT_EQ(test, (u32)(0x5 << 10), stream[3]);
KUNIT_EXPECT_EQ(test, (u32)0x3, stream[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[5]);
KUNIT_EXPECT_EQ(test, (u32)0x5, stream[6]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[7]);
KUNIT_EXPECT_EQ(test, (u32)0x2, stream[8]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[9]);
KUNIT_EXPECT_EQ(test, (u32)27, stream[10]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[11]);
}
/* In this testcase the subword is smaller than a register */
static void vcap_api_encode_short_field_test(struct kunit *test)
{
struct vcap_stream_iter iter;
int sw_width = 21;
u32 stream[6] = {0};
struct vcap_typegroup tgt[] = {
{ .offset = 0, .width = 3, .value = 7, },
{ .offset = 21, .width = 2, .value = 3, },
{ .offset = 42, .width = 1, .value = 1, },
{ .offset = 0, .width = 0, .value = 0, },
};
struct vcap_field rf = {
.type = VCAP_FIELD_U32,
.offset = 25,
.width = 4,
};
u8 value[] = {0x5};
vcap_iter_init(&iter, sw_width, tgt, rf.offset);
KUNIT_EXPECT_EQ(test, 1, iter.regs_per_sw);
KUNIT_EXPECT_EQ(test, 21, iter.sw_width);
KUNIT_EXPECT_EQ(test, 25 + 3 + 2, iter.offset);
KUNIT_EXPECT_EQ(test, 1, iter.reg_idx);
KUNIT_EXPECT_EQ(test, 25 + 3 + 2 - sw_width, iter.reg_bitpos);
vcap_encode_field(stream, &iter, rf.width, value);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)(0x5 << (25 + 3 + 2 - sw_width)), stream[1]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[2]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[3]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, stream[5]);
vcap_encode_typegroups(stream, sw_width, tgt, false);
KUNIT_EXPECT_EQ(test, (u32)7, stream[0]);
KUNIT_EXPECT_EQ(test, (u32)((0x5 << (25 + 3 + 2 - sw_width)) + 3), stream[1]);
KUNIT_EXPECT_EQ(test, (u32)1, stream[2]);
KUNIT_EXPECT_EQ(test, (u32)0, stream[3]);
KUNIT_EXPECT_EQ(test, (u32)0, stream[4]);
KUNIT_EXPECT_EQ(test, (u32)0, stream[5]);
}
static void vcap_api_encode_keyfield_test(struct kunit *test)
{
u32 keywords[16] = {0};
u32 maskwords[16] = {0};
struct vcap_admin admin = {
.vtype = VCAP_TYPE_IS2,
.cache = {
.keystream = keywords,
.maskstream = maskwords,
.actionstream = keywords,
},
};
struct vcap_rule_internal rule = {
.admin = &admin,
.data = {
.keyset = VCAP_KFS_MAC_ETYPE,
},
.vctrl = &test_vctrl,
};
struct vcap_client_keyfield ckf = {
.ctrl.list = {},
.ctrl.key = VCAP_KF_ISDX_CLS,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0xeef014a1,
.data.u32.mask = 0xfff,
};
struct vcap_field rf = {
.type = VCAP_FIELD_U32,
.offset = 56,
.width = 12,
};
struct vcap_typegroup tgt[] = {
{ .offset = 0, .width = 2, .value = 2, },
{ .offset = 156, .width = 1, .value = 1, },
{ .offset = 0, .width = 0, .value = 0, },
};
vcap_test_api_init(&admin);
vcap_encode_keyfield(&rule, &ckf, &rf, tgt);
/* Key */
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[0]);
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[1]);
KUNIT_EXPECT_EQ(test, (u32)(0x04a1 << 6), keywords[2]);
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[3]);
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[5]);
KUNIT_EXPECT_EQ(test, (u32)0x0, keywords[6]);
/* Mask */
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[0]);
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[1]);
KUNIT_EXPECT_EQ(test, (u32)(0x0fff << 6), maskwords[2]);
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[3]);
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[5]);
KUNIT_EXPECT_EQ(test, (u32)0x0, maskwords[6]);
}
static void vcap_api_encode_max_keyfield_test(struct kunit *test)
{
int idx;
u32 keywords[6] = {0};
u32 maskwords[6] = {0};
struct vcap_admin admin = {
.vtype = VCAP_TYPE_IS2,
/* IS2 sw_width = 52 bit */
.cache = {
.keystream = keywords,
.maskstream = maskwords,
.actionstream = keywords,
},
};
struct vcap_rule_internal rule = {
.admin = &admin,
.data = {
.keyset = VCAP_KFS_IP_7TUPLE,
},
.vctrl = &test_vctrl,
};
struct vcap_client_keyfield ckf = {
.ctrl.list = {},
.ctrl.key = VCAP_KF_L3_IP6_DIP,
.ctrl.type = VCAP_FIELD_U128,
.data.u128.value = { 0xa1, 0xa2, 0xa3, 0xa4, 0, 0, 0x43, 0,
0, 0, 0, 0, 0, 0, 0x78, 0x8e, },
.data.u128.mask = { 0xff, 0xff, 0xff, 0xff, 0, 0, 0xff, 0,
0, 0, 0, 0, 0, 0, 0xff, 0xff },
};
struct vcap_field rf = {
.type = VCAP_FIELD_U128,
.offset = 0,
.width = 128,
};
struct vcap_typegroup tgt[] = {
{ .offset = 0, .width = 2, .value = 2, },
{ .offset = 156, .width = 1, .value = 1, },
{ .offset = 0, .width = 0, .value = 0, },
};
u32 keyres[] = {
0x928e8a84,
0x000c0002,
0x00000010,
0x00000000,
0x0239e000,
0x00000000,
};
u32 mskres[] = {
0xfffffffc,
0x000c0003,
0x0000003f,
0x00000000,
0x03fffc00,
0x00000000,
};
vcap_encode_keyfield(&rule, &ckf, &rf, tgt);
/* Key */
for (idx = 0; idx < ARRAY_SIZE(keyres); ++idx)
KUNIT_EXPECT_EQ(test, keyres[idx], keywords[idx]);
/* Mask */
for (idx = 0; idx < ARRAY_SIZE(mskres); ++idx)
KUNIT_EXPECT_EQ(test, mskres[idx], maskwords[idx]);
}
static void vcap_api_encode_actionfield_test(struct kunit *test)
{
u32 actwords[16] = {0};
int sw_width = 21;
struct vcap_admin admin = {
.vtype = VCAP_TYPE_ES2, /* act_width = 21 */
.cache = {
.actionstream = actwords,
},
};
struct vcap_rule_internal rule = {
.admin = &admin,
.data = {
.actionset = VCAP_AFS_BASE_TYPE,
},
.vctrl = &test_vctrl,
};
struct vcap_client_actionfield caf = {
.ctrl.list = {},
.ctrl.action = VCAP_AF_POLICE_IDX,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x67908032,
};
struct vcap_field rf = {
.type = VCAP_FIELD_U32,
.offset = 35,
.width = 6,
};
struct vcap_typegroup tgt[] = {
{ .offset = 0, .width = 2, .value = 2, },
{ .offset = 21, .width = 1, .value = 1, },
{ .offset = 42, .width = 1, .value = 0, },
{ .offset = 0, .width = 0, .value = 0, },
};
vcap_encode_actionfield(&rule, &caf, &rf, tgt);
/* Action */
KUNIT_EXPECT_EQ(test, (u32)0x0, actwords[0]);
KUNIT_EXPECT_EQ(test, (u32)((0x32 << (35 + 2 + 1 - sw_width)) & 0x1fffff), actwords[1]);
KUNIT_EXPECT_EQ(test, (u32)((0x32 >> ((2 * sw_width) - 38 - 1))), actwords[2]);
KUNIT_EXPECT_EQ(test, (u32)0x0, actwords[3]);
KUNIT_EXPECT_EQ(test, (u32)0x0, actwords[4]);
KUNIT_EXPECT_EQ(test, (u32)0x0, actwords[5]);
KUNIT_EXPECT_EQ(test, (u32)0x0, actwords[6]);
}
static void vcap_api_keyfield_typegroup_test(struct kunit *test)
{
const struct vcap_typegroup *tg;
tg = vcap_keyfield_typegroup(&test_vctrl, VCAP_TYPE_IS2, VCAP_KFS_MAC_ETYPE);
KUNIT_EXPECT_PTR_NE(test, NULL, tg);
KUNIT_EXPECT_EQ(test, 0, tg[0].offset);
KUNIT_EXPECT_EQ(test, 2, tg[0].width);
KUNIT_EXPECT_EQ(test, 2, tg[0].value);
KUNIT_EXPECT_EQ(test, 156, tg[1].offset);
KUNIT_EXPECT_EQ(test, 1, tg[1].width);
KUNIT_EXPECT_EQ(test, 0, tg[1].value);
KUNIT_EXPECT_EQ(test, 0, tg[2].offset);
KUNIT_EXPECT_EQ(test, 0, tg[2].width);
KUNIT_EXPECT_EQ(test, 0, tg[2].value);
tg = vcap_keyfield_typegroup(&test_vctrl, VCAP_TYPE_ES2, VCAP_KFS_LL_FULL);
KUNIT_EXPECT_PTR_EQ(test, NULL, tg);
}
static void vcap_api_actionfield_typegroup_test(struct kunit *test)
{
const struct vcap_typegroup *tg;
tg = vcap_actionfield_typegroup(&test_vctrl, VCAP_TYPE_IS0, VCAP_AFS_FULL);
KUNIT_EXPECT_PTR_NE(test, NULL, tg);
KUNIT_EXPECT_EQ(test, 0, tg[0].offset);
KUNIT_EXPECT_EQ(test, 3, tg[0].width);
KUNIT_EXPECT_EQ(test, 4, tg[0].value);
KUNIT_EXPECT_EQ(test, 110, tg[1].offset);
KUNIT_EXPECT_EQ(test, 2, tg[1].width);
KUNIT_EXPECT_EQ(test, 0, tg[1].value);
KUNIT_EXPECT_EQ(test, 220, tg[2].offset);
KUNIT_EXPECT_EQ(test, 2, tg[2].width);
KUNIT_EXPECT_EQ(test, 0, tg[2].value);
KUNIT_EXPECT_EQ(test, 0, tg[3].offset);
KUNIT_EXPECT_EQ(test, 0, tg[3].width);
KUNIT_EXPECT_EQ(test, 0, tg[3].value);
tg = vcap_actionfield_typegroup(&test_vctrl, VCAP_TYPE_IS2, VCAP_AFS_CLASSIFICATION);
KUNIT_EXPECT_PTR_EQ(test, NULL, tg);
}
static void vcap_api_vcap_keyfields_test(struct kunit *test)
{
const struct vcap_field *ft;
ft = vcap_keyfields(&test_vctrl, VCAP_TYPE_IS2, VCAP_KFS_MAC_ETYPE);
KUNIT_EXPECT_PTR_NE(test, NULL, ft);
/* Keyset that is not available and within the maximum keyset enum value */
ft = vcap_keyfields(&test_vctrl, VCAP_TYPE_ES2, VCAP_KFS_PURE_5TUPLE_IP4);
KUNIT_EXPECT_PTR_EQ(test, NULL, ft);
/* Keyset that is not available and beyond the maximum keyset enum value */
ft = vcap_keyfields(&test_vctrl, VCAP_TYPE_ES2, VCAP_KFS_LL_FULL);
KUNIT_EXPECT_PTR_EQ(test, NULL, ft);
}
static void vcap_api_vcap_actionfields_test(struct kunit *test)
{
const struct vcap_field *ft;
ft = vcap_actionfields(&test_vctrl, VCAP_TYPE_IS0, VCAP_AFS_FULL);
KUNIT_EXPECT_PTR_NE(test, NULL, ft);
ft = vcap_actionfields(&test_vctrl, VCAP_TYPE_IS2, VCAP_AFS_FULL);
KUNIT_EXPECT_PTR_EQ(test, NULL, ft);
ft = vcap_actionfields(&test_vctrl, VCAP_TYPE_IS2, VCAP_AFS_CLASSIFICATION);
KUNIT_EXPECT_PTR_EQ(test, NULL, ft);
}
static void vcap_api_encode_rule_keyset_test(struct kunit *test)
{
u32 keywords[16] = {0};
u32 maskwords[16] = {0};
struct vcap_admin admin = {
.vtype = VCAP_TYPE_IS2,
.cache = {
.keystream = keywords,
.maskstream = maskwords,
},
};
struct vcap_rule_internal rule = {
.admin = &admin,
.data = {
.keyset = VCAP_KFS_MAC_ETYPE,
},
.vctrl = &test_vctrl,
};
struct vcap_client_keyfield ckf[] = {
{
.ctrl.key = VCAP_KF_TYPE,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x00,
.data.u32.mask = 0x0f,
},
{
.ctrl.key = VCAP_KF_LOOKUP_FIRST_IS,
.ctrl.type = VCAP_FIELD_BIT,
.data.u1.value = 0x01,
.data.u1.mask = 0x01,
},
{
.ctrl.key = VCAP_KF_IF_IGR_PORT_MASK_L3,
.ctrl.type = VCAP_FIELD_BIT,
.data.u1.value = 0x00,
.data.u1.mask = 0x01,
},
{
.ctrl.key = VCAP_KF_IF_IGR_PORT_MASK_RNG,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x00,
.data.u32.mask = 0x0f,
},
{
.ctrl.key = VCAP_KF_IF_IGR_PORT_MASK,
.ctrl.type = VCAP_FIELD_U72,
.data.u72.value = {0x0, 0x00, 0x00, 0x00},
.data.u72.mask = {0xfd, 0xff, 0xff, 0xff},
},
{
.ctrl.key = VCAP_KF_L2_DMAC,
.ctrl.type = VCAP_FIELD_U48,
/* Opposite endianness */
.data.u48.value = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
.data.u48.mask = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
},
{
.ctrl.key = VCAP_KF_ETYPE_LEN_IS,
.ctrl.type = VCAP_FIELD_BIT,
.data.u1.value = 0x01,
.data.u1.mask = 0x01,
},
{
.ctrl.key = VCAP_KF_ETYPE,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0xaabb,
.data.u32.mask = 0xffff,
},
};
int idx;
int ret;
/* Empty entry list */
INIT_LIST_HEAD(&rule.data.keyfields);
ret = vcap_encode_rule_keyset(&rule);
KUNIT_EXPECT_EQ(test, -EINVAL, ret);
for (idx = 0; idx < ARRAY_SIZE(ckf); idx++)
list_add_tail(&ckf[idx].ctrl.list, &rule.data.keyfields);
ret = vcap_encode_rule_keyset(&rule);
KUNIT_EXPECT_EQ(test, 0, ret);
/* The key and mask values below are from an actual Sparx5 rule config */
/* Key */
KUNIT_EXPECT_EQ(test, (u32)0x00000042, keywords[0]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[1]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[2]);
KUNIT_EXPECT_EQ(test, (u32)0x00020100, keywords[3]);
KUNIT_EXPECT_EQ(test, (u32)0x60504030, keywords[4]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[5]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[6]);
KUNIT_EXPECT_EQ(test, (u32)0x0002aaee, keywords[7]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[8]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[9]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[10]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, keywords[11]);
/* Mask: they will be inverted when applied to the register */
KUNIT_EXPECT_EQ(test, (u32)~0x00b07f80, maskwords[0]);
KUNIT_EXPECT_EQ(test, (u32)~0xfff00000, maskwords[1]);
KUNIT_EXPECT_EQ(test, (u32)~0xfffffffc, maskwords[2]);
KUNIT_EXPECT_EQ(test, (u32)~0xfff000ff, maskwords[3]);
KUNIT_EXPECT_EQ(test, (u32)~0x00000000, maskwords[4]);
KUNIT_EXPECT_EQ(test, (u32)~0xfffffff0, maskwords[5]);
KUNIT_EXPECT_EQ(test, (u32)~0xfffffffe, maskwords[6]);
KUNIT_EXPECT_EQ(test, (u32)~0xfffc0001, maskwords[7]);
KUNIT_EXPECT_EQ(test, (u32)~0xffffffff, maskwords[8]);
KUNIT_EXPECT_EQ(test, (u32)~0xffffffff, maskwords[9]);
KUNIT_EXPECT_EQ(test, (u32)~0xffffffff, maskwords[10]);
KUNIT_EXPECT_EQ(test, (u32)~0xffffffff, maskwords[11]);
}
static void vcap_api_encode_rule_actionset_test(struct kunit *test)
{
u32 actwords[16] = {0};
struct vcap_admin admin = {
.vtype = VCAP_TYPE_IS2,
.cache = {
.actionstream = actwords,
},
};
struct vcap_rule_internal rule = {
.admin = &admin,
.data = {
.actionset = VCAP_AFS_BASE_TYPE,
},
.vctrl = &test_vctrl,
};
struct vcap_client_actionfield caf[] = {
{
.ctrl.action = VCAP_AF_MATCH_ID,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x01,
},
{
.ctrl.action = VCAP_AF_MATCH_ID_MASK,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x01,
},
{
.ctrl.action = VCAP_AF_CNT_ID,
.ctrl.type = VCAP_FIELD_U32,
.data.u32.value = 0x64,
},
};
int idx;
int ret;
/* Empty entry list */
INIT_LIST_HEAD(&rule.data.actionfields);
ret = vcap_encode_rule_actionset(&rule);
/* We allow rules with no actions */
KUNIT_EXPECT_EQ(test, 0, ret);
for (idx = 0; idx < ARRAY_SIZE(caf); idx++)
list_add_tail(&caf[idx].ctrl.list, &rule.data.actionfields);
ret = vcap_encode_rule_actionset(&rule);
KUNIT_EXPECT_EQ(test, 0, ret);
/* The action values below are from an actual Sparx5 rule config */
KUNIT_EXPECT_EQ(test, (u32)0x00000002, actwords[0]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[1]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[2]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[3]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[4]);
KUNIT_EXPECT_EQ(test, (u32)0x00100000, actwords[5]);
KUNIT_EXPECT_EQ(test, (u32)0x06400010, actwords[6]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[7]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[8]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[9]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[10]);
KUNIT_EXPECT_EQ(test, (u32)0x00000000, actwords[11]);
}
static struct kunit_case vcap_api_encoding_test_cases[] = {
KUNIT_CASE(vcap_api_set_bit_1_test),
KUNIT_CASE(vcap_api_set_bit_0_test),
KUNIT_CASE(vcap_api_iterator_init_test),
KUNIT_CASE(vcap_api_iterator_next_test),
KUNIT_CASE(vcap_api_encode_typegroups_test),
KUNIT_CASE(vcap_api_encode_bit_test),
KUNIT_CASE(vcap_api_encode_field_test),
KUNIT_CASE(vcap_api_encode_short_field_test),
KUNIT_CASE(vcap_api_encode_keyfield_test),
KUNIT_CASE(vcap_api_encode_max_keyfield_test),
KUNIT_CASE(vcap_api_encode_actionfield_test),
KUNIT_CASE(vcap_api_keyfield_typegroup_test),
KUNIT_CASE(vcap_api_actionfield_typegroup_test),
KUNIT_CASE(vcap_api_vcap_keyfields_test),
KUNIT_CASE(vcap_api_vcap_actionfields_test),
KUNIT_CASE(vcap_api_encode_rule_keyset_test),
KUNIT_CASE(vcap_api_encode_rule_actionset_test),
{}
};
static struct kunit_suite vcap_api_encoding_test_suite = {
.name = "VCAP_API_Encoding_Testsuite",
.test_cases = vcap_api_encoding_test_cases,
};
kunit_test_suite(vcap_api_encoding_test_suite);